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ABSTRACT

A class of claim frequency distributions discussed by SUNDT and JEWELL (1981)
is completely enumerated. Computational techniques for the associated com-
pound total claims distribution in the presence of policy modifications are then
derived.
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1. INTRODUCTION

The total claims payable on a portfolio of business is often modelled as a random
sum, or a compound distribution, in order to account for randomness in both
frequency and severity of claims. Computation of the distribution of total claims
often causes difficulty, but for certain parametric claim-frequency distributions
the probability density function (pdf) may be obtained numerically as the solu-
tion to an integral equation. See PANJER (1981), SUNDT and JEWELL (1981), or
STROTER (1985), for details.

The total claims distribution may be complicated by the imposition of certain
policy modifications, such as deductibles and maximums. This has the effect of
creating a more complicated claim-severity distribution, for which the usual
integral equation does not hold.

It is the aim of this paper to study a family of number of claims distributions
which was introduced by SUNDT and JEWELL (1981), and the associated total-
claims distribution. All members of the family are enumerated, and then an
invariance property of a larger family is derived which leads to distributional and
computational simplifications in the presence of certain types of reinsurance.

A more general procedure for Sundt and Jewell's family is then outlined which
allows one to entertain models with a maximum benefit per claim. This may be
used in conjunction with the previously mentioned invariance property to allow
for the simultaneous treatment of deductibles and maximums.

In the final section, the extremely good fit to automobile claim frequency data
of one member is demonstrated. The simplicity and flexibility of this distribution
suggests that it be considered as a claim-frequency model.
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18 WILLMOT

2. BACKGROUND AND NOTATION

Let the number of claims TV have probability distribution \pn = Pr(7V= «),
n = 0,1,2,... j and probability generating function (pgf) P(z) = E(z v ) . The claim
sizes are denoted by a sequence | X\, Xi, Xi,... J of non-negative independent
and identically distributed random variables with Laplace-Stieltjes transform
Lx(s) = E(e~sX) where X is a generic claim size random variable. The total
claims Y is defined by Y = Xi + X2 + ... + XN if N^z 1 and 0 otherwise. The
associated Laplace-Stieltjes transform is L> (s) = E(e~^ ), and it is well known
that LY(s)= P\Lx(s)\.

SUNDT and JEWELL (1981) considered the family of number of claims
distributions which satisfy the recursive relationship

(2.1) pn=(a + ̂ \ pn-u « = 2 ,3 ,4 , . . .

and show that if the claim sizes are absolutely continuous with pdf / (x) for
x > 0, then the pdf g(x) of the total claims satisfies the integral equation

(2.2) g(x) = pif(x)+ \ (a + bAf(y)g(x- y)dy, x > 0,
J o \ x J

which may be solved numerically for g(x). Thus, the relation (2.2), when com-
bined with the fact that Pr(Y = 0) = po, specifies the distribution of Yin this case.

3. MEMBERS OF THE CLASS

As discussed in SUNDT and JEWELL (1981), the family (2.1) includes the well-
known Poisson, negative binomial, binomial, and logarithmic series distribu-
tions. Another member is the so-called extended truncated negative binomial
(ETNB) distribution introduced by ENGEN (1974) with probability function

and pgf

where - 1 < a < 0 and 0 < p < 1. It will be demonstrated in Theorem 1 below
that (3.1) is also a valid probability distribution if p = 1. Furthermore, if a > 0
then the resulting distribution is a negative binomial truncated at 0, and so the
possible parameter values are { - 1 < a < 0,0 < p ^ 1) and {0 < a, 0 < p < 1).
The case with [ - l < a < 0 , 0 < / ? < l } shall henceforth be referred to as the
ETNB distribution. As a -»0 it is easily shown that the logarithmic series
distribution results. This distribution often provides a good fit to data and is
discussed in more detail in Section 6.
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SUNDT AND JEWELL'S FAMILY OF DISCRETE DISTRIBUTIONS 19

From (2.1) and (3.1), one finds that a = p and b = p(a-l). SUNDT and
JEWELL (1981) appear to have overlooked the possibility of a distribution with
a= 1.

