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Between the base of the solar corona at r = rb and the Alfvén critical point at r = rA,
where r is heliocentric distance, the solar-wind density decreases by a factor � 105,
but the plasma temperature varies by a factor of only a few. In this paper, I show that
such quasi-isothermal evolution out to r = rA is a generic property of outflows powered
by reflection-driven Alfvén-wave (AW) turbulence, in which outward-propagating AWs
partially reflect, and counter-propagating AWs interact to produce a cascade of fluctuation
energy to small scales, which leads to turbulent heating. Approximating the sub-Alfvénic
region as isothermal, I first present a brief, simplified calculation showing that in a
solar or stellar wind powered by AW turbulence with minimal conductive losses, Ṁ �
PAW(rb)/v

2
esc, U∞ � vesc, and T � mpv

2
esc/[8kB ln(vesc/δvb)], where Ṁ is the mass outflow

rate, U∞ is the asymptotic wind speed, T is the coronal temperature, vesc is the escape
velocity of the Sun, δvb is the fluctuating velocity at rb, PAW is the power carried by
outward-propagating AWs, kB is the Boltzmann constant, and mp is the proton mass.
I then develop a more detailed model of the transition region, corona, and solar wind
that accounts for the heat flux qb from the coronal base into the transition region and
momentum deposition by AWs. I solve analytically for qb by balancing conductive
heating against internal-energy losses from radiation, p dV work, and advection within
the transition region. The density at rb is determined by balancing turbulent heating and
radiative cooling at rb. I solve the equations of the model analytically in two different
parameter regimes. In one of these regimes, the leading-order analytic solution reproduces
the results of the aforementioned simplified calculation of Ṁ, U∞, and T . Analytic and
numerical solutions to the model equations match a number of observations.
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1. Introduction

Pioneering works by Parker (1958, 1965), Hartle & Sturrock (1968), and Durney (1972)
modelled the solar wind as a steady-state, spherical outflow powered by the outward
conduction of heat from the base of the corona. These models succeeded in producing
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a supersonic wind, but were unable to explain the large outflow velocities measured in
fast-solar-wind streams near Earth. They also had little predictive power for the mass
outflow rate from the Sun, Ṁ, because they specified the temperature of the coronal base
as a boundary condition, and Ṁ is highly sensitive to the coronal temperature (Hansteen
& Leer 1995).

A possible solution to these problems was proposed almost as soon as the difficulties
became apparent, namely that the solar wind is powered by an Alfvén-wave (AW) energy
flux (Parker 1965, p. 686; Hollweg 1973, 1978). This idea received strong support from the
discovery of large-amplitude AWs in the interplanetary medium that propagate away from
the Sun in the local plasma frame (Belcher & Davis 1971) as well as the remote observation
of AW-like motions in the low solar atmosphere carrying an energy flux sufficient
to power the solar wind (De Pontieu et al. 2007). A leading paradigm for how AWs
energise the solar wind is based on reflection-driven AW turbulence. As AWs propagate
away from the Sun, they undergo partial reflection because of the radial variation in
the Alfvén speed (Heinemann & Olbert 1980; Velli 1993). Counter-propagating AWs
then interact nonlinearly (Iroshnikov 1963; Kraichnan 1965), causing wave energy to
cascade from large wavelengths to small wavelengths and dissipate, thereby heating the
ambient plasma (Velli, Grappin & Mangeney 1989; Matthaeus et al. 1999; Cranmer &
van Ballegooijen 2005; Verdini & Velli 2007; Perez & Chandran 2013; van Ballegooijen
& Asgari-Targhi 2016, 2017). The presence of turbulence in the interplanetary medium
is confirmed by spacecraft measurements (Coleman 1968; Matthaeus & Goldstein 1982;
Tu & Marsch 1995; Smith et al. 2001; Bruno & Carbone 2005; Horbury, Forman &
Oughton 2008; Wicks et al. 2010; Chen et al. 2020), and numerical solar-wind models
based on reflection-driven AW turbulence have proven successful at explaining a number
of observations of the solar wind and corona (Cranmer, van Ballegooijen & Edgar
2007; Verdini et al. 2010; Chandran et al. 2011; van der Holst et al. 2014; Usmanov,
Goldstein & Matthaeus 2014). Three-dimensional compressible magnetohydrodynamic
(MHD) simulations have also shown that the solar wind can be self-consistently generated
by an AW energy flux (Shoda et al. 2019).

Although the aforementioned numerical models reproduce many of the observed
properties of the solar wind (see also Riley et al. 2011; Gressl et al. 2014), analytic
formulae that determine Ṁ and the outflow speed far from the Sun (U∞) remain elusive.
A number of studies have obtained a single equation that constrains the two unknowns Ṁ
and U∞. For example, Sandbaek, Leer & Hansteen (1994) pointed out that if the energy
flux far from the Sun is mostly in the form of bulk-flow kinetic energy, and if the energy
flux at the coronal base is dominated by the flux of gravitational potential energy, heat, and
some additional form of mechanical energy (from, e.g. AWs), then energy conservation
implies that

Ṁ = Ėm0 + Ėq0
1
2(v

2
esc + U2∞)

, (1.1)

where Ėm0 is the mechanical-energy input into the solar wind at the corona base, Ėq0 is
the energy input at the coronal base from thermal conduction (which is negative in models
that include the lower solar atmosphere),

vesc =
(

2GM�
R�

)1/2

= 617.7 km s−1 (1.2)

is the escape velocity of the Sun, G is the gravitational constant, M� is the solar mass,
and R� is the solar radius. Schwadron & McComas (2003) derived a variant of (1.1) that
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explicitly relates Ėq0 to the altitude of the coronal-temperature maximum. Hansteen &
Leer (1995) and Hansteen, Leer & Holzer (1997) showed that Ėq0 � Ėm0, and Hansteen &
Velli (2012) made use of this finding to further refine (1.1), obtaining

Ṁ = Ėm0
1
2(v

2
esc + U2∞)

. (1.3)

Another important result was obtained by Leer & Holzer (1980), who found that heating
inside the sonic critical point enhances Ṁ but has little effect on U∞, whereas heating
beyond the sonic critical point increases U∞ but has little effect on Ṁ.

The main goal of the present paper is to obtain approximate analytic solutions for Ṁ,
U∞, the temperature of the corona, the heat flux from the coronal base into the lower solar
atmosphere, and the plasma density at the coronal base under the assumption that AW
turbulence is the primary energisation mechanism of the solar wind. Section 2 takes a
first step towards this goal by presenting a simplified approximate calculation of Ṁ, U∞,
and the coronal temperature. Section 3 develops a more detailed solar-wind model that
accounts for physical processes neglected in § 2. Approximate analytic solutions to the
equations of this model are presented in § 3, and numerical solutions are presented in § 4.
Section 5 discusses and summarises the main results of the paper.

2. Heuristic calculation of Ṁ , U∞, and the coronal temperature in AW-driven winds
with minimal conductive losses

Approximate expressions for Ṁ, U∞, and the coronal temperature can be quickly
obtained by modelling the solar wind as a spherically symmetric, steady-state outflow and
assuming that: (1) AW turbulence is the dominant heating mechanism; (2) solar rotation
can be neglected, so that the magnetic field B and flow velocity are aligned; (3) B ∝ r−2r̂,
where r̂ is the radial unit vector (i.e. a split monopole, with Br > 0 in one hemisphere
and Br < 0 in the other); (4) momentum deposition by AWs can be neglected between the
coronal base and sonic critical point; and (5) p dV work is the dominant sink of internal
energy in the sub-Alfvénic region of the solar wind, in which the solar-wind outflow
velocity U is smaller than the Alfvén speed

vA = B√
4πρ

, (2.1)

where ρ is the mass density. Assumptions (3)–(5) are relaxed in the next section.
In steady state, given assumption (2) above, mass and flux conservation imply (see § 3.1)

that

vAb = ybUb, (2.2)

where

yb ≡
[
ρb

ρ(rA)

]1/2

, (2.3)

ρb = ρ(rb), rb is the radius of the coronal base, which in this section (but not the next) is
simply set equal to R�, rA is the Alfvén critical point at which U = vA, vAb = vA(rb), and
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Ub = U(rb). The mass outflow rate can thus be written in the form

Ṁ = 4πR2
�ρbUb = 4πR2

�ρbvAby−1
b . (2.4)

As shown in § 3.2, heating by reflection-driven AW turbulence causes the sub-Alfvénic
part of the solar wind at r < rA to become quasi-isothermal, in the sense that

1
c2

s

∣∣∣∣dc2
s

dr

∣∣∣∣� 1
ρ

∣∣∣∣dρdr

∣∣∣∣ , (2.5)

where

c2
s ≡

p
ρ
= 2kBT

mp
(2.6)

is the square of the isothermal sound speed, kB is the Boltzmann constant, T is the
temperature, and mp is the proton mass. This argument is consistent with observations
and models of the solar wind, which suggest that the temperature varies by a factor of
only a few between rb and rA, whereas ρ varies by a factor of approximately 105 (see, e.g.
Cranmer et al. 2007). When the sub-Alfvénic solar wind is approximated as an isothermal
plasma, the momentum equation at r < rA can be written in the form

U
dU
dr
= −c2

s

ρ

dρ
dr
− v

2
escR�
2r2

. (2.7)

As Ṁ = 4πr2Uρ is independent of r, U−1 dU/dr = −ρ−1 dρ/dr − 2/r. Upon substituting
this relation into (2.7) and rearranging terms, one obtains

(c2
s − U2)

ρ

dρ
dr
= 2U2

r
− v

2
escR�
2r2

. (2.8)

In order for (2.8) to have a smooth transonic solution, the right-hand side of (2.8) must
vanish at the radius rc at which U = cs, so that dρ/dr remains finite. This leads to the two
critical-point conditions

Uc = cs
rc

R�
= v2

esc

4c2
s
, (2.9)

where Uc = U(rc). Integrating (2.7), one obtains the Bernoulli integral

1
2

U2 + c2
s ln

(
ρ

ρb

)
− v

2
escR�
2r
= constant = −v

2
esc

2
, (2.10)

where the second equality in (2.10) results from evaluating the left-hand side of (2.10) at
r = rb and dropping the U2

b/2 term, which is� v2
esc/2. After evaluating the left-hand side

of (2.10) at r = rc and using (2.9) to rewrite Uc and rc in terms of c2
s , one obtains

ln
(
ρc

ρb

)
= −v

2
esc

2c2
s
+ 3

2
, (2.11)

where ρc = ρ(rc). Upon setting Ṁ = 4πr2
cρcUc and using (2.9) and (2.11) to rewrite rc,

ρc, and Uc in terms of cs, one obtains (Hansteen & Velli 2012)

Ṁ = πR2
�v

4
escρb

4c3
s

exp
(
−v

2
esc

2c2
s
+ 3

2

)
. (2.12)

The exponential appearing on the right-hand side of (2.12) reflects the fact that, at r < rc,
the flow is subsonic and the density drops off approximately as in a static atmosphere
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(Hansteen & Velli 2012). Equating the right-hand sides of (2.4) and (2.12), one finds that

ln yb = v2
esc

2c2
s
− ln c1 � v2

esc

2c2
s
, (2.13)

where c1 ≡ e3/2v4
esc/(16c3

svAb).
When radiative cooling and thermal conduction are neglected, the internal-energy

equation becomes

− c2
s U

dρ
dr
+ ρU
γ − 1

dc2
s

dr
= Q, (2.14)

where Q is the turbulent heating rate, and γ is the ratio of specific heats. In the
quasi-isothermal approximation, the second term on the left-hand side of (2.14) can
be neglected. Multiplying (2.14) by 4πr2 and integrating over the quasi-isothermal
sub-Alfvénic region, one obtains

− c2
s Ṁ

∫ rA

rb

1
ρ

dρ
dr

dr = 4π

∫ rA

rb

r2Q(r) dr � PAW(rb), (2.15)

where the approximate equality assumes that the volume-integrated turbulent heating rate
between rb and rA is comparable to PAW(rb), the power carried by outward-propagating
AWs at the coronal base, consistent with direct numerical simulations (Perez et al. 2021).
As ln(ρb/ρ(rA)) = 2 ln yb, (2.15) yields

Ṁ � PAW(rb)

2c2
s ln yb

� PAW(rb)

v2
esc

, (2.16)

where the second relation in (2.16) follows from (2.13).
Equations (2.15) and (2.16) can be understood as follows. Within the quasi-isothermal

sub-Alfvénic region, each time the density of a parcel of plasma decreases by a factor of e,
its thermal energy must be replaced via heating to offset internal-energy losses from p dV
work. The quantity c2

s ln(ρb/ρ(rA)) = 2c2
s ln yb � v2

esc is thus the heating cost per unit mass
for plasma to transit the sub-Alfvénic region. The reason that the product c2

s ln(ρb/ρ(rA))

is approximately constant is that increasing c2
s leads to an exponential increase in Ṁ and

the solar-wind density and an exponential reduction of ρb/ρ(rA), leaving c2
s ln(ρb/ρ(rA))

approximately unchanged. Equations (2.15) and (2.16) state that Ṁ is the net heating power
within the sub-Alfvénic region (which is taken to be � PAW(rb)) divided by the heating
cost per unit mass.

