
REGULAR AND CHAOTIC MOTION IN GLOBULAR CLUSTERS 

DANIEL D. CARPINTERO, JUAN C. MUZZIO and FELIPE C. WACHLIN 
Facultadde Ciencias Astrondmicas y Geofisicas - UNLP and PROFOEG - CONICET 

E-mail: ddc@fcaglp.unlp.edu.arjcmuzzio@fcaglp.unlp.edu.ar,fcw@fcaglp.edu.ar 

Abstract. As a first step towards a comprehensive investigation of stellar motions within globular 
clusters, we present here the results of a study of stellar orbits in a mildly triaxial globular cluster 
that follows a circular orbit inside a galaxy. The stellar orbits were classified using the frequency 
analysis code of Carpintero and Aguilar and, as a check, the Liapunov characteristic exponents were 
also computed in some cases. 

The orbit families were obtained using different start spaces. Chaotic orbits turn out to be very 
common and while, as could be expected, they are particularly abundant in the outer parts of the 
cluster, they are still significant in the innermost regions. Their relevance for the structure of the 
cluster is discussed. 

Key words: globular clusters - orbit classification - chaotic motion 

1. Introduction 

We tend to think of globular clusters as spherical stationary stellar systems that 
are well described by King's or Michie's models (see, e.g., (Binney and Tremaine, 
1987)). Obviously, nobody in his right mind would search for chaotic motions in 
such systems, but the truth is that: a) Globular clusters are not spherical and exhibit 
different degrees of ellipticity (see, e.g., (Han and Ryden, 1994)); b) Globular 
clusters are not isolated systems and the motions of their stars are governed, not 
only by the cluster's field, but by the tidal forces of the galaxy where the cluster 
belongs as well. Thus, as neither angular momentum nor energy has to be conserved, 
it is very reasonable to expect to find chaotic motions in the stellar orbits within 
globular clusters. 

The presence of significant chaotic motions would certainly have important 
consequences for the structure of the cluster and the models should take into 
account this fact. The present work is just a first step to show that, even under very 
simple hypotheses, chaotic orbits turn out to be very abundant in globular clusters, 
thus paving the way for future, more detailed, studies on this subject. 

2. The Model 

We wanted to begin our investigation of chaos in globular clusters with the simplest 
possible case, so that: 
a) We adopted a circular orbit for the motion of the globular cluster around the 

galaxy. 
b) We assumed that the cluster is deformed by the effect of the tidal forces only. 
c) We neglected the effects of stellar encounters within the cluster. 

The adoption of more realistic conditions should increase chaos because: a) 
With elongated cluster orbits we lose Jacobi's integral; b) More triaxial potentials 
might enhance chaoticity; c) Impulsive forces will contribute to chaos. 
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The galaxy was represented by a spherically symmetrical logarithmic potential 
and the globular cluster with a modified Satoh (Satoh, 1980) distribution, whose 
potential is: 

* / ^ GM 

®s(x, y, z) = — , (l) 

Here the origin of coordinates lies at the center of the globular cluster, the x 
axis points in the direction opposite to the galactic center, the y axis in the direction 
of motion of the cluster around the galaxy and the z axis perpendicular to the 
orbital plane. Notice that we have interchanged x2 + y2 with z2, in order to obtain 
a prolate (rather than Satoh's oblate) system, and that we have also divided z by a 
parameter 6, in order to get a triaxial system (tidal deformation yields the shortest 
axis perpendicular to the orbital plane). 

The main advantage of this election is that isodensity surfaces increase their 
ellipticity as we move outwards, just as it should happen with a system that is 
tidally deformed, as shown by the full lines in Figure 1. We have also included in 
the figure (dashed lines) the effective equipotential curves (i.e., those that result 
from adding the centrifugal term and the galactic potential to the modified Satoh 
potential). 

The equations of motion are: 

GMx , „ , R + x , . „ . 

* = —§*— »2R\R + x)2 + y2 + z2 + «2(R + •) + ^y, (2) 

V = 53 uR(R + x)2 + y2 + z2+°Jy-2uJX' ( 3 ) 

*- V UR (R + x)2 + y2 + z2> ( 4 ) 

where S = ^x2 + y2 + z2 + g(g + 2T), T = y/y2 + (z/b)2 + h2, (5) 

and M is the mass of the globular cluster, R is the radius of its orbit, and u is its 
angular velocity. The Jacobi integral is: 

Ej = \{x2 + y2 + z2) - \u? [(R + x)2 + y2] + 0(x, y, z), (6) 

where O is the sum of the potential of the globular cluster, O5, and that of the 
galaxy: 

<M*, V, z) = L 2 # 2 l n \{R + x)2 + y2 + z2] . (7) 
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Fig. 1. Isodensity curves for the modified Satoh potential (full lines) in the x-z plane. The 
equipotentials that result from adding the centrifugal term and the galactic potential are 
shown as dashed lines. 