All members of the class (2.1) are identified in the following theorem.

THEOREM 1. The only nondegenerate distributions which satisfy (2.1) are those
with pgf of the form

(3.3) P(z) = P + (1 - p)Q{z)

with -Q(0)[l -<2(0)]~' <,p< 1 and Q(z) the pgf of a Poisson, negative
binomial, binomial, logarithmic series, or ETNB distribution.

PROOF. SUNDT and JEWELL (1981) demonstrate that the only nondegenerate
distributions which satisfy (2.1) are those with pgf of the form (3.3) where Q(z)
is the pgf of a Poisson, negative binomial, or binomial distribution, plus those
which satisfy (2.1) with a > 0, a + b ^ 0, and 2a + b^O. If 2a + b = 0 then, from
(2.1), pi = 0, and the two-point binomial distribution (degenerate if p0 = 0)
results. If a> 1, then there must be a positive integer N^2 such that
a + bN~' = 0 so that PN = 0; otherwise there would exist m such that pn+i > pn

for all n> m, and the probabilities would diverge. Thus b = - Na, and from (2.1)
one finds that pi = a{\ - Nj2)p\ is negative unless 7V=2. But this means
2a + b = 0 as before, and so a ^ 1 otherwise. From (2.1), one finds that

/ , . , Pi F(n + 1 + ba~l) „ _ , i - i i

(3.4) PH = E-X « n = l 2 3

Also,

(3.5) ^ _ = f l ( 1 + ^ V ,, = 2,3,4, . . . .

Then (letting /„+1 = pn), it follows by Raabe's test (MARSDEN, 1974, p. 60) that
the series E/n = Epn converges if 0 < a < 1 and a + b < 0, since, in this case,
from (3.5),

fn+l . A
fn n

where A = -ba~l > 1. Thus, let p= a and a = 1 + ba~l. Thus 0 < p < 1, and
since ba~l < - 1 it follows that a < 0. The condition 2a+ b > 0 implies that
a > - 1. From (3.4), it follows that

(3'6) p-fiWT*>p

https://doi.org/10.2143/AST.18.1.2014957 Published online by Cambridge University Press

https://doi.org/10.2143/AST.18.1.2014957


20 WILLMOT

Now

A
up

Hence,

EL y
up n=\ \ n

— l(l-pya-l\.
up

and substitution in (3.6) yields

Thus, (3.7) corresponds to (3.3) with Q(z) the ETNB pgf (3.2), as may be seen
by comparison with (3.1). Now suppose that a + b = 0. Then, from (3.4),

(3.8) p,, = — ; n= 1,2,3,. . . .

Clearly, this series diverges if a=\, and converges if 0 < a< 1 since, for
example, pt,\pn-\ = #(1 — l/«) -> aas «->«;, which implies convergence by the
ratio test (MARSDEN, 1974, p. 47). From (3.8), one finds that for 0 < a < 1,

1 - „ + Pi V a"

= po-
El log(l-fl).

Thus, p\ = (1 - A)){ a/(-log(l - a))) and (3.8) becomes

(3.9) p,, = {\-po)
- « log(l - a))

which corresponds to (3.3) with Q(z) a logarithmic series pgf.
Summarizing, the line 2a + b = 0 corresponds to the two-point binomial

distribution (degenerate if p0 = 0). The region {0< a ^ 1, a + b <Q, 2a + b > 0)
corresponds to the ETNB distribution (3.1) with j - l < a < 0 , 0 < p ^ l ) . The
region S0< a < \, a + b = 0) corresponds to the logarithmic series distribution.
There are no other possible regions.

