
BULL. AUSTRAL. MATH. SOC. 26A45, 34A45 , 45JO5

VOL. 48 (1993) [325-336]

TAYLOR EXPANSIONS FOR
CONTINUOUS STIELTJES DIFFERENTIAL EQUATIONS

P.E. KLOEDEN AND J. PANADIWAL

The general structure of Taylor expansions of functions of solutions of continuous
Stieltjes differential equations is established. A compact formalism involving hi-
erarchical sets of multi-indices and their associated remainder sets is used. The
corresponding multiple Riemann-Stieltjes integrals of time and of the driving func-
tions in the Stieltjes terms of the differential equations, necessarily of bounded
variation and continuous here, appear in the expansions and their remainders.

1. INTRODUCTION

Intermittent and impulsive effects, common in many biological and economical
systems, as well as variations in time scales, can often be modelled by the inclusion of
Stieltjes differential terms in an ordinary differential equation. The resulting Stieltjes
differential equation

(1) dX{t) = a(t,X(t))

is really an integral equation

(2) a(s,X(s))ds + y2
Jto J^l Jt0

where the last m integrals are Stieltjes integrals, which requires the prescribed driving
functions R\, . . . , Rm to be of bounded variation on bounded time intervals of interest.

The solutions of (1) inherit any discontinuities or jumps that are present in the
functions Ri, . . . , Rm, in which case (1) is often called an impulsive differential equa-
tion. The continuous or jump-free case is also of interest and somewhat simpler as
Riemann-Stieltjes integrals can then be used in (2) rather than the Lebesgue-Stieltjes
integrals that must be used in the general situation [1, 3].

In this paper we shall focus attention on the continuous case and determine the
general form of Taylor expansions, and their remainders, of functions U(t, X(t)) of a
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solution X(i) of the Stieltjes differential equation (1). Such expansions involve multiple
Riemann-Stieltjes integrals of the functions R\, . . . , Rm

 a n d t. They are particularly
useful, for instance, for the systematic derivation of numerical schemes for the equations
(1). We shall use a similar formalism to that in [2] for stochastic differential equations,
though different proofs are required here. The general case with jumps will be considered
in a subsequent paper.

We first state an existence and uniqueness theorem and a chain rule for solutions
of continuous Stieltjes differential equations (1) in the next section and then apply the
chain rule iteratively to illustrate the derivation and structure of their Taylor expansions
for such equations in the simple 1-dimensional case. A compact notation for multiple
Riemann-Stieltjes integrals and coefficient functions involving multi-indices is presented
in Section 3 and then used in Section 4 to state the general Taylor expansion and its
remainder for continuous Stieltjes differential equations, where some estimates useful
for a convergence analysis are included. Finally, proofs are given in Section 5.

2. CONTINUOUS STIELTJES DIFFERENTIAL EQUATIONS

An existence theorem for solutions of Stieltjes differential equations (1) in the
general case with jumps can be found in [3]. In the continuous case, that is when
the driving functions Ri, . . . , Rm are continuous as well as of bounded variation, we
need to show that the solutions are continuous too. If the coefficient functions a,
bi, • • • , bm in (1) are at least continuous in all variables, then the Stieltjes integrals in
(2) are meaningful as Riemann-Stieltjes integrals. This is a consequence of the following
lemma which will be proved in Section 5.

LEMMA 1. Let f : [to,T] -» R1 be continuous and let R : [to,T] -> K1 be
continuous and of bounded variation on [to,T]. Then the function F : [to,T] —> K1

defined by

F(t)= ff(s)dR(s)
Jto

is continuous and of bounded variation on [to, T].

Here we shall assume that the bounded interval [iojT"] is given, that the functions
Ri, ... , Rm : [to,T] —» R1 are continuous and have bounded variation on [fo,T],
and that the coefficient functions of (1) 60 = a,bu... ,bm : [to,T] x R" -+ R" are
continuous in all variables and satisfy the global Lipschitz condition

(3) ||fci(i,z)-6i(<,«')||<Jif | | * -« ' | |

for all x, x' G Rn uniformly in t 6 [t0, T] and j = 0, 1, ... ,m, which we shall call the
standard continuity assumptions. In the Taylor expansions to be considered we shall in
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fact require additional smoothness of the coefficient functions of (1). The global nature
of (3) allows a simpler proof. It is not a serious restriction because once we fix attention
on a particular solution we need only consider a bounded region of R n that contains it.