Assuming that the AW-energy flux and gravitational-potential-energy flux are the
dominant mechanical-energy fluxes at the coronal base and that the kinetic-energy flux is
the dominant mechanical-energy flux at large r, and equating the mechanical luminosities
at r = rb and at large r, one obtains

PAW(rb)− 1
2 Ṁv2

esc = 1
2 ṀU2

∞. (2.17)

Substituting (2.16) into (2.17) yields

U∞ � vesc. (2.18)

Reflection-driven AW turbulence thus changes the energy per unit mass from � −v2
esc/2

at the coronal base to � v2
esc/2 far from the Sun.
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In the absence of super-radial expansion, PAW(rb) = 4πR2
�vAbρb(δvb)

2, where δvb is the
root-mean-square (r.m.s.) amplitude of the fluctuating velocity at the coronal base. This
relation, in conjunction with (2.4) and (2.16), implies that yb � v2

esc/(δvb)
2, which leads

via (2.6) and (2.13) to the approximate value of the coronal temperature,

T � mpv
2
esc

8kB ln(vesc/δvb)
. (2.19)

A number of factors can cause Ṁ, U∞, and the coronal temperature to deviate from the
estimates in (2.16) (2.18), and (2.19). For example, some of the AW power survives out
to rA, which reduces the total turbulent heating in the sub-Alfvénic region appearing on
the right-hand side of (2.15), which, in turn, reduces Ṁ. The heat that is conducted from
the corona into the transition region adds a negative sink term to the right-hand sides of
(2.14) and (2.15), which likewise acts to reduce Ṁ. On the other hand, the AW pressure
force helps drive plasma away from the Sun at the critical point, which acts to increase Ṁ.
These effects, as well as super-radial expansion of the magnetic field, are included in the
more detailed solar-wind model developed in the next section.

3. Steady-state model of the transition region, corona, and solar wind

The lowest layer of the solar atmosphere is the chromosphere, which extends
2000–3000 km above the photosphere with a temperature T ranging from several thousand
K to around 104 K. Bounding the chromosphere from above is the transition region, a
narrow layer approximately 100 km thick, in which the density ρ drops (and T increases)
by approximately two orders of magnitude. Above the transition region lies the corona,
which extends out a few solar radii from the Sun and has a temperature of around
106 K. The corona contains both closed magnetic loops, which connect back to the Sun
at both ends, and open magnetic-field lines that connect the solar surface to the distant
interplanetary medium. Regions of the corona permeated by open magnetic-field lines
have lower densities than closed-field-line regions and are referred to as coronal holes. In
the analysis to follow, rb denotes the radius of the coronal base just above the transition
region in Sun-centred spherical coordinates (r, θ, φ), which is taken to be

rb = 1.005R�. (3.1)

The steady-state model developed in this section describes the outflowing plasma within
an open magnetic flux tube from the transition region to beyond the Alfvén critical point
rA, at which the plasma outflow velocity U equals vA. Figure 1 provides a schematic
overview of the model, which determines five unknowns – the density at the coronal base
ρb, the temperature of the quasi-isothermal sub-Alfvénic region, the mass outflow rate Ṁ,
the asymptotic outflow velocity U∞, and the flux of heat from the coronal base into the
transition region qb – through the following five steps:

(i) balancing turbulent heating at r = rb against radiative cooling at r = rb;
(ii) balancing the total turbulent heating between rb and rA against the two primary sinks

of internal energy in this region, p dV work and the flux of heat into the transition
region;

(iii) balancing, within the transition region, conductive heating against internal-energy
losses from p dV work, advection, and radiation;

(iv) equating the mass outflow rate at r = rb with the mass outflow rate at the
wave-modified sonic critical point r = rc; and

(v) equating the wave-modified Bernoulli integral at r = rb and r = rc.
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FIGURE 1. Schematic overview of model.

These five steps are detailed in §§ 3.4–3.7. Section 3.1 reviews some identities that
follow from the conservation of mass and magnetic flux. Sections 3.2 and 3.3 review
previous results on reflection-driven AW turbulence in the solar wind and present the
simplified model of reflection-driven AW turbulence that is used in this paper. A glossary
is given in table 1.

3.1. Flux and mass conservation
To simplify the analysis, solar rotation is neglected, and the magnetic field is taken to be
radial, except in the corona, where open magnetic-field lines fan out to fill the space above
closed magnetic loops at lower altitudes. Mathematically,

B(r) = B̄η(r)R2
�

r2
, (3.2)

where η(r) is the local super-radial expansion factor, which approaches 1 when r/R� 	 1,
and B̄ is the magnetic-field strength that would arise at the photosphere in the absence of
super-radial expansion (i.e. if η(r)were unity everywhere.) Given (3.2), the magnetic-field
strength at the coronal base is

Bb ≡ B(rb) = B̄ηbψ, (3.3)

where here and in the following a ‘b’ subscript indicates that the subscripted quantity is
evaluated at r = rb, and

ψ ≡ R2
�

r2
b
= 0.9901. (3.4)

Because rotation is neglected, the steady-state solar-wind outflow velocity is aligned
with the background magnetic field (Mestel 1961):

v = U
B
B
. (3.5)

The density and velocity satisfy the steady-state continuity equation,

∇ · (ρv) = 0. (3.6)

It follows from (3.5), (3.6), and ∇ · B = 0 that B ·∇(ρU/B) = 0, and, hence,

ρU
B
= constant. (3.7)
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Quantity Meaning First use

Ṁ mass outflow rate (1.1)
U∞ asymptotic wind speed (1.1)
vesc escape velocity at photosphere (1.2)
R� solar radius (1.2)
vA Alfvén speed (2.1)
ρ plasma density (2.1)
U solar-wind outflow velocity (2.2)
yb [ρ(rb)/ρ(rA)]1/2 (2.2)
rb radius of coronal base (2.3)
rA radius of Alfvén critical point (2.3)
cs isothermal sound speed (2.6)
T temperature (2.6)
mp proton mass (2.6)
kB Boltzmann constant (2.6)
rc radius of wave-modified sonic critical point (2.9)
γ ratio of specific heats (5/3) (2.14)
Q turbulent heating rate (2.14)
PAW power of outward-propagating AWs (2.15)
δvb r.m.s. amplitude of fluctuating velocity at rb (2.19)
η(r) local super-radial expansion factor (3.2)
B̄ field strength at r = R� in absence of super-radial expansion (3.2)
ψ (R�/rb)

2 � 0.99 (3.3)
A(r) cross-sectional area of the outflow (3.8)
y(r) [ρ(r)/ρ(rA)]1/2 (3.11)
z± r.m.s. amplitude of z± (3.16)
z+, z− Elsasser variables (3.17)
q heat flux (3.33)
lb AW dissipation length scale at rb (3.39)
σ dimensionless coefficient in turbulent heating rate (3.40)
χH fraction of PAW(rb) that dissipates between rb and rA (3.42)
fchr AW transmission coefficient, PAW(rb)/PAW�(R�) (3.46)
ρ� plasma density at the photosphere, � 1017mp cm−3 (3.46)
δv� r.m.s. amplitude of fluctuating velocity at R� (3.46)
δv�eff f 1/2

chr δv� (3.48)
Λ(T) optically thin radiative loss function (3.50)
cR numerical constant in approximate formula for Λ(T) (3.51)
cs constant value of cs in the sub-Alfvénic region (3.55)
Bref reference value for magnetic-field-strength, � 118.8 G (3.57)
B∗ B̄/Bref (3.57)
ρ̃� 4πρ�v2

esc/B
2
ref � 5.7× 105 (3.57)

ξ the parameter combination [ε�ηb/(B3∗ l̃b)]1/4 (3.57)
x dimensionless temperature (cs/vesc)

2 (3.58)
ε� (δv�eff/vesc)

2 (3.60)
l̃b lb/R� (3.62)
ε (δvb/vesc)

2 (3.64)
w dimensionless heat flux (3.77)
γB(r) −(r/2B) dB/dr (3.86)

TABLE 1. Glossary.
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Equation (3.7) is equivalent to

Ṁ ≡ A(r)ρ(r)U(r) = constant, (3.8)

where

A(r) = 4πr2

η(r)
(3.9)

is the cross-sectional area of the flow, which satisfies A(r) = constant/B(r), as required by
flux conservation. Equations (3.8) and (3.9) follow the convention of expressing the mass
outflow rate as the total solar mass-loss rate that would arise if the local mass flux at some
r characterised the entire outflow at that r, even though the actual solar wind is comprised
of different wind streams with different properties. All of the results of this paper can be
applied to an individual flux tube accounting for some fraction ν of the total flow area by
multiplying the right-hand side of (3.9) by ν.

It follows from (2.1) and (3.7) that ρ1/2U/vA is a constant. Because U(rA) = vA(rA),
this constant must be ρ1/2

A , where
ρA ≡ ρ(rA). (3.10)

Thus,
vA = yU, (3.11)

where

y ≡
(
ρ

ρA

)1/2

. (3.12)

With the aid of (3.3), (3.4), (3.9) and (3.11), (3.8) can be rewritten as

Ṁ = AbρbUb =
4πR2

�
ψηb

× ρb × vAb

yb
= R2

�B̄(4πρb)
1/2

yb
= B̄R2

�(4πρA)
1/2. (3.13)

Thus, Ṁ is determined uniquely by the value of ρA and the single-hemisphere open
magnetic flux, 2πR2

�B̄.

3.2. Reflection-driven AW turbulence
Dmitruk et al. (2002) (hereafter D02) developed an analytic model of reflection-driven AW
turbulence in the solar corona valid in the limit of small L⊥, where L⊥ is the correlation
length of the AW fluctuations measured in the plane perpendicular to the background
magnetic field. Chandran & Hollweg (2009) (hereafter CH09) generalised this model
by accounting for the solar-wind outflow velocity. Section 3.2.1 summarises the main
results of the CH09 model, and § 3.2.2 uses the CH09 model to show that heating by
reflection-driven AW turbulence causes the sub-Alfvénic region of the solar wind (at
r < rA, where U < vA) to become approximately isothermal. Section 3.2.3 presents a
modified version of the CH09 model that is easier to work with analytically, which is
used to incorporate AW turbulence into the solar-wind model developed in this section.

3.2.1. The Chandran & Hollweg (2009) model of reflection-driven AW turbulence
In classical mechanics, a simple harmonic oscillator with frequency ω and energy E

possesses an adiabatic invariant E/ω. If the parameters of the oscillator vary on a time
scale t0 satisfying t0 	 ω−1 (e.g. if the length of a pendulum is slowly varied), then E/ω is
almost exactly conserved. As (ωt0)

−1 → 0, changes in E/ω vanish faster than any power
of (ωt0)

−1 (Landau & Lifshitz 1960).
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An AW is like a space-filling collection of harmonic oscillators, and the wave action
is analogous to the harmonic oscillator’s adiabatic invariant. The wave action per unit
volume per unit ω is Eω/ω′, where ω is the AW frequency in an inertial frame centred
on the Sun, ω′ is the AW frequency in the local plasma frame, and Eω is the AW energy
per unit volume per unit ω. In the Wentzel-Kramers-Brillouin (WKB) limit, in which the
wave period is much shorter than the time scale on which the plasma parameters vary
appreciably and the wave length is much shorter than the length scales over which the
background plasma varies appreciably, the wave action satisfies the conservation law

∂

∂t

(Eω
ω′

)
+∇ ·

(
cEω
ω′

)
= 0, (3.14)

where c is the group velocity of the waves (Bretherton & Garrett 1968; Dewar 1970). For
outward-propagating AWs in the solar wind, ω = kr(U + vA), ω′ = krvA, and c = (U +
vA)r̂, where r̂ is the radial unit vector and kr is the radial component of the wave vector. In
a steady-state solar wind, ω depends on neither position nor time. Upon multiplying (3.14)
by ω, integrating over ω, and assuming a steady state, one obtains

∇ ·
[

r̂(U + vA)
2Etot

vA

]
= 0, (3.15)

where

Etot =
∫

Eω dω = 1
4ρz2
+ (3.16)

is the total AW energy density,
z± ≡ 〈|z±|2〉1/2, (3.17)

〈. . . 〉 indicates a time average,

z± = δv ∓ δB√
4πρ

(3.18)

are the Elsasser variables, δv and δB are the fluctuating velocity and magnetic field, and z+
(z−) corresponds to AW fluctuations propagating away from (toward) the Sun.1 In (3.17)
and the following, a ± sign is used as a subscript (as opposed to a superscript) when the
subscripted quantity is an r.m.s. value. As ∇ · (ρUr̂) = 0, (3.15) can be rewritten as

d
dr

g2 = 0, (3.19)

where

g2 = (U + vA)
2z2
+

UvA
= (1+ y)2z2

+
y

(3.20)

is the wave-action flux per unit mass flux per unit ω times 4ω integrated over ω, or, for
brevity, the ‘wave action flux per unit mass flux’.