If one sets p = - Q(0)[ 1 - Q(0)] ~' in (3.3), one obtains the truncated distribu-
tion, with the zero class missing.
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SUNDT AND JEWELL'S FAMILY OF DISCRETE DISTRIBUTIONS 21

Some of the other members have been used in insurance contexts. GOSSIAUX

and LEMAIRE (1981) used the modified geometric in fitting automobile insurance
data. JEWELL and SUNDT (1981) suggested the use of the modified binomial in
approximating the individual risk model. WANI and Lo (1986) have considered
the family (2.1) within the class of power series distributions, suggesting that the
empirical ratio (2.1), obtained by replacing the probability pn by the proportion
of observations equal to n, may be used to discriminate between members of the
family. By Theorem 1, it is clear that it may also be used to decide whether the
family itself is appropriate.

4. DEDUCTIBLES AND REINSURANCE

There are many types of insurance agreements which give rise to models for the
total claims as discussed earlier, but with a possible mass point /o at 0 and con-
tinuous density f(x) for x > 0 for the amount actually payable on each claim.
These include deductibles and excess-of-loss and certain catastrophe reinsur-
ances. See PANJER and WILLMOT (1984) for details.

It is convenient to introduce the conditional pdf fc(x) = / (x) / ( l - / o ) with
Laplace transform (fc(x) = 0 if x < 0)

(4.1) fc(s)= \ e""' Mx)dx.

Then the Laplace-Stieltjes transform of the single-claim amount distribution
becomes

(4.2) Lx(s)=fo + (l -/<>)/<•(*),

and that of the total claims is thus

(4.3) LY(s)= P{fo + (l-fo)fc(s)\.

The recursive formula (2.2) is not applicable in this case owing to the presence
of the mass point /<> at 0. However, the distribution with transform (4.3) may be
expressed in a fashion which permits the use of (2.2) with little additional difficul-
ty when the number-of-claims distribution satisfies (2.1). In particular, note that
(3.3) may be rewritten as

(4.4) P(z)=P(0)+ [I-P(0)]K(z)

where K(z) = {Q(z) - Q(0))/{1 - Q(0)}. Since the relation (2.1) begins at n = 2,
P(0) is a free parameter. Similarly, for all members of the class (2.1), one can
find a parameter X and a function B(x) not depending on X such that

(4.5)

where the explicit dependency on X is noted on the left-hand side of (4.5).
For the Poisson case, B(x) = e" and X > 0. For the negative binomial,

B(x) = (1 - x)~" with a > 0 and X > 0. The ETNB pgf (3.2) is of the same form
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22 WILLMOT

as the negative binomial but with - 1 < a < 0 and X = p(l - p)~l > 0 (unless
p = 1, in which case one may choose B(x) = 1 -(- x)~a where - 1 < a < 0 and
X is arbitrary since (4.5) does not involve X). The binomial has B(x) = (1 + x)"
where 0 < X < 1 and n is a positive integer. One has B(x) = 1 + log(l — x) and
X > 0 for the logarithmic series distribution.

Hence, the pgf (3.3) depends on (at least) two parameters TT and X, and thus
it may be expressed as

(4.6) P(z; X, TT) = 7T + (1 -ir)K(z; X)

where K(z\ X) is given by (4.5) and 0 ^ TT < 1. The main result of this section is
the following, which generalizes that of PANJER and WILLMOT (1984) and
includes all members of the family (2.1) as special cases.

THEOREM 2. For the pgf (4.6),

(4.7) P[ / o + ( l - / o ) z ; X,TT) =P[Z; X(l - / O ) , P(f0; X.ir)}.

PROOF. From (4.5),

l - B ( - X )

l - f i ( - X ) l - f i ( - X )

= K(f0; X)+ [l-A"C/b; X)]A"|z;

Thus, from (4.6),

/o+ U - / o ) z ; X,x)
( l - / o ) z ; X}

= P(Jo\ X,TT)+ [ 1 - P ( / O ; X,T)]A-{Z; X ( 1 - / O ) | .

One consequence of Theorem 2 is the fact that the total number of claims
which are of a particular amount (or range of amounts) is from the same family
of distributions as the total number of claims. This follows by letting / 0 be the
probability that a particular claim is not of the amount of interest, and then (4.7)
is the pgf of the number of claims of the amount of interest.