We adopted the following values: b = 0.8, h = 0.5, g = 0.05, R = 100, u = 
0.5, which result in a tidal radius rt - xt = 1.24, and the half-mass radius is 
rh = 0.28. 

If, for example, we choose R = 10 kpc and the mass of the galaxy within that 
radius as Mg - 1.25 x 10nM@, then we have a tidal radius of about rt = 120 pc 
and a cluster mass of M = 5 x 1O5M0, that is, reasonable values for a globular 
cluster. 

3. Orbital Analysis 

3.1. LIAPUNOV CHARACTERISTIC EXPONENTS 

D. Pfenniger kindly let us use his LIAMAG routine that computes the six Liapunov 
exponents following Benettin's method. 

We are not so much interested on whether a specific stellar orbit is chaotic or 
not, as in having statistical information on a large number of orbits. Therefore, 
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we followed an approach similar to that of Merritt and Fridman (1996): 1) We 
integrated the orbits for about 10,000 orbital periods (rather than 100, as they did); 
2) We used as estimator the sum of the three non-negative Liapunov exponents 
(also called Kolmogorov entropy); 3) We dubbed, rather arbitrarily, chaotic those 
orbits where: 

ln(si + s2 + «3) > - 5 , (8) 

where the s,-(i = 1,2,3) are the positive estimates of the Liapunov exponents after 
10,000 orbital periods. 

We used this method just as a check, because: 1) It only allows one to decide 
between regular and chaotic orbits, providing no further information on the kind 
of orbit one has; 2) It is very slow (about one day of computing on a Pentium Pro, 
200 MHz, personal computer for 150 orbits). 

3.2. FREQUENCY ANALYSIS 

This technique was introduced by Binney and Spergel (1982), (1984) and extended, 
in a different form, by Laskar (1993). Carpintero and Aguilar (1998) refined the 
original method and prepared a FORTRAN code that allows one to automatically 
classify large numbers of orbits. 

The basis of the method is that regular orbits move on a torus-like manifold and 
are quasi-periodic. Fourier spectra of the time series of the coordinates of a regular 
orbit consist of discrete lines whose frequencies are integer linear combinations 
of the frequencies of the angle variables. Thus, from the Fourier spectra one can 
classify the regular orbits. Besides, chaotic orbits yield continuous spectra and can 
be recognized too (see (Carpintero and Aguilar, 1998), for examples of different 
orbits). The main limitation of the method is the difficulty to recognize whether 
finite precision numbers have a rational quotient. 

3.3. INITIAL CONDITIONS 

We prepared sets of initial conditions for several values of the Jacobi integral 
(-3.0090, -1.7354, -1.3350 and -1.1800). For each value of the integral, we 
selected four sets: 1) Zero initial velocity; 2) x-y plane and i initial velocity; 3) 
x-z plane and y initial velocity; 4) y-z plane and x initial velocity. 

Schwarzschild (1993) proposed the use of the initial conditions 1 and 3 for 
non-rotating potentials. As we have a rotating potential, we preferred to add also 
initial conditions 2 and 4. We expect to have sampled the whole phase space with 
these sets, at the price of some possible overlap, as we will see later on. 
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Fig. 2. Zero velocity start space for Ej — -1.335. The regular or irregular character of the 
stellar orbits was decided from the Liapunov exponents analysis. 

4. Results 

For every set of initial conditions we prepared colour plots showing, with different 
colours, the different types of stellar orbits that result from those initial conditions. 
Black and white examples are given in Figures 2 through 5, which correspond to a 
value of the Jacobi integral of Ej = -1.335. Figures 2 and 3 are results obtained 
from the Liapunov exponents analysis: Figure 2 corresponds to zero velocity initial 
conditions and Figure 3 to initial conditions in the x-z plane. Figures 4 and 5 are 
results from the frequency analysis and correspond, respectively, to the same initial 
conditions of Figures 2 and 3. Notice that the density of points is two orders of 
magnitude larger for Figures 4 and 5, resulting in much better definition, thanks to 
the short computing times needed for the frequency analysis. There is a generally 
good agreement between the results of both methods, but there are a couple of 
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Fig. 3. x-z start space for Ej = -1.335. The regular or irregular character of the stellar 
orbits was decided from the Liapunov exponents analysis. 

caveats. First, a small fraction of the orbits (less than 10%) could not be classified 
with the frequency analysis code; from our experience with that code, we know 
that most of those orbits turn out to be chaotic on a more detailed analysis, so that 
we counted them as such. Second, the Liapunov exponents tend to give somewhat 
larger fractions (by about 10%) of chaotic orbits. The most likely explanation for 
this discrepancy comes from the very different integration times: between 100 and 
200 periods for the frequency analysis and 10,000 periods for the Liapunov one; 
as a result, orbits that behave regularly most of the time, although they are truly 
chaotic, have a much larger chance of getting detected in the second case. 