When the finite radial wavelength of the AWs is taken into account, the radial gradient
in vA causes partial non-WKB reflection of z+ fluctuations, leading to the production of z−

1The use of ∓ on the right-hand side of (3.18) instead of ± implies that z+ fluctuations propagate parallel to
the background magnetic field, and z− fluctuations propagate anti-parallel to the background magnetic field. The
identification of z+ with outward-propagating AWs thus corresponds to the case Br > 0. If Br < 0, the same analysis
goes through by replacing the ∓ on the right-hand side of (3.18) with ±.
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fluctuations. Counter-propagating AWs then interact, causing fluctuation energy to cascade
to small scales and dissipate. In the CH09 model, this loss of fluctuation energy causes g2

to decrease with radius according to the equation2

(U + vA)
d
dr

g2 = − z−
L⊥

g2. (3.21)

Equation (3.21) states that in a reference frame that follows an outward-propagating AW,
the wave action flux per unit mass flux decays on the eddy turnover time scale L⊥/z−.
The reason that only z− (and not z+) appears in this eddy turnover time scale is that z+
fluctuations are not sheared or distorted by other z+ fluctuations, but they are sheared and
distorted by counter-propagating z− fluctuations (Iroshnikov 1963; Kraichnan 1965). The
radial decay of g2 is accompanied by turbulent heating at the rate

Q = ρz2
+z−

4L⊥
, (3.22)

which is the energy density of the outward-propagating AWs ρz2
+/4 divided by their eddy

turnover time scale L⊥/z−. Equation (3.22) drops a term ρz2
−z+/(4L⊥) that is normally

included in the turbulent heating rate because of CH09’s assumption that

z− � z+, (3.23)

an inequality that holds in the small-L⊥ limit, as can be seen later in (3.25).
Following D02, CH09 determined z− by balancing the rate at which z− is produced

through reflections against the rate at which z− cascades to small scales through nonlinear
interactions in the small-L⊥ limit, obtaining

(U + vA)

vA

∣∣∣∣dvA

dr

∣∣∣∣ z+ = z+
L⊥

z−, (3.24)

or, equivalently,
z−
L⊥
= (U + vA)

vA

∣∣∣∣dvA

dr

∣∣∣∣ . (3.25)

Upon substituting (3.25) into (3.21), assuming that vA(r) has a single maximum at rm > rb,
and solving for g(r), CH09 found that

g2 = g2
bh(r), (3.26)

where

h(r) =
{
vAb/vA(r) for rb < r < rm

vAbvA(r)/v2
Am if r > rm

, (3.27)

where vAm = vA(rm) is the maximum value of vA. Conceptually, (3.26) and (3.27) state that
an appreciable fraction of the local AW action flux per unit mass flux dissipates within
each Alfvén-speed scale height, which causes z2

+(r) to drop below the WKB value that
would be predicted from (3.20) with constant g2.

2CH09 derived (3.21) starting from the MHD equations; the alternative derivation presented here is given for brevity.
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12 B. D. G. Chandran

Upon substituting (3.26) into (3.22) and making use (3.20), CH09 obtained

Q = ρ(δvb)
2

(
U + vA

vA

) ∣∣∣∣dvA

dr

∣∣∣∣
(

y
yb

)(
1+ yb

1+ y

)2

h(r), (3.28)

where

(δv)2 ≡ 〈|δv|2〉 = z2
+
4
. (3.29)

The second equality in (3.29) follows from (3.23). As

yb 	 1, (3.30)

equation (3.28) can be rewritten to a good approximation in the following simplified form
with the aid of (3.11):

Q = ρ(δvb)
2yb

(
U

U + vA

) ∣∣∣∣dvA

dr

∣∣∣∣ h(r). (3.31)

3.2.2. Approximate isothermality between the transition region and Alfvén critical point
In steady state, the plasma internal-energy equation takes the form

∇ ·
[
v

(
p

γ − 1

)]
= −p∇ · v −∇ · q+ Q− R, (3.32)

where p is the pressure, p/(γ − 1) is the internal-energy density, −p∇ · v is the rate at
which p dV work is done on the plasma per unit volume, Q is the rate of turbulent heating
per unit volume, q is the heat flux, which is written in the form3

q = qr
B
B
, (3.33)

and R is the rate of radiative cooling per unit volume. In the corona and solar wind,
the density is sufficiently small that radiative cooling can be neglected, and, to a good
approximation, (3.32) can be rewritten with the aid of (3.6) as

− c2
s U

dρ
dr
+ ρU
γ − 1

d
dr

c2
s = −

1
A

d
dr
(Aqr)+ Q. (3.34)

A generic consequence of heating by reflection-driven AW turbulence is that, when
other forms of heating (including conduction) are subdominant, the flow becomes
quasi-isothermal at rb < r < rA, meaning that∣∣∣∣ 1

c2
s

dc2
s

dr

∣∣∣∣�
∣∣∣∣ 1
ρ

dρ
dr

∣∣∣∣ , (3.35)

whereas (3.35) is not satisfied at r > rA. This can be demonstrated by (1) neglecting
conductive heating in (3.34), (2) assuming that (3.35) is satisfied so that the second term on
the left-hand side of (3.34) can be neglected, and (3) solving (3.34) for c2

s . If the resulting
expression for cs(r)2 satisfies (3.35), then the neglect of the second term on the left-hand

3As in § 3.2.1, B is taken to point radially outwards. If B in fact points toward the Sun, the same analysis goes through
if one introduces a minus sign in front of the right-hand side of (3.33).
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side of (3.34) is self-consistent, and this expression for cs(r)2 is a reasonable approximation
for the full solution of (3.34). On the other hand, if the resulting value of c2

s (r) does not
satisfy (3.35), then (3.34) does not possess a quasi-isothermal solution.

Carrying out this procedure and equating the first term on the left-hand side of (3.34)
with the turbulent heating term on the right-hand side (which is given by (3.31)), one
obtains

c2
s = yb(δvb)

2

(
Lρ
LvA

)(
vA

U + vA

)
h(r), (3.36)

where

Lρ = ρ
∣∣∣∣dρdr

∣∣∣∣
−1

LvA = vA

∣∣∣∣dvA

dr

∣∣∣∣
−1

(3.37)

are the density and Alfvén-speed scale heights. These scale heights are generally some
constant of order unity times r, with Lρ/LvA increasing by a factor of a few between the
low corona and rA. On the other hand, h(r) decreases by a factor of a few between the
low corona and rA, so that the product (Lρ/LvA)h(r) varies quite weakly with r.4 The
vA/(U + vA) term in (3.36) likewise exhibits little variation in the sub-Alfvénic region,
ranging from� 1 at r = rb to 0.5 at r = rA. On the other hand, ρ varies by a factor of∼ 105

between the coronal base and rA (see, e.g. Cranmer et al. 2007). Thus, the approximate
solution for c2

s in (3.36) satisfies (3.35) at rb < r < rA, and AW heating indeed causes
the sub-Alfvénic region to become quasi-isothermal. In contrast, at r > rA, U asymptotes
toward a constant value, h ∝ vA ∝ ρ1/2U ∝ ρ1/2, vA/(U + vA) ∝ ρ1/2, and the right-hand
side of (3.36) becomes proportional to ρ, contradicting (3.35).

3.2.3. A modified version of the Chandran & Hollweg (2009) model
There are two difficulties with incorporating the CH09 model into an analytic solar-wind

model that includes the region immediately above the transition region. First, (3.25) is
consistent with (3.23) only if

vAL⊥
z+
� vA

|dvA/dr| . (3.38)

The left-hand side of (3.38) is the characteristic distance a z− fluctuation at scale L⊥
(measured perpendicular to the background magnetic field) propagates along the magnetic
field before cascading and dissipating, and the right-hand side is the Alfvén-speed scale
height. Just above the transition region, the magnetic-field strength has a scale height of
order 10−2R� (Hackenberg, Marsch & Mann 2000; Cranmer et al. 2007), the vA scale
height has a similar value, and (3.38) is not satisfied (see, e.g. equation (3.13-a) and table 3
of Chandran & Perez 2019). On the other hand, beyond the low corona, the vA scale height
grows to values ∼ r that are	 L⊥. Thus, the CH09 model should be applied only beyond
some minimum heliocentric distance, and some other approximation is needed to treat the
region immediately above the transition region.

The second difficulty with incorporating the CH09 model into an analytic solar-wind
model is that the function h(r) in (3.27) depends on the number of local extrema in the
Alfvén-speed profile and the locations of these extrema. In models that account for the
rapid increase in B(r) as r drops below � 1.01R�, vA typically has two local extrema

4An exception to this statement arises in the vicinity of the Alfvén speed maximum rm, where the right-hand side of
(3.36) vanishes. This vanishing is an artifact of the CH09 model, which determines the amplitude of inward-propagating
AWs through a purely local balancing of wave reflections against cascade and dissipation. In numerical simulations
of reflection-driven AW turbulence, in which inward-propagating AWs travel some distance before cascading and
dissipating, the heating profile varies smoothly with r without any strong reduction at r = rm (Perez & Chandran 2013).
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within the corona: a local minimum just above the coronal base and a local maximum
a few tenths of a solar radius above the coronal base. (See, e.g. figure 3 of Cranmer
& van Ballegooijen (2005) or figure 9 of Cranmer et al. (2007).) In the context of the
analytic solar-wind model developed in the following, each local extremum introduces
two new unknowns: the location of the extremum, and either the density or flow speed at
the extremum.

In this paper, the first of the two aforementioned difficulties is handled by replacing the
CH09 result for Q(r) at r = rb with the expression

Qb = ρb(δvb)
2vAb

lb
, (3.39)

where lb is a free parameter, which is set equal to 0.3R� in the numerical examples
presented in § 4. The second difficulty is resolved by replacing (3.25) with the expression

z−
L⊥
= −σ(U + vA)

d
dr

ln(1+ y) (3.40)

at rb < r < rA, where σ is a free parameter, whose value is approximately 0.1–0.5 in the
numerical examples in § 4. Whereas z−/L⊥ = (U + vA)/LvA in (3.25), (3.40) takes z−/L⊥
to be� (U + vA)/Lρ times a free parameter.5 Because ρ (and, hence, y) is a monotonically
decreasing function of r, the minus sign on the right-hand side of (3.40) ensures that
z− > 0. The right-hand side of (3.40) is taken to be proportional to ln(1+ y) instead
of ln y simply to make some of the expressions encountered later on easier to integrate
analytically. Another motivation for using (3.40) instead of (3.25) is that the parameter-free
CH09 result in (3.25) overestimates the rate at which AWs cascade and dissipate in the
solar wind (Chandran & Hollweg 2009), and the introduction of a free parameter in (3.40)
in principle makes it possible to correct for this.

Upon substituting (3.40) into (3.21), solving for g2(r), and rewriting g2 in terms of z2
+

using (3.20), one finds that

z2
+ = z2

+b
y
yb

(
1+ yb

1+ y

)2−σ
. (3.41)

Equations (3.22), (3.29), (3.40), and (3.41) can then be used to show that

H = χHPAW(rb), (3.42)

where

H =
∫ rA

rb

Q(r)A(r) dr (3.43)

is the total turbulent heating power between rb and rA,

PAW(r) = ρ(δv)2(U + vA)A (3.44)

is the power (energy flux times area) of outward-propagating AWs at radius r, and

χH = 1− 2σ−1

(
2− σ
1− σ

)
(1+ yb)

1−σ

yb
+ 1

yb(1− σ) (3.45)

is the fraction of PAW(rb) that is dissipated between rb and rA.

5More precisely, (d/dr) ln(1+ y) = (1+ y)−1 dy/dr, which is � −1/(2Lρ) when y	 1 and � −1/(4Lρ) near
r = rA where y = 1.
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3.3. Relating the AW amplitudes at the coronal base and photosphere
In the absence of wave reflection and dissipation, PAW (defined in (3.44)) would have
almost exactly the same value at rb and R�.6 However, the steep Alfvén-speed gradient
in the transition region leads to strong AW reflection, and a vigorous energy cascade
in the chromosphere leads to substantial AW dissipation (van Ballegooijen et al. 2011;
Chandran & Perez 2019). This reduces PAW(rb)/PAW (R�) to some value fchr < 1, where
fchr is an effective AW transmission coefficient for the chromosphere and transition region.
Equivalently, because U � vA at r � rb,

PAW(rb) = ρbδv
2
bvAbAb = fchrρ�δv2

�vA�A�, (3.46)

where a� subscript indicates that the subscripted quantity is evaluated at the photosphere.
For the numerical calculations in § 4, I set

ρ� = 1017mp cm−3. (3.47)

As BA = constant and vA = B/(4πρ)1/2, (3.46) can be rewritten as

δv2
b = δv2

�eff

(
ρ�
ρb

)1/2

, (3.48)

where
δv�eff = f 1/2

chr δv�. (3.49)

The difference between δv� and δv�eff is that δv� gives rise to the fluctuating velocity δvb
at r = rb when reflection and dissipation are accounted for, whereas δv�eff would give rise
to the same value of δvb via WKB propagation (i.e. without reflection or dissipation).

The value of δv�eff can be constrained in different ways. For example, observations
fix δv� at a value of � 1 km s−1 (Richardson & Schwarzschild 1950), and numerical
simulations suggest that fchr is � 0.04–0.08 (van Ballegooijen et al. 2011; Chandran &
Perez 2019). Alternatively, if the solar wind is assumed to be powered primarily by an
AW energy flux, then δv�eff can be inferred directly from measurements of the mass flux
and energy flux far from the Sun. This latter method is used to determine δv�eff in some
of the numerical solutions presented in § 4 and is described in more detail in § 4.2. It is
worth noting that in contrast to δv�, fchr, and δv�eff, which are plausibly independent of
the properties of the coronal plasma and coronal magnetic field, δvb depends upon ρb,
which varies between different flux tubes with different super-radial expansion factors ηb,
as shown later in (3.55).

