On the size of H II regions around high-redshift quasars

Antonella Maselli¹, Simona Gallerani², Andrea Ferrara² and T. Roy Choudhury³

¹Max-Planck-Institut für Astrophysik,

Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany ²SISSA/International School for Advanced Studies, via Beirut 2-4, I-34014 Trieste, Italy ³Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India

Abstract. We investigate the possibility of constraining the ionization state of the Intergalactic Medium (IGM) close to the end of re-ionization ($z \approx 6$) by measuring the size of the H II regions in high-z quasars spectra, via a combination of SPH and 3D radiative transfer (RT) simulations and a statistical analysis of mock quasar spectra through the simulated cosmological volume.

Keywords. cosmology: theory, radiative transfer, methods: numerical, intergalactic medium, cosmology: large scale structure of Universe

The size of H II regions around high-z luminous quasars prior to complete re-ionization is strongly dependent on the mean neutral hydrogen fraction of the IGM, $x_{\rm HI}$. Previous studies (e.g., Wyite & Loeb 2004) have tried to constraints $x_{\rm HI}$ using the size of high-z QSOs H II regions, measurable in their own spectra as the extent of the transmitting region between the quasar emission redshift and the onset of the Gunn-Peterson trough.

The aim of our work is to assess the robustness of the above method. We have performed a combination of state-of-art multiphase SPH and 3D radiative transfer (RT) simulations to accurately predict the properties of a typical high-z quasars H II region (eg. extent, geometrical shape, inner opacity), assuming an initial $x_{\rm HI} = 0.1$.

The simulation results show that RT effects do not induce strong deviations from spherical symmetry; we find a mean dispersion in the H II region size along different LOS of the order of roughly 6% of the mean radius.

By deriving and analyzing mock spectra through the simulated quasar environment we have found that the H II region size deduced from quasar spectra typically underestimates the physical one by 30 %. This effect, to which we refer as *apparent shrinking*, results to be almost completely due to resonant absorption of residual H I inside the ionized bubble.

Additional maximum likelihood analysis shows that this offset induces an overestimate of the neutral hydrogen fraction, $x_{\rm HI}$, by a factor ~3. By applying the same statistical method to a sample of six observed QSOs spectra analyzed by Fan *et al.* (2006), our study favors a mostly ionized ($x_{\rm HI} < 0.06$) Universe at z = 6.1.

All together the results of our work suggest that measurements of the H II size in quasar spectra can only provide rough constraints on $x_{\rm HI}$, as far as the knowledge of intrinsic properties of observed QSOs remains incomplete.

More details are given in Maselli et al. (2007) and references therein.

References

Fan, X., Carilli, C. L., & Keating, B. 2006, ARA&A, 44, 415
Maselli, A., Gallerani, S., Ferrara, A., & Choudhury, T. R. 2007, MNRAS (Letters), 376, 34
Wyithe, J. S. B., & Loeb, A. 2004, Nature, 427, 815