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Abstract

Liu [‘Supercongruences for truncated Appell series’, Collog. Math. 158(2) (2019), 255-263] and Lin and
Liu [‘Congruences for the truncated Appell series F3 and Fy’, Integral Transforms Spec. Funct. 31(1)
(2020), 10-17] confirmed four supercongruences for truncated Appell series. Motivated by their work, we
give a new supercongruence for the truncated Appell series F'y, together with two generalisations of this
supercongruence, by establishing its g-analogues.
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1. Introduction

In 1880, Appell defined four kinds of double series Fj, F5, F3, F4 in two variables (see
[12, pages 210-211]) by generalising the Gauss hypergeometric series. These four
series, called Appell series, are well known in the field of double hypergeometric
series.

Based on the definition of the truncated hypergeometric series, Liu [9] introduced
the truncated Appell series, defined by
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where (x), is the shifted factorial (x), =x(x+1)---(x+n—1) with n € Z* and
(x)o = L.

In [9], Liu confirmed two congruences for the truncated Appell series F and F; by
using combinatorial identities: for any prime p > 5, modulo p?,

Fil3: 3 5L L0 =1
-T,(H)* if p=1(mod4),

P34, 5L L o2 = {0 if p = 3 (mod 4)

Later, Lin and Liu [8] studied congruence properties of the truncated Appell series F3
and Fy: for any prime p > 5, modulo p?,
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Here I, is the p-adic Gamma function for p an odd prime, given by

Fy(@ = lim(-1" | ]
O<j<n
pli
for a € Z,,, and Z, denotes the ring of all p-adic integers.
Recently, Wang and Yu [14] gave a generalisation of (1.1) with one free parameter d
by establishing a g-supercongruence: for z a positive odd integer and d an integer with
n > max{2d + 1,1 — 2d}, modulo ®,(q)*,
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where Hi(x) = le (1 = g?**)?, k € Z*. The g-shifted factorial is defined by
(a;q)o =1 and (a;¢), = (1 —a)(1 —agq)---(1 —aqg"™") with n € Z*; the g-integer is
[n] = [n]; = (¢" = 1)/(g — 1) and ®,(g) denotes the nth cyclotomic polynomial in g,
which can be factorised as
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with £ a primitive nth root of unity. In addition, the g-binomial coefficient is defined by

14+x—k.

X X u’ k>0,
H = [k] = (5 Dx
4 0, k<O.

Inspired by the work mentioned above, and recent progress on congruences and
g-congruences (see [2—7, 10, 11, 13—15]), we continue the study of congruences for
the truncated Appell series F; and obtain new results.

THEOREM 1.1. Let p be a prime with p = 1 (mod 4). Then
Fil3: 4, 551 Hone = 1 (mod p?).
We establish two generalised g-analogues of Theorem 1.1.

THEOREM 1.2. Let d and n be positive integers with n = 1 (mod 2d). Then, modulo
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THEOREM 1.3. Let d be an even positive integer and n a positive integer with
n =d -1 (mod 2d). Then, modulo ®,(g)?,
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Letting n be a prime p and then taking ¢ — 1 in Theorems 1.2 and 1.3 gives the
following conclusions.

@n2-2)/d

COROLLARY 1.4. Let p be a prime and d a positive integer with p = 1 (mod 2d). Then
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COROLLARY 1.5. Let p be a prime and d an even positive integer with p=d — 1
(mod 2d). Then
2
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Theorem 1.1 is the special case d = 2 of Corollaries 1.4 and 1.5. In the following
two sections, we give the proofs of Theorems 1.2 and 1.3.
The famous g-Chu—Vandermonde identity [1, (1.5.2)] can be converted to

o [x][ Y (—k)n—ky _ |XTY
TR

k=0

and this will be frequently used in our proofs.

2. Proof of Theorem 1.2

Since n =1 (mod 2d), we have ged(2d,n) = 1. Hence, (¢**; ¢*)ij(¢*%; ¢*); is
relatively prime to ®@,(q) for 0 <i+j <n— 1. Also, (g% ¢*))i+; = 0 (mod ®,(¢)) for
(n—-1/d+1<i<2(n-1)/d and (¢;¢*)); = 0 (mod ®,(q)) for (n—1)/2d +1 <i <
2(n—1)/d. So,
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By symmetry, also
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Now, the left-hand side of (1.2) can be evaluated as
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where we have performed the replacement m =i+ and applied the g-Chu-—
Vandermonde identity (1.3).

When (n—1)/d <m < n,
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for (¢%; ¢*")m = 0 (mod @,(q)), and (¢*¢; ¢*%),, is relatively prime to ®,(q). Therefore,
modulo ®,(g)?, the left-hand side of (1.2) can be simplified as
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from which we deduce
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Thus, the left-hand of (1.2) becomes
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where we have used the g-Chu—Vandermonde identity (1.3) in the last line. This
completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

The proof of Thereom 1.3 is very similar to the proof of Thereom 1.2. We give a
sketch of its proof. The left-hand side is
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To simplify this expression, note that
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We can then complete the proof of Theorem 1.3 with the help of the g-Chu—
Vandermonde identity (1.3).
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