3.4. Balancing turbulent heating and radiative cooling at the coronal base
Within the corona and transition region, the plasma is optically thin, and the rate of
radiative cooling is given by

R =
(
ρ

mp

)2

Λ(T), (3.50)

where mp is the proton mass, and Λ(T) is the optically thin radiative loss function.
Figure 2 shows three different approximations to Λ(T). The dashed lines correspond to

6When U is non-zero, it is g2 in (3.20) that is invariant in the absence of dissipation and reflection, not PAW. However,
between r = R� and r = rb, U � vA, and PAW is to an excellent approximation proportional to g2.
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FIGURE 2. Three approximations to the optically thin radiative loss functionΛ(T); see the text
for further discussion.

equation (A1) of Rosner, Tucker & Vaiana (1978). The solid line is a plot of

Λ(T) = cRT−1/2, (3.51)

where

cR = 1.549× 10−19 erg cm3 s−1 K1/2. (3.52)

Equation (3.51) is the temperature derivative of equation (A3) of Rosner et al. (1978).
The dotted line in figure 2 is a piecewise-continuous linear approximation to the
low-temperature range of Λ(T) in figure 1 of Cranmer et al. (2007), which is included
to illustrate that optically thin radiative cooling becomes extremely weak at T � 104 K.

Throughout most of the corona, ρ is sufficiently small that radiative cooling is
negligible. However, as r decreases within the corona, ρ increases by orders of magnitude,
which causes R/Q to increase, because R ∝ ρ2. There is thus some radius rb at which

R(rb) = Q(rb), (3.53)

which marks the transition between the corona, in which radiative cooling is negligible,
and the low solar atmosphere, in which radiation is thermodynamically important. In this
paper, the radius rb is identified as the base of the corona, as already noted in (3.1). As
r decreases below rb, ρ(r) increases above ρb, R/Q increases to values 	 1, and the
temperature gradient length scale must decrease so that conductive heating can balance
radiative cooling (as well as internal-energy losses from advection and p dV work). This
shortening of the temperature gradient length scale gives rise to the transition region,
which is discussed further in § 3.6. To facilitate an analytic solution, I neglect turbulent
heating at r < rb and radiative cooling at r > rb.

With the aid of (3.39), (3.46), and (3.50), (3.53) can be written in the form

ρ2
b

m2
p
Λ(Tb) = ρb(δvb)

2vAb

lb
= ρ�(δv�eff)

2vA�Bb

lbB�
. (3.54)
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Solving for ρb, one finds via (3.51) that

ρb =
(
δv2
�effψB̄ηbm5/2

p cs

cRlb

)1/2 (
ρ�

8πkB

)1/4

, (3.55)

where

cs = constant (3.56)

is the sound speed (2.6) in the sub-Alfvénic region (rb < r < rA), which is approximated
as a constant for the reasons discussed in § 3.2.2. Equation (3.55) can be rewritten as

ρb = B2
ref

4πv2
esc
ρ̃

1/4
� B2

∗ξ
2ψ1/2x1/4, (3.57)

where

x = cs
2

v2
esc

(3.58)

is the dimensionless temperature of the sub-Alfvénic region,

Bref =
(

4πm5/2
p v6

esc

cRR�
√

2kB

)1/2

= 118.8 G (3.59)

is the magnetic-field strength for which vA = vesc when the radiative cooling time ρcs
2/R,

free-fall time R�/vesc, and sound-crossing time R�/cs are all equal,

ε� = (δv�eff)
2

v2
esc

, (3.60)

ρ̃� = 4πv2
escρ�

B2
ref

, (3.61)

(for reference, ρ̃� = 5.7× 105 given (3.47)), and

ξ =
(
ε�ηb

B3∗ l̃b

)1/4

B∗ = B̄
Bref

l̃b = lb

R�
. (3.62)

Equation (3.57) can used to express vAb in the form

vAb = vescψ
3/4ξ−1ηb(xρ̃�)−1/8, (3.63)

and (3.48), (3.57), and (3.60) can be used to write

ε ≡ (δvb)
2

v2
esc
= ε�ρ̃3/8

� B−1
∗ ξ
−1ψ−1/4x−1/8. (3.64)
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3.5. Internal-energy equilibrium within the sub-Alfvénic region
In the quasi-isothermal approximation (3.35), the second term on the left-hand side of
(3.34) is negligible, and the volume integral of (3.34) between r = rb and r = rA yields

−Ṁcs
2
∫ rA

rb

1
ρ

dρ
dr

dr = − (Aqr)

∣∣∣∣
rA

rb

+ χHṀδv2
b(1+ yb), (3.65)

where (3.42)–(3.44) have been used to rewrite the volume integral of the turbulent heating
rate, (3.8) has been used to pull a constant factor of Ṁ = ρAU out of the integral on the
left-hand side, and (3.11) has been used to write Ub + vAb = Ub(1+ yb).

The heat flux at r = rA is a small fraction of the total energy flux in AW-driven
solar-wind models and is thus neglected in (3.65). Upon evaluating the integral on
the left-hand side of (3.65), noting that qrb = −|qrb| ≡ −qb, making use of (3.12), and
rearranging terms, one obtains

χHṀδv2
b(1+ yb) = 2Ṁcs

2 ln yb + Abqb. (3.66)

The left-hand side of (3.66) is the total turbulent heating rate within the sub-Alfvénic
region, which represents the source of internal energy between rb and rA. The two terms on
the right-hand side of (3.66) are the dominant sinks of internal energy in the sub-Alfvénic
region: p dV work and thermal conduction into the transition region. Dividing (3.66) by
Ṁv2

esc leads to

εχH(1+ yb) = 2x ln yb + qb

ρbUbv2
esc
. (3.67)

3.6. The flux of heat from the corona into the transition region
The temperature structure within the transition region can be determined using a
method similar to the methods of Rosner et al. (1978) and Schwadron & McComas
(2003). The Knudsen number NK (the electron Coulomb mean free path λmfp divided
by the temperature gradient scale length lT) is approximately 10−3 in the low corona,
approximately 10−3 at the upper end of the transition region, and approximately 10−6 at
the lower end of the transition region.7 Because NK � 1, the radial component of the heat
flux in the transition region is well approximated by the Spitzer & Härm (1953) formula,

qr = −αT5/2 dT
dr
, (3.68)

where

α = 1.84× 10−5 erg cm−1 s−1 K−7/2

lnΛCoul
, (3.69)

and lnΛCoul is the Coulomb logarithm. In the numerical examples of § 4,

lnΛCoul = 18.1, (3.70)

the value for electron-electron collisions in a proton-electron plasma with ρ/mp =
109 cm−3 and T = 106 K (Huba 2013). The magnetic field near r = rb is taken to be

7These estimates follow from setting ρ ∼ 108mp cm−3, T ∼ 106 K, and lT ∼ R� in the low corona, ρ ∼
109mp cm−3, T ∼ 3× 105 K, and lT ∼ 0.01R� at the upper end of the transition region, and ρ ∼ 1011mp cm−3,
T ∼ 104 K, and lT ∼ 100 km at the lower end of the transition region.
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approximately radial, and the width of the transition region (∼ 102 km) is so narrow that
p, B, and A are treated as constants within the transition region, with

∇ · q = dqr

dr
. (3.71)

As mentioned previously, turbulent heating is neglected at r < rb. Within the transition
region, (3.32) thus becomes(

γ

γ − 1

)
p∇ · v = −dqr

dr
− cRp2

4k2
BT5/2

, (3.72)

where ρ has been expressed in terms of p and T using (2.6). The velocity divergence in
(3.72) can be expressed in terms of the heat flux via

∇ · v = − v

ρ
· ∇ρ = v

T
· ∇T = U

T

(
− qr

αT5/2

)
. (3.73)

where the first equality follows from (3.6). With the aid of (3.73), and using (3.68) to write

dqr

dr
= −dqr

dT
qr

αT5/2
, (3.74)

one can rewrite (3.72) in the form

−a2qr = qr
dqr

dT
− a1, (3.75)

where

a1 = αp2cR

4k2
B

a2 =
(

γ

γ − 1

)
pU
T

(3.76)

are both constants. Upon defining

w = −a2

a1
qr, (3.77)

which is positive, one can rewrite (3.75) as

a2
2

a1
dT = w

1+ w
dw, (3.78)

which can be integrated from the chromospheric values of T and w, denoted Tchr and wchr,
to the values of T and w at r = rb, denoted Tb and wb. As Tchr � Tb and the chromospheric
heat flux is negligible (q scaling as T7/2 divided by the temperature-gradient scale length),
the chromospheric terms are dropped, and the integral becomes

wb − ln(1+ wb) = a3, (3.79)

where

a3 = a2
2Tb

a1
= 2

I2
1

(
γ

γ − 1

)2 (Ub

cs

)2

, (3.80)

I1 =
(
αcRmp

4k3
B

)1/2

= 0.1581, (3.81)

https://doi.org/10.1017/S0022377821000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000052


20 B. D. G. Chandran

and the numerical value on the right-hand side of (3.81) is calculated using (3.70).
Equation (3.79) can be solved in terms of the lower branch of the Lambert W function,
W−1. This solution, in conjunction with (3.77), yields

qb = −qrb = −a1

a2
[1+W−1(−e−(1+a3))], (3.82)

which is positive since W−1(−e−(1+a3)) < −1.
If Ub/cs is sufficiently small, then a3 � 1. In this low-Mach-number limit, (3.82)

becomes, to leading order in a3,
qb = I1ρbcs

3. (3.83)

Equation (3.83) is equivalent to equation (3.15) of Rosner et al. (1978) when thermal
conduction is the only source of heating in the transition region, i.e. when fH is set equal
to zero in their equation (3.15). Equation (3.82) follows Schwadron & McComas (2003) in
generalising the work of Rosner et al. (1978) to include internal-energy losses from p dV
work and advection. However, the analysis leading to (3.82) differs from that of Schwadron
& McComas (2003) in that (3.82) completely neglects turbulent heating at r < rb and does
not assume that

∫
q(T) dT ∝ T .8

3.7. Constraints associated with the wave-modified sonic critical point
In the presence of mostly outward-propagating AWs, a radial background magnetic
field, and a radial outflow, the momentum equation in the approximately isothermal
sub-Alfvénic region takes the form

ρU
dU
dr
= −cs

2 dρ
dr
− d

dr

(
ρz2
+

8

)
− GM�ρ

r2
, (3.84)

where ρz2
+/8 is the AW pressure, which is one-half the AW energy density (Dewar 1970).

Equation (3.7) implies that

1
ρ

dρ
dr
+ 1

U
dU
dr
− 1

B
dB
dr
= 0. (3.85)

Equations (3.41) and (3.85) can be used to rewrite (3.84) in the form

1
ρ

dρ
dr

{
−U2 + cs

2 + (δvb)
2(1+ yb)

2−σ [y2(1+ σ)+ 3y]
4yb(1+ y)3−σ

}
= 2

r

(
γBU2 − v

2
escR�
4r

)
,

(3.86)
where

γB ≡ − r
2B

dB
dr
= 1− r

2η
dη
dr
, (3.87)

and η is defined in (3.2). In order for (3.86) to possess a transonic-wind solution for U,
the quantity in braces on the left-hand side must be positive near the Sun and negative far
from the Sun; i.e. it must pass through zero at some radius rc (the wave-modified sonic

8Schwadron & McComas (2003) integrate the internal-energy equation from the upper chromosphere all the way
out to the coronal temperature maximum, where the heat flux vanishes. The value of qb in (3.82) corresponds to
r = rb, at which turbulent heating and radiative cooling balance, which, in the low-Mach-number limit, corresponds
to the maximum of the heat flux. This heat-flux maximum is lower down in the solar atmosphere than the temperature
maximum.
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critical point). In order for dρ/dr to remain finite at r = rc, the right-hand side of (3.86)
must also vanish at rc. Together, these conditions yield the constraints

rc = v2
escR�

4γBcU2
c

(3.88)

and

U2
c = cs

2 + (δvb)
2(1+ yb)

2−σ [y2
c(1+ σ)+ 3yc]

4yb(1+ yc)3−σ
, (3.89)

where, here and in the following, a ‘c’ subscript indicates that the subscripted quantity is
evaluated at r = rc. An implicit assumption underlying (3.88) and (3.89) is that

rc < rA, (3.90)

so that the quasi-isothermal approximation applies at rc.
Mass and flux conservation (i.e. (3.7)) imply that

ρcUc

Bc
= ρbUb

Bb
= ρbvAb

Bbyb
, (3.91)

where the second equality in (3.91) follows from (3.11). Equation (3.2) implies that

Bb

Bc
= r2

c

R2�
ψ
ηb

ηc
= v4

esc

16γ 2
BcU4

c

ψ
ηb

ηc
, (3.92)

where the second equality in (3.92) follows from (3.88). Upon substituting (3.92) into
(3.91) and evaluating vAb using (3.63), one obtains

U2
c = v2

esc

[
y2

cψ
1/4ξ(xρ̃�)1/8

16γ 2
Bcηcyb

]2/3

. (3.93)

Substituting (3.93) into (3.89) yields

[
y2

cψ
1/4ξ(xρ̃�)1/8

16γ 2
Bcηcyb

]2/3

− x− ε(1+ yb)
2−σ [y2

c(1+ σ)+ 3yc]
4yb(1+ yc)3−σ

= 0. (3.94)

The integral over r of ρ−1 times the momentum equation (3.84) yields the Bernoulli
integral,

U2

2
+ cs

2 ln
(
ρ

ρb

)
− v

2
escR�
2r
− (δvb)

2(1+ yb)
2−σ

2yb

[(
1+ σ
1− σ

)
(1+ y)σ−1 + (1+ y)σ−2

]
= Γ,
(3.95)

where Γ is independent of r. Evaluating (3.95) at r = rb leads to the equality

Γ = U2
b

2
− v

2
escψ

1/2

2
− (δvb)

2

2

[
1+ σ
1− σ +

2
yb(1− σ)

]
. (3.96)
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Evaluating (3.95) at r = rc, rewriting rc and Uc using (3.88) and (3.89), rewriting Γ using
(3.96), and multiplying the resulting equation by 2/v2

esc yields

ψ1/2 + x
[

4 ln
(

yc

yb

)
+ 1− 4γBc

]
+ ε(1+ yb)

2−σΦ
4(1− σ)yb(1+ yc)3−σ

− η2
bψ

3/2

y2
bξ

2(xρ̃�)1/4
+ ε

[
1+ σ
1− σ +

2
yb(1− σ)

]
= 0, (3.97)

where

Φ ≡ y2
c[(1− 4γBc)(1− σ 2)− 4(1+ σ)]+ yc[3(1− 4γBc)(1− σ)− 12− 4σ ]− 8.