We noticed that the x-z and y-z initial conditions gave the same fractions 
for the different kinds of orbits, so that we suspect that with those sets of initial 
conditions we are sampling esentially the same parameter space. Therefore, we 
combined the results of both start spaces together in what follows. 

Figures 6a, b and c give the fractions of the different kinds of stellar orbits, as 
a function of the Jacobi integral, for the zero initial velocity, x-y and x-z plus 
y-z start spaces, respectively. Boxes and chaotic orbits clearly dominate for zero 
initial velocity conditions, while small-axis tubes are the most abundant orbits in 
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Fig. 4. Zero velocity start space for Ej = -1.335. The regular or irregular character of the 
stellar orbits was decided from the frequency analysis. The bulk of the regular orbits are 
long-axis boxes, as shown by their proximity to the z-axis. 

the other cases. Long-axis tubes are almost non-existent. As expected, chaotic 
orbits predominate for low absolute values of the Jacobi integral, i.e., mainly in 
the outermost parts of the globular cluster. Nevertheless, chaos is still significant 
for Ej = -3.009, with 37% of the orbits with zero initial velocity, 35% of those 
on the x-y start space and 21% of those on the x-z and y-z start spaces. These 
results are particularly important because the zero velocity Ej = -3.009 surface 
encloses about 50% of the total mass of the globular cluster, so that chaos is present 
well inside the cluster and, moreover, seems to dominate in its outer half. 

https://doi.org/10.1017/S0252921100072511 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072511


1 6 6 DD.CARPINTERO,J.C.MUZZIOandF.C.WAC3a.IN 

T 1 — i — i — | — i — i — i 1 — I — i — i 1 — i — | — i — i — r — T 

' i I I I I I I ' I ' I I I I I I I L 

- 1 - 0 . 5 0 0.5 1 
z 

Fig. 5. x-z start space for Ej = —1.335. The regular or irregular character of the stellar 
orbits was decided from the frequency analysis. 

5. Conclusions 

From a methodological point of view, we see that the results of frequency analysis 
are in generally good agreement with those from the Liapunov exponents. The 
advantages of frequency analysis over Liapunov exponents are that the former 
needs much less computing time and, in addition to decide between regular and 
chaotic motion, it also allows the classification of the regular orbits. 

Stellar orbits within globular clusters are highly chaotic. For the stars that 
(barely) reach the tidal limiting surface, the fraction of chaotic orbits may lie 
somewhere in between 50% and 90%. Nevertheless, it is even more surprising that 
the innermost parts of the cluster are also affected, and that as much as about 30% 
of the orbits that reach the half mass limiting surface might be chaotic. 

Moreover, the Liapunov times we obtained for Ej = -1.335 are surprisingly 
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Fig. 6. Fractions of the different kinds of stellar orbits, for (a) the zero initial velocity, (b) 
x-y and (c) x-z plus y-z start spaces. Filled circles: box orbits; filled triangles: long-axis 
tubes; filled squares: short-axis tubes; open circles: chaotic orbits. 

short: they tend to crowd near 10 to 30 time units, while orbital periods are in 
the range between 1.4 and 7.5 time units. Not only is this short in terms of orbital 
periods but also in terms of cluster age: for the reasonable choice of units mentioned 
above, the cluster age would be about 50 to 100 time units, that is, longer than the 
Liapunov times. Evolution should thus be very fast, at least in the outermost parts 
of the cluster. 

Long-axis tube orbits are very rare, even at the innermost parts of the cluster, 
while short-axis tubes are the most common orbits for non-zero initial velocity 
conditions. Box orbits only seem to dominate in the innermost parts, for zero 
velocity initial conditions. The scarcity of box orbits in the outermost, and most 
elongated, parts of the cluster may pose some problems to build self-consistent 
models. Such models should probably rely on the more abundant chaotic orbits 
but that might, in turn, complicate the building of stationary models, particularly 
considering the short Liapunov times detected here. 
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