Suppose an insurer only observed claims of a certain size (for example, a
deductible may cause an individual not to submit claims which are clearly below
the deductible level), and it was decided to fit a number of claims distribution to
these observed claims only. If this model does not satisfy (4.7), then the implied
total number-of-claims distribution is not from the same family. This implies that
a different model would have been selected had the deductible been omitted (or
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had it been different). This is likely to be undesirable, and so (4.7) may be con-
sidered to be an important property.

From a computational standpoint, the theorem is also convenient, since the
recursion (2.2) may be applied (if, in addition, (2.1) is satisfied) after first apply-
ing the theorem. Simply replace/(x) by/c(x) and use the same number-of-claims
distribution as before, but with p0 - IT replaced by P(fo; X, ir) and the parameter
X replaced by X(l - / o ) , as may be seen from (4.3) and substitution of/c(s) for
z in (4.7). This is convenient in that the recursive formula need not be modified.
PANJER and WILLMOT'S (1984) result is recovered by choosing TT = B{- X), but
is only applicable if B[\(z- 1)] is itself a pgf.

It is clear that the distributions which satisfy (4.7) are invariant under random-
sum reinsurance agreements. WANI and Lo (1983) describe distributions which
satisfy (4.7) in a biological context, referring to them as invariant abundant
distributions. They show that the only power series distributions which satisfy
(4.7) are all the members of the class (2.1). Theorem 2 generalizes this family as
well, since it depends on the representation (4.6) only, and is not restricted to
power series distributions and thus the family defined by (2.1).

5. MAXIMUM BENEFITS PAYABLE

In the previous section, methods for dealing with claims of size 0 were presented.
A similar problem which is more difficult to deal with mathematically involves
the imposition of a maximum benefit payable. This has the effect of creating a
single-claim-amount distribution with a single mass point and a density portion.

Hence, it is now assumed that the single-claim-amount distribution has a mass
point /,„ at the value m, and conditional pdf fc(x), given that m is not payable
(again it is assumed that fc(x) = 0 if x < 0). This generalizes the assumption of
the previous section, where it is assumed that m = 0.

If the underlying claim size distribution has pdf f(x), then the imposition of
a maximum benefit of m implies that

(5.1) /,„= ( f(x)dx

and

x)l(l - / , » , ) , 0<x<m
(5.2) / ' ( * ) M

(0, x ^ m.
Thus, a situation involving a maximum may be treated as a special case of what
follows.

Similarly, a deductible may be handled by letting m = 0 in the following, thus
providing an alternative derivational approach to that of the previous section.
However, in the situation involving both a deductible and a maximum, it is much
more convenient to "remove the mass point at 0" using the results of the previous
section and then use the following for the maximum only, rather than allowing
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24 WILLMOT

for two mass points (one of which is at 0) and a continuous portion. The latter
approach leads to unnecessarily complicated algebra.

The total claims Y has mass points at integral multiples of m, i.e.

(5.3) Pr(Y=mn) = pnf!n; n = 0,1,2

and P(fm) is the total of the discrete portion (if m = 0, there is a single mass point
P(/o) at 0). The pdf portion may be obtained by conditioning on the number of
claims, and then on the number of nonzero claims. Therefore let

(5.4) gn(x)=t (") f?,rkU-/,„)"f?k[x-m(n-k)}

where f?k(x) is the £-fold convolution of fc(x) with itself. Thus, gn(x) is the
conditional pdf of Y given that n claims occurred, and is obtained by condition-
ing on how many are for amount m. Note that if /,„ = 0, gn(x) = f?"(x), as it
must. Then the pdf portion of the distribution of Y is

oo

(5.5) g(x)= 2 pngn(x).
n= 1

Clearly, (5.5) is not well suited for computational purposes, and it is of interest
to derive a computational formula for g(x). For any number-of-claims distribu-
tion with pgf satisfying (4.7), the total claims of size m and of those not equal
to m may be obtained easily as discussed in that section, but only in the Poisson
case are they independent (cf. KARLIN and TAYLOR, 1981, pp. 433-6). Thus,
only in the Poisson case may a standard convolution approach be used to com-
pute the total claims distribution. Hence, a more general approach is needed for
the class (2.1), and a generalization of (2.2) is now given.