(3.98)

3.8. Mathematical structure of the model and approximate analytic solutions
The various quantities appearing in the model equations can be divided into five groups:
(1) quantities that are determined observationally (R�, M�, vesc, ρ�, ρ̃�, ψ , δv�eff, B̄); (2)
free parameters (σ , lb); (3) the super-radial expansion factor η(r), which takes on different
values in different magnetic flux tubes and in different models for the solar magnetic
field; (4) the three principal unknowns, yb, yc, and x; and (5) additional unknowns that
can be determined once yb, yc, and x are found (Ṁ, χH, U(r), ρb, qb, vAb, rc, rA). The
three principal unknowns yb, yc, and x are determined by solving the three simultaneous
equations (3.67), (3.94), and (3.97), where it must be remembered that ε is itself a function
of x via (3.64). The additional unknowns Ṁ, χH, ρb, vAb, qb, and rc then follow immediately
from (3.13), (3.45), (3.57), (3.63), (3.82), and (3.88), respectively. For example,

Ṁ = R2
�B̄2

vesc
y−1

b (xρ̃�)
1/8ξψ1/4. (3.99)

The procedures for determining rA and U(r) involve a few more steps, which are described
in Appendix A.

Two approximate analytic solutions to (3.67), (3.94) and (3.97), valid in two different
parameter regimes, are derived in Appendix B. Both solutions rely on the approximations

yb 	 1 ψ = 1 ε � 1 ηc = γBc = 1. (3.100)

The last equality in (3.100) amounts to taking the magnetic-field lines to be purely
radial at r � rc. The first of the two approximate analytic solutions is valid in the
conduction-dominated regime, in which the dominant sink of internal energy in the
sub-Alfvénic region is the flux of heat from the corona into the transition region, rather
than p dV work. As discussed further in the following, this regime arises only for values
of δv�eff much smaller than the solar value. This limit is thus not directly relevant
to solar-wind observations. To leading order in ε�, the mass outflow rate Ṁ(cond) and
asymptotic flow velocity U(cond)

∞ in this parameter regime are given by

Ṁ(cond) = R2
�B2

ref

vesc

1

I1/14
1 I2

[ε14−4σ
� (ηbB∗)−4σ l̃3σ

b ρ̃
7−2σ
� ]1/(7−7σ), (3.101)
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where I2 is a numerical constant given in (B 12), and

U(cond)
∞ = vesc

[
29−4σ ζ

(1+ σ)2Iσ/14
1

(
1− σ
7− 3σ

)(7−3σ)/2

ε
−(7−2σ)/7
� B(7−5σ)/7

∗ η
2σ/7
b ρ̃

(−7+2σ)/14
� l̃−3σ/14

b

]1/2

. (3.102)

The coronal temperature in the conduction-dominated limit follows directly from (2.6) and
(B 8).

The second approximate analytic solution is valid in the expansion-dominated regime,
in which the p dV work resulting from expansion is the dominant sink of internal energy in
the sub-Alfvénic region. To leading order, the mass outflow rate in this parameter regime
is given by

Ṁ(exp)
0 = ε�B̄R2

�
√

4πρ� = PAW(rb)

v2
esc

, (3.103)

where PAW(rb) is the AW power (3.44) evaluated at the coronal base. The asymptotic wind
speed in the expansion-dominated regime is to leading order given by

U(exp)
∞,0 = vesc, (3.104)

and the coronal temperature in the expansion-dominated regime is to leading order

T = mpv
2
esc

kB ln(ε−3
� ρ̃

−3/2
� l̃−1

b ηbB∗)
. (3.105)

Equations (3.103) and (3.104) reproduce the approximate scalings of the simplified
calculation presented in § 2. Equation (3.105) matches the right-hand side of (2.19) to
within five percent for Sun-like parameters, the difference arising because in the model
developed in this section, δvb has a weak dependence on the coronal temperature via
(3.48) and (3.57) that is not accounted for in § 2. Appendix B presents higher-order
corrections to (3.103), (3.104), and (3.105) that account for conductive losses, wave
momentum deposition inside the wave-modified sonic critical point, and the fact that only
part of PAW(rb) is dissipated within the sub-Alfvénic region. Second- and fourth-order
approximations to Ṁ and U∞ are shown in figure 5 below.

Analytic estimates for the ranges of ε� values corresponding to the conduction-dominated
and expansion-dominated limits are given in Appendix B. There are three constraints
on ε� in the conduction-dominated limit, the most stringent of which is that the
wave-energy term dominates over the internal-energy term in the Bernoulli integral at the
wave-modified sonic critical point. The resulting range of ε� values is much smaller than
the solar value, as illustrated in figure 4. The expansion-dominated limit corresponds to a
finite range of ε� values that is sufficiently large that p dV work dominates over conduction
as the primary internal-energy sink within the sub-Alfvénic region, and sufficiently small
that the sound speed makes the dominant contribution to the outflow velocity at the
wave-modified sonic point in (3.89). This range of ε� values is relevant to the solar case,
as shown in the next section.

4. Numerical examples

This section presents several numerical solutions and approximate analytic solutions
to the equations of the model developed in § 3. The numerical solutions are obtained by
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solving (3.67), (3.94), and (3.97) for yb, yc, and x using Newton’s method.9 Once yb, yc,
and x are determined, Ṁ, χH, ρb, vAb, qb, rc, rA, and U∞ are computed from (3.13), (3.45),
(3.57), (3.63), (3.82), (3.88), (A 3), and (A 13), respectively. The approximate analytic
solutions are derived in Appendix B.

4.1. Magnetic-field model
The equations in § 3 are compatible with any model for the radial profile of the
magnetic-field strength, or, equivalently, any choice of η(r). On the other hand, the
approximate analytic solutions derived in Appendix B assume that

ηc = γBc = 1. (4.1)

To maintain consistency between the numerical and analytic solutions, and to avoid
introducing additional complexity and free parameters, I take (4.1) to hold when
computing the numerical solutions presented in this section. In essence, (4.1) amounts
to assuming that all of the super-radial expansion of the magnetic field occurs inside
the wave-modified sonic critical point. In measurements from the FIELDS experiment
on the Parker Solar Probe (PSP) (Bale et al. 2016) during PSP’s first few orbits, |Br| �
2.2 nT(1 a.u./r)2 (Sam Badman, private communication), where a.u. is the abbreviation
for astronomical unit. In order to match this Br profile, I set

B∗ = 0.00856 ←→ Br(1 a.u.) = 2.2 nT (4.2)

when computing the results shown in figures 3 through 6.

4.2. Values of the AW power at the coronal base and δv�eff

Equations (3.46) and (3.49) and the flux-conservation relation AbBb = A�B� imply that

δv�eff =
(

4π

ρ�

)1/4 (PAWb

BbAb

)1/2

. (4.3)

When the solar wind is powered primarily by AWs, PAWb is approximately equal to the
value of Ėm0 in (1.3), i.e.,

PAWb � 1
2 Ṁ(v2

esc + U2
∞). (4.4)

Upon evaluating the right-hand side of (4.4) using the data in table 1 of Schwadron &
McComas (2008) for Ulysses’ third northern polar pass (3NPP), one obtains

PAWb = 3.6× 1027 erg s−1, (4.5)

which corresponds to PAWb/(4πR2
�) = 0.59× 105 erg cm−2 s−1. I use the 3NPP data

because this is the part of Ulysses’s first three orbits during which the average scaled
radial magnetic field |〈Br〉| · (r/1 a.u.)2 was most consistent with (4.2) (in the 3NPP
data, |〈Br〉| · (r/1 a.u.)2 = 2.1± 0.08 nT), and because Ṁ is strongly correlated with the
average scaled radial magnetic field (Schwadron & McComas 2008). Equations (3.47),
(4.2), (4.3), and (4.5) and the relation BbAb = |Br(1 a.u.)|4π(1 a.u.)2 imply that

δv�eff = 0.22 km s−1. (4.6)

This value of δv�eff is used in figures 3, 5, and 7.

9In practice, rather than evaluating qb in (3.67) using the Lambert W function in (3.82), I evaluate qb using (3.77),
treat wb as a fourth unknown, and include (3.79) as a fourth simultaneous equation to be solved numerically. The resulting
value of qb is identical to the value from (3.82).
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(a) (b)

(c) (d)

FIGURE 3. The outflow velocity U, density ρ, r.m.s. amplitude of the velocity fluctuation δv,
and temperature T as functions of heliocentric distance r in a numerical solution to the model
equations with ηb = 100, σ = 0.5, and the parameter values in (4.1), (4.2), (4.6), and (4.7). The
dotted lines in the top-left panel are described in the text. In the top panels and the lower-right
panel, the circles are measurements from a 1 h interval containing PSP’s first perihelion on 6
November 2018, from figure 1 of Kasper et al. (2019). The error bars around the PSP data points
in these three panels indicate the approximate range of values with a relative occurrence rate
of at least 50 % of the peak occurrence rate within that 1 h interval. In the top-right panel, the
error bars lie within the data point. In the lower-left panel, the PSP data point is from Chen et al.
(2020), and the error bars around that data point show the approximate range of measured values
near r = 35.7R� in figure 7 of Chen et al. (2020). The triangle in the lower-left panel is the value
obtained by De Pontieu et al. (2007) from an analysis of the motion of filamentary structures in
the low solar atmosphere based on observations from the Solar Optical Telescope on the Hinode
satellite.

4.3. Free parameters
As discussed in § 3.8, there are two free parameters in the model: lb (the AW dissipation
length scale at rb) and σ (the dimensionless coefficient in the turbulent heating rate). The
solutions to (3.67), (3.94), and (3.97) are not very sensitive to the value of lb. Throughout
the rest of this section, lb is thus simply fixed at a value that seems physically reasonable:

lb = 0.3R�. (4.7)

On the other hand, the solutions depend sensitively on the value of σ . Larger values of σ
cause a larger fraction of the AW power at the coronal base PAWb to be dissipated in the
quasi-isothermal sub-Alfvénic region, which increases Ṁ (see, e.g. (2.15) and (2.16)). For
fixed PAWb, increasing Ṁ decreases U∞. In some of the examples to follow, σ is varied
to optimise agreement between the model and observations, as described further in §§ 4.4
and 4.6. The super-radial expansion factor at the coronal base, ηb, also varies in the model,
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FIGURE 4. Mass outflow rate as a function of the effective fluctuating velocity at the
photosphere δv�eff = f 1/2

chr δv� (see (3.49)) for the parameter values in (4.1), (4.2), (4.7), ηb = 30,
and σ = 0.18, where fchr is the chromospheric/transition-region AW transmission coefficient in
(3.46). The corresponding r.m.s. photospheric velocity δv� is shown at the top of the plot for
the case in which fchr = 0.05. The solid line plots (3.99) using the numerical solution to (3.67),
(3.94), and (3.97). The dotted and short-dashed lines plot the approximate analytic results from
(3.101) and (3.103), respectively. The vertical dash-dot line corresponds to ε�cond in (B 14). The
left and right edges of the shaded region correspond to ε�exp,min and ε�exp,max in (B 35) and
(B 36), respectively. To the right of the vertical long-dashed line, rc > rA, which violates (3.90)
and the assumptions of the model.

but this quantity is in principle observable for individual flux tubes. The value of ηb is thus
treated as an input into the model rather than an adjustable parameter.

4.4. Fiducial solution matching measurements from Parker Solar Probe’s first
perihelion

Figure 3 illustrates the r dependence of the outflow velocity, density, fluctuating velocity,
and temperature in a numerical solution to the model equations that is designed to agree
with measurements from PSP’s first perihelion encounter (E1) on 6 November 2018. The
procedure for computing U(r) and T(r) is described in Appendix A. In order to solve for
U at some radius r, the value of η must be specified at that r. For figure 3, I set η(r) =
1+ (ηb − 1) exp(−(r − rb)

2/(0.02R�)2), which is effectively unity at r = rc, consistent
with (4.1). This choice of η(r) is not realistic for the low corona (see, e.g. Cranmer et al.
2007), but the flow profile in the low corona is not a focus of this work. It should be noted
that while the value of δv at r = rb (i.e. δvb) shown in the lower-left panel of figure 3
depends on ηb through (3.48), (3.57), and (3.62), δvb does not on the way in which η(r)
decreases from ηb to 1.