THEOREM 1 . Under the standard continuity assumptions there exists a unique,
continuous solution X : [to,T] -» R n of (1) with X(t0) = x0 for each x0 6 R n .
Moreover, X is of bounded variation on [to,T].

The Riemann-Stieltjes integral of a continuous integrand / with respect to a con-
tinuously differentiable integrator R reduces to the Riemann integral of fR where R
is the derivative of R [4, Theorem 12.10], that is

(4) fTf(t)dR{t)= f f(t)R(t)dt.
•/to Jto

Hence if all of the driving functions Ri, . . . , Rm in (1) are continuously differentiable,
then the Stieltjes differential equation (1) reduces to the ordinary differential equation

m

(5) X(t) = a (t, X(t)) + Y, h (t, X(t)) Aft)

and a differentiation chain rule for functions U(t,X(t)) of its solutions follows from
classical calculus. Rewriting the expression so obtained in terms of Stieltjes differ-
entials dRi(t), . . . ,dRm(t) provides an indication of what might be expected in the
non-differentiable continuous case. For this we introduce the operators

d n a

~ Hi 2—J
 a * ft-*.

and

(7)
fc=i

where x = (sci,... ,xn) € Rn, a = (a i , . . . ,an) and bj = (bjti, ... , bj<n) for j =
1, . . . , TO. As the chain rule we obtain

THEOREM 2 . Suppose that the standard continuity assumptions hold and that
U : [to,T]xRn -» R1 has continuous first order partial derivatives dU/dt, dU/dx!, ... ,
dU/dxn on [to,T] x Rn. If Y{t) = U{t,X(t)) for t e [to,T] where X :[to,T]-> Rn is
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a continuous solution of (1), then

(8) dY{t) = L°U (t,X(t)) <B + £ ) VU (t,X(t)) dRj(t),
i=i

that is
ft rn .t

(9) Y(1)-Y(T)= / £°[/(5,X0>)) <£* + £ /
JT j = 1 JT

for all t0 < T < t ^ T.

We shall prove Theorem 2, and Theorem 1 too, in Section 5. For the remainder

of this section we shall use the chain rule (9) iteratively to illustrate how the Taylor

expansions of solutions of (1) are derived and to indicate their structure. We consider

the completely 1-dimensional case n = m = 1 with

(10) dX{t) = a(t,X(t)) it + b! {t,X(t)) dR^t),

that is

(11) X(t) = X(t0) + f a(s,X(s)) ds+ [ h (s,X{s)) dR^s),
Jt0 Jt0

supposing that a and bi are smooth enough to justify the steps that follow. We begin

by applying (9) to the function U(t,x) = a{t,x) on the interval to ̂  r ^ s, obtaining

(12) a{a,X(,)) = a(t0,X{t0))+ [ L°a(r,X(r)) dr + [ tfa^Xir)) dR1(r),
Jt0 Jt0

which we subsitute into the first integral in (11). On rearranging the terms we obtain

(13)

+ a{t0,X(t0)) f ds+ f b1(3,X(s))dR1(3)
Jt0 Jto

[' o [L°a(T,X(T))drds+ / ^ ^ ( T . X ^ ) ) dRx{r)da.
t0 Jt0 Jto Jt0

Similarly we can apply (9) to the function U(t,x) = bi(t,x) on the interval t0 ^

T ^ s and subsitute the result into the first order Riemann-Stieltjes integral in (11) and

(13) to obtain

(14)

•ii(*o,*(M) / dRi(t)+ f a(a,X(a))d(a)
Jto JtQ
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+ / [' Lob1(r,X{T))drdR1(s)+ f ['' L'h^Xir)) dR1(r)dR1(s)
Jto Jto Jto Jto

+

and

(15)

+ a(to,X(tQ)) I ds+ bi(to,X(to)) I dRi(s)

/ / L°a{T,X(r)) drds+ f f tfa^X^)) dR^ds
Jto Jto Jto Jto

+ [ f L°b1{r,X(r))drdR1(s)+ f [' £% (r, JT(r)) dR1(T)dR1(s),
Jto Jto Jto Jto

respectively. Equations (13)-(15) are simple examples of Taylor expansions with re-
mainder of a solution of a Stieltjes differential equation. The general structure of such
expansions is more transparent if we apply the chain rule again to one of the integrands
of the double integral terms, for example to U(t,x) = i16i(i,z) over the interval
to ^ 0" ^ T. On substituting the result into (15) and rearranging we obtain

, t ft

(ID) X(t) = A(io) + o(io»-^('o)) / ds -\- bi{to,X[to)) I dKi[s)
Jto Jto

+ L1b1(t0,X(t0)) f [' dRxi^dR^s)
Jt0 Jt0

+ remainder terms .