THEOREM 3. If the claim frequency distribution satisfies (2.1), then the density
(5.5) satisfies the integral equation

[.V//H]

11= 1

(5.6)

x j J o
where [x] denotes the greatest-integer function.

PROOF. Suppose that, for fixed n, Xu Xi,..., X,, are iid single claim amount
random variables. Then by symmetry, one has that

(5.7) fl + * = j E L + 6 * i
n (̂  x

If x ^ km, then the right-hand side of (5.7) may be obtained by considering the
case when X\ = m, all but X\ are equal to m, and when X\ and others are equal
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to m (note that not all may be equal to m simultaneously). This yields

b\ , . / , m\ ra + -\gn(x) = [a + b — ]/,„£„-, (x-w)

(5.8) + \a + ̂  [x-m{n-\)]\{\-fm)fSrxMx-m(n- 1)]

+ (1 -/,„) [ (a + b £\My)gn-i(x-y) dy.
J o V xj

Thus, from (5.5), (2.1), and (5.8), one finds that

oo oo

S P,,g,,(x) = Pigl(x)+ 2 Pn

= Pl(i ~ fm)fc(x) + 2 Pn
n=2 I X

[xm(nl)]](lf)f:!rlf, pn-x\a + - [x-m(n-l)]](l-fm)f:!rlfc[x-m(n-l)]
n=2 { X )

S p,,-\(\-fm) [ (a + b ?)My)gn-i(.x- y) dy
1 = 2 .) 0 V X/

)f,, 1] pn-ign-i(x- m)
X) ,, = 2

dy

~jfing(X-m)

which is (5.6) since fc(x) = 0 if x < 0.

The theorem may also be proved analytically along the lines of WILLMOT and
PANJER (1987) using Laplace transforms, although the algebraic details are more
cumbersome.

Some comments are in order at this point. First, if /,„ = 0 then (5.6) reduces
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to (2.2). Also, if m = 0 then (5.6) reduces to

g() ^ y

(5-9)

in agreement with (1.21) of WILLMOT (1986). Furthermore, if (5.2) holds, then
fc(x - mn) is nonzero for but one or two values of n and so the complicated sum
in (5.6) becomes simpler. Finally, it seems clear that this approach is tractable,
yet cumbersome algebraically, if there are several mass points. Thus, for
example, a situation involving both a deductible and a maximum leads to mass
points at 0 and m, and it is simpler to "remove" the mass point at 0 using (4.7),
and then use Theorem 3 to deal with m, rather than generalize Theorem 3 to the
case involving two mass points.

6. THE MODIFIED ETNB DISTRIBUTION

Consider the distribution with pgf

(6.1) P(z) = r + (I - ir)Q(z)

where Q(z) is defined by (3.2) with parameter space ( - l < a < 0 , 0 < p ^ l !
U ( 0 < a , 0 < p < l J , and where 0 ^ 7 r < l . The resultant probabilities are
given by

(6.2) p0 = -K

and

(6.3) pn = (l -ir)qn; n= 1 , 2 , 3 , . . . ,

where <?„ is given by (3.1). This distribution is quite flexible owing to the extended
range of the parameter space, and includes the modified geometric of GOSSIAUX

and LEMAIRE (1981) as the special case a= 1, and the logarithmic series with
zeros as the limiting case a -» 0.

The integral equation (2.2) may be augmented with a convenient asymptotic
formula for the tail of the total-claims distribution. Straightforward application
of Stirling's formula (FELLER, 1968) to (3.1) yields

., .. a(\ - ir)na~' .,
(6.4) pn p", n-»oo.

This is an asymptotic formula of the form discussed by EMBRECHTS, et al.
(1985). Consequently, if p < 1 the tail of the associated compound distribution
satisfies

(6.5) Pr(Y>X)
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where the single-claim-amount distribution is nonarithmetic and x > 0 satisfies
Lx(-x) = p~x. (This includes the situation discussed in the previous section
involving the maximum benefit payable.) The formula (6.5) should be used in
conjunction with (2.2) or (5.6), which are not as convenient for large values of x.