The solution in figure 3 is based upon the somewhat arbitrary assumption that ηb = 100
in the magnetic flux tube encountered by PSP at the time of its first perihelion. The value
of σ is set equal to 0.5 to optimise the agreement between the model and the data. Fits
of comparable (in some cases superior) quality can be obtained for different values of ηb.
For example, the parameter combinations (ηb, σ ) = (300, 0.47) and (ηb, σ ) = (30, 0.55)
lead to similar agreement with the data. Modelling of the solar magnetic field during
PSP E1 suggests that the solar-wind stream encountered by PSP at the time of PSP’s first
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 5. The dependence of various flow properties on the Wang-Sheeley super-radial
expansion factor fmax,WS (4.8) for the parameter values in (4.1), (4.2), and (4.6)–(4.9). All
quantities are evaluated using numerical solutions to the model equations, with the exception
of Ṁ(exp)

2 , Ṁ(exp)
4 , U(exp)

∞,2 , and U(exp)
∞,4 , which are defined in (B 32) and (B 33), and the data points

labeled ‘WS empirical’, which are taken from table 2 of Wang & Sheeley (1990). The horizontal
error bars on these data points convey the half widths of the fmax,WS data bins in that table. The
vertical error bars correspond to one-half of the 100 km s−1 increment between the discretised
U∞ values that define four of the five data bins. The quantity I1ρbcs

3 in the left panel of the
second row is the low-Mach-number approximation to qb given in (3.83).

perihelion originated in a small equatorial coronal hole (Bale et al. 2019). The fact that
all four quantities plotted in figure 3 can be matched by varying the single parameter σ
suggests that the model is reasonably successful at capturing the physical processes that
control the heating and acceleration of coronal-hole outflows.

The dotted lines in the top-left panel of figure 3 are solutions of the Bernoulli equation
(3.95) for different values of the Bernoulli constant Γ . One of the dotted lines intersects
the solid line, and that intersection occurs at the wave-modified sonic critical point, r = rc.
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 6. The dependence of various flow properties on the Wang-Sheeley super-radial
expansion factor fmax,WS (4.8) and the effective fluctuating velocity at the photosphere δv�eff
defined in (3.49).

That dotted line is an accretion-like solution of (3.95) with the same value of Γ as in the
model solution but with dU/dr < 0 at r = rc.

4.5. Illustration of the conduction-dominated and expansion-dominated regimes
Figure 4 plots Ṁ as a function of δv�eff when ηb = 30 and σ = 0.18. This figure
includes the numerical solution to (3.67), (3.94), and (3.97) as well as the approximate
analytic results Ṁ(cond) and Ṁ(exp)

0 from (3.101) and (3.103). The vertical dash-dot line
in this figure corresponds to ε�cond in (B 14). The conduction-dominated approximation
that gives rise to Ṁ(cond) in (3.101) assumes that ε� � ε�cond.10 The shaded region
corresponds to ε�exp,min < ε� < ε�exp,max, where ε�exp,min and ε�exp,max are defined in (B 35)

10It should be noted, however, that the solution for U(cond)
∞ in (3.102) exceeds the speed of light when δv�eff �

2× 10−3 km s−1, and a relativistic treatment would be needed to model the outflow correctly in this limit.
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 7. The dependence of various flow properties on the Wang-Sheeley super-radial
expansion factor fmax,WS (4.8) and the strength of the radial magnetic field at r = 1 a.u.

and (B 36). The expansion-dominated approximation in § B.2 assumes that ε�exp,min �
ε� � ε�exp,max. The vertical long-dashed line corresponds to the condition rc = rA. To the
right of this line, Ṁ and the solar-wind density become so large that rA < rc, violating
(3.90) and the assumptions underlying the model. In conjunction with (4.6), figure 4
illustrates that the expansion-dominated regime is relevant to the solar wind and that the
conduction-dominated regime corresponds to values of δv�eff much smaller than the solar
value.

4.6. Anti-correlation between the coronal super-radial expansion factor and U∞
Wang & Sheeley (1990) showed that the outflow velocity in a solar-wind stream at r = 1
a.u. is anti-correlated with the super-radial expansion factor in the coronal magnetic flux
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tube from which the solar-wind stream originated. To compare their results with the
model developed in § 3, I follow Cranmer et al. (2007) by defining the Wang & Sheeley
(1990) coronal super-radial expansion factor fmax,WS to be η(1.04R�)/η(2.5R�). I then
compute η(1.04R�) and η(2.5R�) using a magnetic-field model similar to that used by
Cranmer et al. (2007). In particular, I employ the global solar-magnetic-field model of
Banaszkiewicz, Axford & McKenzie (1998) with the parameter values listed below their
equation (2) (K = 1, M = 1.789, a(B98)

1 = 1.538, and Q = 1.5). I supplement this global
magnetic field with the low-solar-atmosphere magnetic-field model of Hackenberg et al.
(2000) using the same parameter values listed in their figure 1 (L = 30 Mm, d = 0.34 Mm,
B0 = 11.8 G, and Bmax = 1.5 kG). I then integrate out along a magnetic-field line at the
edge of the polar corona hole in the Banaszkiewicz et al. (1998) model, compute η(r), and
obtain

fmax,WS = ηb

5.75
. (4.8)

I take (4.8) to hold even as ηb is varied in figures 5, 6, and 7. This is equivalent to assuming
that if local magnetic structures on the Sun cause ηb to increase or decrease by some factor
relative to the Hackenberg/Banaszkiewicz model just described, then η(1.04R�) increases
or decreases by the same factor, but η(2.5R�) does not change.

If σ is fixed while ηb is varied, the model of § 3 does not agree with results of Wang
& Sheeley (1990) shown in the top-right panel of figure 5. On the other hand, the model
becomes consistent with those results if σ is taken to have a power-law dependence on ηb
of the form

σ = 5.7× 10−2 η0.34
b . (4.9)

Equation (4.9) is used to determine σ in figures 5 through 7. The implication of (4.9) that
σ is an increasing function of ηb is plausible because increasing ηb increases vAb, as can
be seen from (3.63). This, in turn, increases the number of Alfvén-speed scale heights
between the coronal base and the Alfvén critical point (

∫ rA

rb
(1/vA)| dvA/dr| dr), which

increases the fraction of PAWb that is dissipated at r < rA (Chandran & Hollweg 2009).
Further work, however, is needed to clarify how the structure of the coronal magnetic
field influences the rate of turbulent dissipation along different magnetic flux tubes with
different values of ηb and to test the extent to which (3.41) and (4.9) are consistent with
more rigorous treatments of AW turbulence in the sub-Alfvénic region of the solar wind.

The top-left panel of figure 5 shows that as fmax,WS ranges from � 3 to � 30, Ṁ varies
from 10−14M� yr−1 to 2× 10−14M� yr−1, values that are similar to the solar-mass-loss
rates inferred from Ulysses and PSP measurements (McComas et al. 2000; Schwadron
& McComas 2008; Kasper et al. 2019). The fourth-order analytic approximation Ṁ(exp)

4
from (B 32) reproduces the numerical solution to the model equations reasonably well.
The second-order analytic approximation Ṁ(exp)

2 is also reasonably accurate at fmax,WS � 3,
but deviates markedly from the numerical solution at fmax,WS � 2. A similar comment
applies to the top-right panel of figure 5, which also shows that the model agrees fairly
well with observational constraints on U∞( fmax,WS) when (4.9) holds. The left panel of
the second row of figure 5 shows that the low-Mach-number approximation to qb given
in (3.83) is quite accurate at small fmax,WS, where Ub/cs � 1 (see the right panel in the
second row of this figure). However, as fmax,WS increases, Ub increases, because the outflow
is concentrated into a smaller cross-sectional area at the coronal base. This increase
in Ub leads to larger losses of internal energy within the transition region from p dV
work and advection, which, in turn, causes qb to increase above the low-Mach-number
scaling so that conductive heating within the transition region can balance the additional
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non-radiative cooling. This same panel also shows that qb is significantly smaller than
the AW energy flux at the coronal base (� ρb(δvb)

2vAb = ρ1/2
� (δv�eff)

2Bb/
√

4π), which
increases with fmax,WS because increasing fmax,WS increases ηb and hence Bb. The lower-left
panel of figure 5 shows that ρb increases by a factor of � 10 as fmax,WS increases from 1 to
100, consistent with the ρb ∝ η1/2

b x1/4 scaling in (3.57) and (3.62), given that x = cs
2/v2

esc
is approximately constant over this range of fmax. The lower-right panel shows that rc
is typically several solar radii, whereas rA ranges from 12R� to 15R� for this set of
parameters.

4.7. Dependence of the flow properties on the AW power, super-radial expansion factor,
and strength of the interplanetary magnetic field

The contour plots in figure 6 show how several quantities vary as functions of fmax,WS
and δv�eff in numerical solutions to the model equations based on the parameter values
in (4.1), (4.2), (4.7), and (4.9). The top panels of figure 6 show that Ṁ is an increasing
function of both fmax,WS and δv�eff, whereas U∞ is a decreasing function of both fmax,WS
and δv�eff. The second row shows that rA is a strongly decreasing function of δv�eff and
only weakly dependent on fmax,WS for values of δv�eff comparable to the Sun-like value in
(4.6). The right panel of this row shows that rc is an increasing function of fmax,WS and, for
the most part, a decreasing function of δv�eff. The lower-left panel of figure 6 shows that
cs varies only weakly with fmax,WS and δv�eff. As shown in the lower-right panel, χH varies
by a factor of � 2 over the parameter range shown. If δv�eff is set equal to the value in
(4.6) and fmax is restricted to the interval (2, 8) so that U∞ in the upper-right panel takes
on fast-wind-like values of 600–800 km s−1, then χH � 0.5–0.7, consistent with direct
numerical simulations of reflection-driven AW turbulence (Perez et al. 2021).

Figure 7 displays contour plots of the same quantities as in figure 6, but this time as
functions of fmax,WS and B∗, or, equivalently, Br(1 a.u.), using the parameters in (4.1),
(4.6), (4.7), and (4.9). The top panels show that Ṁ increases approximately linearly with
Br(1 a.u.) at fixed fmax,WS, and that U∞ varies only weakly with Br(1 a.u.), consistent with
measurements from the Ulysses spacecraft (Schwadron & McComas 2008; Riley et al.
2010). The left panel of the middle row shows that rA depends more strongly on Br(1 a.u.)
than on fmax,WS, whereas the reverse is true for rc. As in figure 6, cs varies very weakly
across the entire parameter range observed. The lower-right panel shows that, when (4.9)
holds, χH depends more strongly on fmax,WS than on Br(1 a.u.).

5. Discussion and conclusion

The main goal of this paper is to obtain an approximate analytic solution to the coupled
problems of coronal heating and solar-wind acceleration under the assumption that the
solar wind is powered primarily by an AW energy flux. Section 2 presents a first step
toward this goal, namely, a simplified calculation of Ṁ, U∞, and the coronal temperature
in a spherically symmetric, steady-state solar wind in the absence of solar rotation.
This calculation is based upon: (1) the assumption that p dV work rather than thermal
conduction is the primary sink of internal energy in the sub-Alfvénic region as a whole;
(2) the result of § 3.2.2 that a solar or stellar wind heated primarily by AW turbulence
becomes approximately isothermal between the coronal base rb and Alfvén critical point
rA; and (3) the finding in recent direct numerical simulations that most of the AW power
at the coronal base PAW(rb) is dissipated between r = rb and r = rA (Perez et al. 2021).
The calculation of § 2 shows that

Ṁ � PAW(rb)

v2
esc

U∞ � vesc T � mpv
2
esc

8kB ln(vesc/δvb)
. (5.1)
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Deviations from (5.1) can be caused by a number of factors, including conductive
losses into the transition region, wave momentum deposition inside the wave-modified
sonic-critical point, and the fact that part of the AW power reaches the super-Alfvénic
region, where it enhances U∞ without contributing to the heating that helps drive the
outflow of mass past the wave-modified sonic critical point. These factors are accounted
for in the more detailed solar-wind model developed in § 3. It is worth noting that in this
model:

(i) the plasma density at the coronal base ρ(rb) = ρb is determined by equating the
turbulent heating rate Q(rb) and radiative cooling rate R(rb); and

(ii) an analytic solution for the heat flux from the corona into the transition region qb
is obtained by balancing, within the transition region, conductive heating against
internal-energy losses from p dV work, advection, and radiative cooling.

The expression (3.57) for ρb that results from setting Q(rb) = R(rb) contains a factor of
x1/4, where x = cs

2/v2
esc is the dimensionless temperature. Thus, x must be found before

the exact value of ρb can be determined. However, because Ṁ is so sensitive to the coronal
temperature, x1/4 can to a good approximation be treated as a constant (see, e.g. figures 6
and 7), and (3.57) with x1/4 = 0.44 can be used to obtain the approximate value of ρb
without solving the full model equations.