Taylor expansions thus typically involve single and multiple Riemann and Riemann-
Stieltjes integrals, or mixtures, with coefficient functions evaluated at the start of each
interval under consideration. Their remainder consists of the next higher multiple
integrals with time-dependent integrands which are obtained from the earlier coefficient
functions by an application of one of the differential operators (6)-(7). There are many
possible expansions depending on which integrands have the chain rule formula applied
to them, and the expressions soon become unwieldy, particularly in the general multi-
dimensional case. A succinct notation will be introduced in the next section to facilitate
their description.

3. MULTI-INDICES AND MULTIPLE RIEMANN-STIELTJES INTEGRALS

For notational convenience we introduce the index j — 0 and write bo(t,x) for
a(t,x) and Ro(t) for t, so dR0(t) = dt and the Stieltjes differential equation (1) can
be rewritten as

i=o
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As in Kloeden and Platen [2] a row vector a = (j i , . . . , ji) with components
Ji > • • • » jl S {0, 1, . . . , TO} will be called a multi-index of length l(a) = I ^ 1 and
v will denote the empty multi-index of length zero, that is l(v) = 0. The totality of all
multi-indices a with components in {0,1, . . . , m} of all possible lengths l(a) ^ 0, thus
including the empty multi-index v, will be denoted by M.m • Finally, the operations
of deleting the first and the last component from a multi-index a 6 Mm \ {w} will be
written, respectively, as

~ ( J i , J 2 , - - - , 3 l ) = { J 2 , - - - , j l ) i f l > 2 w i t h - ( j i ) = v ;

( i i . - - - , 3 i - i , j i ) ~ = ( i i , - - - , 3 i - i ) if * > 2 w i t h ( j i ) - = v .

Suppose that Ro, R\, . . . , Rm '• [to,T] —» K1 are continuous and of bounded vari-
ation on [to,T] with Ro(t) = t. Then for any continuous function / : [fo)!1] —* K1 and
multi-index a £ Aim we define the multiple Riemann-Stieltjes integral / a [/(-)]t0 i

 o n

to ^ t ^ T recursively as

(18) la [f[-)\t t — <

For example,

[0, f
t0 Jt0

J(i.2)[/()]tOlt= ftI(i)lf()]t0,.dR2(s)= f f

and so on. When the integrand f(t) = 1 we shall write Ia [/()]<Oil simply as Ia,t0,t-

It follows inductively from Lemma 1 in Section 2 that the multiple Riemann-
Stieltjes integrals Ia [/(•)]* t above are well defined and continuous on [Jo^] for each
a€Mm\{v}.

We now define the coefficient functions Ua{t,x) that will be associated with a
multiple integral Ia , either as a constant coefficient or as a variable integrand, in
a Taylor expansion or its remainder of a function U(t,X(t)) of a solution X of a
continuous Stieltjes differential equation (17). This will require the function U : [to,?1] x
Rn -> R1 and the coefficients b0, bu ... ,bm : [to,T] x Rn -* Rn to be sufficiently
smooth in their variables, which will be indicated below. We recall that the operators
L°, L1, . . . , Lm were defined in (6)-(7). Then for any given a G Mm we define the
coefficient function Ua : [to,T] x Mn -> K1 recursively as

f U(t,x) if /(a) = 0
(19) Ua{t,x)= I
K \L»U-a(t,x) if a = (ju...,jl), 1^1.
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For example, with n — m = 1 and U(t,x) = x we have Uv(t,x) = U(t,x) =
x,U{0)(t,x) = L°Uv{t,x) = a(t,x) and U(lfi)(t,x) = VU^^x) = Lxa{t,x), and
so on.

Given n E M m we define n(a) to be the number of components of a that are equal
0, so 0 ^ n(a) < Z(a) and n(v) = 0. Let us then denote by C»(<«).'(«*) ([to,T] x Rn)
the space of functions U : [to,T] xRn —t R1 for which the partial derivatives

exist and are continuous on [to,T] x 1 " for all nonegative integers k0, kly ... , kn with
ko ^ n{a) an<i fci + • • • + fcn ^ Ka)- Here a Oth order partial derivative implies its
absence, so the function U is itself continuous on [̂ O)?1] x Rn.