The distribution provides a very good fit to automobile insurance data. Sup-
pose that the data consist of {Fk\ k - 0,1,2, ...) where Fk represents the number
of policies with k claims. The method of maximum likelihood suggests that the
values of ir, a, and p should be chosen so as to maximize

CO

(6.6) /(7r, a, p)= Yi Fk log pk.
k = 0

For notational simplicity, let
CO

(6.7) 7V= £ Fk

be the number of policies and

(6.8) X= N~] £ kFk
k=\

be the average number of claims per policy. Then, setting the partials of (6.6)
equal to 0 and solving for the parameters, one finds that the maximum-likelihood
estimate of w is

(6.9) 7t=N~lF0

and the maximum likelihood estimates of a and p satisfy the equations

and

(6.11)

The double sum on the right-hand side of (6.11) may also be written as
Hm = o (a + myx Zk=m+\ Fk, a formula which may be more convenient for com-
putational purposes.

The derivation of (6.10) and (6.11) is straightforward but tedious and follows
that of ANSCOMBE (1950). Equation (6.10) equates the theoretical mean to the
sample mean. The values of a and p must be obtained numerically, but this
causes little difficulty using a standard Newton-Raphson algorithm.

The distribution was fitted using this method to six automobile claim-frequency
data sets given by GOSSIAUX and LEMAIRE (1981). The results are given in
Table 1 where the fitted values are denoted by Fk. The Pearson goodness-of-fit
statistic, associated degrees of freedom, significance level, and maximum-
likelihood estimates of the parameters are also given. In some cases, grouping
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TABLE 1

k

0
1
2
3
4
5
6
Total
Chi-squared
DF
Significance level
(a,p,i)

0
1
2
3
4
5
Total
Chi-squared
DF
Significance level
(a,p,*)

0
1
2
3
4
5
6
7
Total
Chi-squared
DF
Significance level
(a,p, x)

Ek

DATA SET 1

103,704
14,075

1,766
255
45

6
2

119,853

(0.285,

103,704.00
14,075.97
1,761.48

261.32
41.80

6.98
1.20

119,852.75
0.76

3
0.86
0.195,0.865)

DATA SET 3

370,412
46,545

3,935
317
28

3
421,240

(1.154,

370,412.00
46,546.57

3,929.04
323.73
26.35

2.13
421,239.81

0.46
2

0.80
0.078,0.879)

DATA SET 5

7,840
1,317

239
42
14
4
4
1

9,461

(-0.103

7,840.00
1,320.31

225.19
54.14
14.91
4.42
1.37
0.44

9,460.78
8.03

3
0.05

5,0.380,0.829)

Ft fit

DATA SET 2

20,592
2,651

297
41

7
0
1

23,589

(0.104,

20,592.00
2,651.33

295.84
41.94

6.58
1.09
0.19

23,588.96
0.13

2
0.94
0.202,0.873)

DATA SET 4

3,719
232

38
7
3
1

4,000

(-0.11S

3,719.00
232.09

37.26
8.51
2.23
0.63

3,999.73
0.52

1
0.47

>, 0.364,0.930)

DATA SET 6

96,978
9,240

704
43
9
0

—
—

106,974

(0.886,

96,978.00
9,241.89

696.12
53.49
4.15
0.35

—
—

106,974.00
6.64

1
0.01
0.080,0.907)

was done to ensure that expected frequencies are sufficiently large (i.e. greater
than 1). The fit is quite good for the first four data sets, and reasonable for the
last two. The apparently poor fit of data set 6 is deceptive in that the mismatch
in cells 3 and 4 offset each other. If they were grouped, as GOSSIAUX and
LEMAIRE (1981) did, the fit would be deemed adequate. It should be noted that
a was positive for data sets 1,2, 3, and 6, suggesting that the truncated negative
binomial with zeros was fit.
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