The equations of the solar-wind model developed in § 3 are solved analytically in two
different parameter regimes. One of these is the conduction-dominated limit, in which
heat conduction into the transition region is the dominant mechanism for draining internal
energy from the sub-Alfvénic region, wave pressure makes the dominant contribution to
the critical-point velocity Uc in (3.89), and the wave-energy term dominates over the
plasma-internal-energy term in the Bernoulli equation (3.95). This limit corresponds to
photospheric velocities much smaller than those of the Sun. The second parameter regime
is the expansion-dominated limit, in which p dV work is the dominant sink of internal
energy in the sub-Alfvénic region, the sound speed makes the dominant contribution
to the critical-point velocity Uc in (3.89), and the plasma-internal-energy term in the
Bernoulli integral (3.95) dominates over the wave-energy term. As illustrated in figure 4,
the expansion-dominated regime is relevant to the solar wind. The leading-order solution
in the expansion-dominated regime reproduces (5.1), with a small difference in the
coronal temperature arising from the fact that δvb has a weak dependence on the coronal
temperature in the model of § 3. Numerical solutions to the model equations approach
the approximate analytic solutions in the appropriate parameter regimes, match a range
of solar-wind observations, and illustrate how the properties of the solar wind depend
upon the r.m.s. photospheric velocity, super-radial expansion factor, and interplanetary
magnetic-field strength.

5.1. Top-down causality for determining Ṁ, qb, and the pressure, temperature range, and
altitude of the transition region within the solar atmosphere

In this paper, as in Parker’s original model (Parker 1958, 1965), the average rate at which
mass flows out through the lower solar atmosphere is determined in large part by the
outflow condition at the wave-modified sonic critical point rc, several R� out from the
Sun, at which the plasma transitions from being gravitationally bound to gravitationally
unbound. Since the gravitational force weakens with increasing r, there is no physical
mechanism that can prevent plasma at rc from flowing outward at approximately the
wave-enhanced effective sound speed, cs, eff ≡ [( p+ pwave)/ρ]1/2 = [c2

s + 0.5(δv)2]1/2,
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evaluated at r = rc, which is comparable to the square root of the right-hand side of (3.89).
This is why Ṁ ∼ A(rc)ρccs,eff(rc).

On the other hand, localised motions near the transition region at speeds � vesc are
gravitationally bound, and the mass flux that they carry is not determinative of Ṁ. For
example, if at some time, such motions led to an overall mass outflow rate at rb exceeding
the rate∼ A(rc)ρccs,eff(rc) at which mass flows past the critical point rc, then plasma would
build up in the corona. This would, in turn, weaken the pressure gradient relative to the
gravitational force per unit volume in the vicinity of the transition region, thereby reducing
the amount of plasma flowing up from the chromosphere.

Nevertheless, the transition region and chromosphere do affect Ṁ in two ways. First,
qb reduces the net heating power within the quasi-isothermal sub-Alfvénic region, Pnet.
As discussed following (2.16), the heating cost per unit mass for plasma to transit
the quasi-isothermal sub-Alfvénic region is cs

2 ln(ρb/ρ(rA)) � v2
esc, and Ṁ � Pnet/v

2
esc.

By reducing Pnet, the conduction of heat from the corona into the transition region
reduces Ṁ. The second way that the lower solar atmosphere affects Ṁ is via the
chromospheric/transition-region transmission coefficient, fchr = PAW(rb)/PAW(R�), whose
value again influences the value of Pnet. To summarise this paragraph and the preceding
paragraph, the chromosphere and transition region influence Ṁ thermodynamically, but
not dynamically.

The regulation of the mass flux at rb by the critical-point condition at rc is an
example of ‘top-down’ causality, in which physical processes at larger r control the
plasma properties at smaller r. In the model of this paper, top-down causality also
characterises the determination of qb, the pressure within the transition region, the
altitude of the transition region in the solar atmosphere, and the temperature jump across
the transition region. As mentioned previously, ρb is determined by the condition that
Q(rb) = R(rb), without reference to conditions in the chromosphere or the value of qb.
The sound speed at r = rb, which is � cs, is approximately determined by balancing
turbulent heating against internal-energy losses from p dV work within the corona and
sub-Alfvénic solar wind. The outflow velocity at r = rb, Ub, follows from the value of
Ṁ, which is controlled by the critical-point condition, as described above. The values
of ρb, cs, and Ub jointly determine qb via (3.82), which embodies the requirement
that conductive heating offset internal-energy losses (from radiation, p dV work, and
advection) within the transition region. The values of ρb and cs are sufficient to determine
the approximate transition-region pressure, ptr � ρbcs

2. The pressure within the upper
chromosphere, pchr(r), is an approximately exponentially decreasing function of altitude.
The altitude of the transition region is determined by setting pchr(r) = ptr. The shape of
the radiative loss function plotted in figure 2 constrains the temperature at the bottom
of the transition region to be approximately 104 K, so that radiative cooling within the
comparatively dense upper chromosphere can be balanced by local heating mechanisms
in the absence of strong conductive heating. Given this constraint, the factor by which the
temperature changes across the transition region is determined by the value of T(rb), which
is controlled by the balance between heating and p dV work in the corona, as discussed
previously.

Although the condition R(rb) = Q(rb) determines the density ρb at the upper boundary
of the transition region within the corona (subject to the caveats at the end of the paragraph
following (5.1)), setting R(r) = Q(r) within the chromosphere does not determine the
density at the lower edge of the transition region, because small changes in T within the
upper chromosphere lead to dramatic changes in the radiative loss functionΛ(T), as shown
in figure 2. The density at the bottom of the transition region is instead largely determined
by the values of ρb and cs, the near constancy of the pressure across the transition region,
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and the above-mentioned constraint (arising from the shape of the radiative loss function)
that T ∼ 104 K in the upper chromosphere.

5.2. Limitations and future work
The model of § 3 has a number of shortcomings. First, the sub-Alfvénic region
is not truly isothermal, and, hence, the quasi-isothermal approximation in (2.5)
leads to some error. Second, for the solutions shown in figure 5, the temperature
mpcs

2/(2kB) of the sub-Alfvénic region increases from � 7× 105 K when U∞ �
800 km s−1 to � 8.4× 105 K when U∞ � 400 km s−1. In contrast, in measurements from
the Ulysses spacecraft, the coronal freeze-in temperature increases from � 9× 105 K
when U∞ � 800 km s−1 to � 1.35× 106 K when U∞ � 400 km s−1 (McComas et al.
2002; Schwadron & McComas 2003). Although the numerical solutions in figure 5
reproduce the observed anti-correlation between coronal temperature and asymptotic wind
speed, the isothermal-sub-Alfvénic-region approximation of the present paper is too crude
to be able match the measured freeze-in temperatures in detail. Another shortcoming is
that the dimensionless coefficient σ that appears in the turbulent heating rate has a large
impact on the solution to the model equations, but is an adjustable free parameter. Further
work is needed to provide a physical basis for determining σ and how it varies from one
flux tube to another.

In a future study, the model developed in § 3 could be used in conjunction with studies
that map the magnetic-field line traversed by PSP back to a source region on the Sun
to rapidly predict flow properties at PSP’s location based on the observed super-radial
expansion factor within the source region (see, e.g. Bale et al. 2019; Kasper et al. 2019). In
addition, the modelling results and approaches developed in this paper could be applied to
outflows from other astrophysical objects, such as stars with differing masses and winds
from accretion disks around compact astrophysical objects.
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Appendix A. Solving for U(r) and rA

Once yb, yc, and x are determined by solving (3.67), (3.94), and (3.97), the value of
U(r) between r = rb and r = rA (which is as yet unknown) can be found by solving the
Bernoulli integral (3.95) with Γ given by (3.96). An equation for rA can be obtained by
evaluating the Bernoulli integral (3.95) at r = rA, setting U(rA) = vA(rA) and y = 1, and
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rewriting Γ using (3.96), which leads to

0 = vA(rA)
2

2
− 2cs

2 ln yb + v
2
esc

2

(
ψ1/2 − R�

rA

)

− (δvb)
2

2(1− σ)
[

2σ−2(3+ σ)(1+ yb)
2−σ − 2

yb
− 1− σ

]
− v

2
Ab

2y2
b
. (A 1)

Upon setting

vA(rA) = vAbyb

[
B(rA)

Bb

]
= vAbybη(rA)R2

�
ηbr2

Aψ
(A 2)

in (A 1) and rewriting vAb in (A 1) using (3.63), one obtains the following equation for rA:

0 =
[

y2
bη(rA)

2

(xρ̃�)1/4ξ 2ψ1/2

](
R�
rA

)4

− R�
rA
− 4x ln yb + ψ1/2 − ψ3/2η2

b

(xρ̃�)1/4ξ 2y2
b

+ ε

1− σ
[

2− 2σ−2(3+ σ)(1+ yb)
2−σ

yb
+ 1+ σ

]
. (A 3)

At r > rA, the outflow velocity U(r) cannot be determined from the Bernoulli integral,
because the quasi-isothermal approximation does not apply. In addition, (3.40) yields a
poor approximation for z− at r > rA, because 1+ y approaches a constant when r 	 rA.
A better approximation for z− in the super-Alfvénic region can be obtained from (3.25)
and the simplifying approximation that |(d/dr) ln(vA)| = −(d/dr) ln y, which holds when
B ∝ r−2 and ρ ∝ r−2 (the latter scalings being fairly accurate for 10R� � r � 60R�, a
region in which the field lines are approximately radial and the flow speed is approximately
constant). In this case, (3.25) becomes

z−
L⊥
= −(U + vA)

d
dr

ln y. (A 4)

Integrating (3.21) from r = rA out to larger r then gives z2
+ = [z+(rA)]24y2/(1+ y)2, where

the value of z+(rA) is obtained by setting y = 1 in (3.41). The approximate value of c2
s (r)

can then be found in terms of ρ by solving the internal-energy equation (3.32) with Q
given by (3.22) and neglecting radiative cooling and thermal conduction. This leads to

c2
s (r) =

[
ρ(r)
ρA

]γ−1
(

cs
2 + K

∫ 1

y

y3−2γ
1 dy1

1+ y1

)
(A 5)

at r > rA, where

K = (γ − 1)z2
+b

yb

(
1+ yb

2

)2−σ
. (A 6)

Total-energy conservation implies that the mechanical luminosity

Lmech(r) = Ṁ
[

U2

2
+ 5c2

s (r)
2
− v

2
escR�
2r
+ z2

+
4

(
3
2
+ y

)
+ qr

ρU

]
(A 7)

is independent of r, where the ratio of specific heats γ has been set equal to 5/3. The value
of U(r) at r > rA can be obtained by setting

Lmech(r) = Lmech(rA), (A 8)

https://doi.org/10.1017/S0022377821000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000052


36 B. D. G. Chandran

and rewriting ρ(r) in terms of U(r) using (3.7); i.e. ρ(r)U(r)/B(r) = ρbUb/Bb. As
U(rA) = vA(rA) and y(rA) = 1, (A 7) implies that

Lmech(rA) = Ṁ
[
vA(rA)

2

2
+ 5cs

2

2
− v

2
escR�
2rA

+ 5(δvb)
2(1+ yb)

2−σ

23−σyb

]
. (A 9)

Determining U(r) at r > rA via (A 7) through (A 9) requires evaluating rA and vA(rA).
An alternative method that avoids this requirement results from noting that

Lmech(rb) = Ṁ

{
v2

Ab

2y2
b
+ 5c2

s

2
− v

2
escψ

1/2

2
+ (δvb)

2

[
1
2
+ (1+ yb)(1− χH)

]
+ 2cs

2 ln yb

}
,

(A 10)

where (3.66) has been used to eliminate qb. Replacing χH in (A 10) with the expression on
the right-hand side of (3.45) leads to the consistency check that

Lmech(rA) = Lmech(rb). (A 11)

Combining (A 8) and (A 11), one can find U(r) at r > rA by setting

Lmech(r) = Lmech(rb). (A 12)

Equation (A 12) leads to a simple expression for the asymptotic wind velocity U∞, i.e.
U(r) as r→∞. As r→∞, the kinetic-energy flux dominates the total energy flux, and
Lmech(r)→ ṀU2

∞/2. Setting ṀU2
∞/2 = Lmech(rb) yields

U∞ =
[
v2

Ab

y2
b
+ 5cs

2 − v2
escψ

1/2 + 2(δvb)
2

(
3
2
+ yb

)
− 2qbyb

ρbvAb

]1/2

. (A 13)

Appendix B. Approximate analytic solutions

As discussed in § 3.8, the core of the solar-wind model developed in § 3 is a set of three
simultaneous equations, (3.67), (3.94), and (3.97), for the three unknowns yb, yc, and x. In
this section, two different approximate analytic solutions to these equations are obtained
in two different parameter regimes. Both solutions rely on the simplifying approximations
in (3.100), which are repeated here:

yb 	 1 ψ = 1 ε � 1 ηc = γBc = 1. (B 1)

In particular, yb is taken to be sufficiently large that: (1) the U2
b = v2

Ab/y
2
b term in (3.96)

can be dropped, which amounts to dropping the second-to-last term on the left-hand side
of (3.97); and (2) O( y−1

b ) terms can be dropped in (3.45), so that

χH = 1− ζy−σb , (B 2)

where

ζ = 2σ−1

(
2− σ
1− σ

)
. (B 3)

The y−σb term in (B 2) is retained, even though terms of order y−1
b are discarded, on the

working assumption that σ ∼ 0.1–0.5, as is the case in the numerical examples in § 4.
As mentioned in § 3.8, the last equality in (B 1) amounts to taking all of the super-radial
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expansion of the field lines to occur inside the wave-modified sonic critical point and the
field lines to be completely radial at r � rc. With these approximations, (3.67), (3.94), and
(3.97) become, respectively,

ε�ρ̃
3/8
� χH

B∗ξx1/8
− 2x ln yb

yb
− qb

ρbvAbv2
esc
= 0, (B 4)

(
y2

cx1/8ξ ρ̃
1/8
�

16yb

)2/3

− x− ε�ρ̃
3/8
� y1−σ

b [y2
c(1+ σ)+ 3yc]

4B∗ξx1/8(1+ yc)3−σ
= 0, (B 5)

and

1− x
[

4 ln
(

yb

yc

)
+ 3

]
− ε�ρ̃

3/8
� y1−σ

b [y2
c(1+ σ)(7− 3σ)+ yc(21− 5σ)+ 8]

4(1− σ)B∗ξx1/8(1+ yc)3−σ
= 0.

(B 6)

B.1. Conduction-dominated limit
When ε� is sufficiently small, an approximate solution to (B 4), (B 5), and (B 6) can be
obtained through the method of dominant balance (Bender & Orszag 1978), in which two
of the three terms in each equation are taken to be dominant, and the third term is taken
to be much smaller in magnitude. Neglecting the smaller term in each equation yields
the leading-order solution, with the smaller term producing higher-order corrections. In
the present case, it is the second term on the left-hand side of each equation that can be
neglected to leading order. In (B 4), this corresponds to balancing turbulent heating of the
sub-Alfvénic region against the heat that is conducted from the corona into the transition
region. In other words, conduction into the transition region rather than p dV work is
the dominant sink of internal energy in the sub-Alfvénic region as a whole. Neglecting
the second term in (B 5) amounts to assuming that the fluctuating velocity makes the
dominant contribution to Uc in (3.89), which is equivalent to taking δv(rc)	 cs. The latter
equality appears paradoxical, because the small-ε� limit corresponds to small values of
the fluctuating velocity at the coronal base. However, as ε� → 0, the coronal temperature
drops, the density scale height in the corona decreases, and the wave amplitude at the
critical point grows as the AWs attempt to conserve wave action, which would lead to
δv ∝ ρ−1/4 when U � vA in the absence of reflection and dissipation (see (3.19) and
(3.20)). Neglecting the second term in (B 6) amounts to taking the wave pressure force
to have a larger cumulative effect than the thermal pressure force on the acceleration of
the outflowing plasma between rb and rc, which can again be understood as a consequence
of the wave amplitudes growing rapidly with increasing r when the density scale height in
the corona is small.

As already noted in (3.101) and illustrated in figure 4, Ṁ is exceedingly small in the
conduction-dominated limit, and as a consequence Ub � cs. The heat flux at the coronal
base is thus approximately given by (3.83), and (B 4) can be rewritten as

ε�ρ̃
3/8
� χH

B∗ξx1/8
− 2x ln yb

yb
− I1x13/8ξ ρ̃

1/8
�

ηb
= 0. (B 7)

Balancing the first and third terms in (B 7) and dropping the y−σb term in (B 2) yields the
leading-order solution for the dimensionless temperature in the sub-Alfvénic region:

x = I−4/7
1 ρ̃

1/7
� (ε�ηbB∗ l̃b)

2/7. (B 8)
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Anticipating the solution for yc, it is useful to predict at the outset (as will shortly be
confirmed by (B 10) and (B 11)) that

yc 	 1. (B 9)

Balancing the first and third terms in (B 6) then gives

yb

yc
=
[

4(1− σ)B2/7
∗ η

2/7
b

I1/14
1 (1+ σ)(7− 3σ)ε5/7

� l̃3/14
b ρ̃

5/14
�

]1/(1−σ)

. (B 10)

Balancing the first and third terms in (B 5) and making use of (B 9) and (B 10), one arrives
at the leading-order solution for yb:

yb = I2[ε−(12−2σ)/7
� B(9−5σ)/7

∗ η
2(1+σ)/7
b l̃−3(1+σ)/14

b ρ̃
−(6−σ)/7
� ]1/(1−σ), (B 11)

where

I2 = 16I−(1+σ)/(14−14σ)
1

(
4

1+ σ
)2/(1−σ) ( 1− σ

7− 3σ

)(7−3σ)/(2−2σ)

. (B 12)

Equations (3.13), (3.57), (B 8), and (B 11) then yield the leading-order mass outflow rate
in the conduction-dominated regime, Ṁ(cond), given in (3.101).

The asymptotic wind velocity U∞ is obtained by setting ṀU2
∞/2 equal to the mechanical

luminosity at the coronal base Lmech(rb) as described in Appendix A, where Lmech is defined
in (A 7). When this procedure is carried out using (B 8) and (B 11), the two leading-order
terms in Lmech(rb) cancel. To obtain the leading-order non-vanishing term in U2

∞, one must
account for the next largest term in (B 7), which results from the χH correction; i.e. the
second term on the right-hand side of (B 2). When this term is retained, one obtains the
leading-order asymptotic wind speed in the conduction-dominated regime, U(cond)

∞ , given
in (3.102).

The range of ε� values for which (3.101), (3.102), (B 8), (B 10), and (B 11) are
approximately valid can be determined by requiring that the neglected terms in (B 5),
(B 6), and (B 7) be small compared to the other terms when yb, yc, and x are given by
(B 8), (B 10), and (B 11). The most stringent condition on ε� arises from carrying out this
procedure for (B 6), which results in the requirement that

I3ε
2/7
�

[
4 ln I4 + 3− 20

7(1− σ) ln ε�

]
� 1, (B 13)

where I3 = I−4/7
1 ρ̃

1/7
� (ηbB∗ l̃b)

2/7, and I4 equals the right-hand side of (B 10) without the
ε� term; i.e. I4 = ε5/(7−7σ)

� yb/yc, with yb/yc given by the right-hand side of (B 10). Upon
neglecting the quantity 4 ln I4 + 3 on the left-hand side of (B 13), which is smaller in
magnitude than the remaining term when ε� is in the conduction-dominated regime but
other parameters take on Sun-like values, one finds that the conduction-dominated regime
corresponds to

ε� � ε�cond ≡ exp
(

7
2

W−1

(
σ − 1
10I3

))
, (B 14)

where W−1 is the lower branch of the Lambert W function.
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B.2. Expansion-dominated limit
In the expansion-dominated limit, the first two terms on the left-hand sides of (B 4), (B 5),
and (B 6) are treated as dominant. For this case, it is useful to define the variables

u = A1yb

x1/8
p = yb

yc
, (B 15)

where

A1 = ε
3/4
� ρ̃

3/8
� l̃1/4

b

(ηbB∗)1/4
. (B 16)

Rewriting (B 4), (B 5), and (B 6) in terms of u, p, and x rather than yb, yc, and x, one
obtains

1+ 2x ln A1

u
= a, (B 17)

(
ux1/4ξ ρ̃

1/8
�

16A1p2

)2/3

− x = b, (B 18)

and
1− x(4 ln p+ 3) = c. (B 19)

The quantities a, b, and c, which are treated as small, are functions of u, p, and x. In order
to see how (B 17), (B 18), and (B 19) follow from (B 4), (B 5), and (B 6), it is helpful to
leave terms containing yb and yc in the expressions for a, b, and c, with the understanding
that yb = x1/8u/A1 and yc = x1/8u/(A1p):

a ≡ 2x
u

ln(ux1/8)+ ζy−σb +
x1/8qb

A1ρbvAbv2
esc
, (B 20)

b ≡ ε�ρ̃
3/8
� y1−σ

b [y2
c(1+ σ)+ 3yc]

4B∗ξx1/8(1+ yc)3−σ
, (B 21)

and

c ≡ ε�ρ̃
3/8
� y1−σ

b [y2
c(1+ σ)(7− 3σ)+ yc(21− 5σ)+ 8]

4(1− σ)B∗ξx1/8(1+ yc)3−σ
. (B 22)

From (B 17), it follows that

x = (1− a)u
−2 ln A1

. (B 23)

Equation (B 19) implies that

p = exp
(

1− c
4x
− 3

4

)
. (B 24)

After substituting (B 23) and (B 24) into (B 18), one finds that

1
u
− 1 = S(u, a, b, c), (B 25)
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where

S(u, a, b, c) = c
u
− a− (1− a)

ln A1

[
5
4

ln u

+ ln(1− a)
4

− ln(−2 ln A1)

4
− ln A2 + 3

2
− 3

2
ln
(

b− (1− a)u
2 ln A1

)]
,

(B 26)

and

A2 = 16

ξ ρ̃
1/8
�
, (B 27)

which is � 1 for typical solar parameters. The quantities a, b, and c are themselves
functions of u by virtue of (B 15) and (B 20) through (B 24).

In the expansion-dominated regime

u ∼ O(1) |S(u, a, b, c)| � 1. (B 28)

The latter inequality is achieved when −1/ ln A1, |a|, b, and c are much smaller than 1.
When (B 28) is satisfied, (B 23), (B 24), and (B 25) can be solved perturbatively through
the recursion relations

1
un
− 1 =

{
0 if n = 0

S(un−1, an−1, bn−1, cn−1) if n � 1
(B 29)

xn = (1− an−1)un

−2 ln A1
(B 30)

pn = exp
(

1− cn−1

4xn
− 3

4

)
, (B 31)

where n = 0, 1, 2, . . . , and a−1 = c−1 = 0. The values of an, bn, and cn are obtained
by replacing (a, b, c, u, yb, yc, x) with (an, bn, cn, un, yb,n, yc,n, xn) in (B 20), (B 21), and
(B 22). For reference below, the values of ρb, vAb, and qb that result from this substitution
(via (3.57), (3.63), and (3.82)) are denoted ρb,n, vAb,n, and qb,n. The values of yb,n and yc,n
are obtained by replacing ( yb, yc, x, u, p) with ( yb,n, yc,n, xn, un, pn) in (B 15).

The nth-order approximation for Ṁ in the expansion-dominated regime, denoted Ṁ(exp)
n ,

can be found by setting Ṁ = Ṁ(exp)
n , x = xn, yb = yb,n and ψ = 1 in (3.99):

Ṁ(exp)
n = R2

�B̄2

vesc
y−1

b,n(xnρ̃�)1/8ξ. (B 32)

For n � 1, I define the nth-order approximation for U∞, denoted U(exp)
∞,n , to be the value of

U∞ in (A 13) when (x, yb, ψ, qb, ρb, vAb) = (xn, yb,n, 1, qb,n, ρb,n, vAb,n):

U(exp)
∞,n = vesc

[
v2

Ab,n

y2
b,nv

2
esc

+ 5xn − 1+ 2yb,nε�ρ̃
3/8
�

B∗ξx1/8
n
− 2qb,nyb,n

ρb,nvAb,nv2
esc

]1/2

, (B 33)

where I have invoked (B 1) to approximate 3/2+ yb,n as yb,n. The leading-order
approximation for U∞ in the expansion-dominated regime, denoted U(exp)

∞,0 , is obtained from
(B 33) with n = 0 after dropping terms that were neglected in the calculation of u0 – in
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particular, the first, second, and last terms inside the brackets on the right-hand side of
(B 33). This yields

U(exp)
∞,0 = vesc. (B 34)

As in the conduction-dominated limit, the range of ε� values for which (B 29), (B 32),
and (B 34) are approximately valid can be determined by imposing the constraint that the
neglected terms in (B 4), (B 5), and (B 6) be small compared to the terms that are kept
when yb, yc, and x are given by (B 15), (B 16), (B 23), (B 24), and u = 1. Carrying out
this procedure for (B 4) and making the simplifying approximations that a is dominated
by the last term on the right-hand side of (B 20), that qb is given by (3.83), and that
ln A1 � ln(ε3/4

� ), one obtains the requirement that

ε� 	 ε�exp,min ≡ exp

(
7
2

W−1

(
− 4I1/14

1

21ρ̃1/7
� (l̃bηbB∗)2/7

))
, (B 35)

where W−1 is, as above, the lower branch of the Lambert W function. Equation (B 35)
corresponds to the requirement that the conductive losses from the sub-Alfvénic region
into the transition region be negligible compared to p dV work in this region. Carrying
out the above procedure for (B 5) and again making the simplifying approximation that
ln A1 � ln(ε3/4

� ), one obtains

ε� � ε�exp,max ≡ exp

⎛
⎝ 3
(1+ σ)W−1

⎛
⎝−225/9(1+ σ)1/9e2(1−σ)/3

9

[
ηbB∗
l̃bρ̃

3/2
�

](1+σ)/9⎞⎠
⎞
⎠ .

(B 36)

Equation (B 36) corresponds to the requirement that the sound speed make the dominant
contribution to the outflow velocity Uc at the critical point in (3.89). As illustrated by the
shaded gray rectangle in figure 4, for Sun-like parameters (and in particular, for ηb = 30),
ε�exp,max is approximately four orders of magnitude larger than ε�exp,min. There is thus a
finite range of ε� values that satisfy both (B 35) and (B 36). However, it should be noted
that the approximations ln A1 � ln(ε3/4

� ) and qb = I1ρbcs
3 cause (B 35) to underestimate

the lower bound on ε� in the expansion-dominated regime. Also, for Sun-like parameters,
the assumption rc < rA that underlies the model of § 3 breaks down at values of ε� smaller
than ε�exp,max, as illustrated in figure 4.
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