For any multi-index a € M.m the assumption that U and the components of
bo,bu ... ,bm belong to the space (?»(««).'(«) ([to,T] X Rn) will ensure that the coeffi-
cient function Ua(t,x) exists and is continuous on [<o>r] x Rn. The multiple Riemann-
Stieltjes integral Ia [Ua(-,X(-))}tQ<t for a continuous solution X : [to,T] -+ Rn of the
Stieltjes differential equation (17) will then also exist and be continuous on [ioi^"]. The
assumed smoothness here will often be more than the minimal that is required for this
result.

4. THE GENERAL STIELTJES-TAYLOR EXPANSION AND ITS REMAINDER

The general structure of a Taylor expansion and its remainder for a function of
a solution of a continuous Stieltjes differential equation (1) can already be seen in the
simple examples (13)-(16). There are many possibilities, depending on which integrands
in the lower order multiple integrals are expanded according to the chain rule. The
multiple integrals appearing in each such expansion and its remainder can be described
succinctly in terms of a hierarchical set of multi-indices and its associated remainder
set.

Recall that Mm denotes the totality of all possible multi-indices with components
in {0, 1, . . . , m} together with the empty multi-index v. We call a nonempty subset
A of Mm an hierarchical set if

sup l(a) := L(A) < oo
a€.A

and —a 6 A whenever a £ A\ {v},

and we call the subset

B(A) = {aeMm\A: -aeA}
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the remainder set associated with the hierarchical set A. Thus v € A and both A and
B(A) contain only a finite number of elements. Finally we define

N(B(A))= max n(a), L(B(A)) = max l(a)

where n(ct) is the number of components of a equal to 0.

THEOREM 3 . Suppose that the standard continuity assumptions hold, that A C
Mm is an hierarchical set with associated remainder set B{A), and that U : [to,T] x
WLn —> E 1 and the components of b0, blt ... ,bm : [to,T] x Rn -* Rn all belong to
the space CN'L([t0,T] x E n ) where N = N (B(A)) and L = L(B(A)). Then for any
continuous solution X : [to,T] —* M.n of the Stieltjes differential equation (1)

(20) U(t,X(t))=y£ua(tQ,X(t0))IaitOit+

for t e [to,T], where each of the coefficient functions Ua : [to,T] X Rn -» R1 in (20)
exists and is continuous and each of the multiple Riemann-Stieltjes integrals in (20)
exists.

The first summation in (20) is the Stieltjes-Taylor expansion for U with respect to
the hierarchical set A and the second summation is its remainder. The proof of (20)
follows immediately from the definitions of all of the expressions involved and from the
chain rule formula which takes the form

. /a [Ua (;X())]tott - Ua 0

where (j) * a is the multi-index of length l(a) + 1 with — (j) * a = a. The continuity
of the coefficient functions Ua follows from the assumed smoothness of U and the
coefficients &o> î> • • • > m̂ of the Stieltjes differential equation (1), which in many cases
is more than the minimal required for that purpose. Since the solution X is continuous,
so are the integrands Ua(-,X(-)) of the multiple integrals in the remainder. Hence by
Lemma 1 these multiple integrals exist as Riemann-Stieltjes integrals and are continuous
in their upper integration endpoint. Moreover for to ̂  t ^ T the uniform bound

(21) |/Q [Ua (-, X(-))]tOit| <Ba\i- to|n(a) (Vlfa)-«a)

holds for each a £ B(A), where
B°= max \Ua(t,X(t))\<Oo

and

(22)
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for V£ (Rj) the total variation of Rj on [<o,t]. Note that the V^ (Rj) here are con-
tinuous in t [4, Theorem 12.2], so V£ is also continuous in t G [Joi^1]. In particular,
V(* -+ 0 as t -* t0. The bounds (21), albeit coarse, can thus be used to estimate the
remainder in (20) and hence the error in using the Taylor expansion to approximate
U(t,X(t)).

5. PROOFS OF THE LEMMA AND THEOREMS

We refer the reader to chapter 12 in Protter and Morrey [4] for definitions and
background material on functions of bounded variation and Riemann-Stieltjes integrals.
In particular, we denote by V* (R) the total variation on [T, t] C [<o>r] of a function
R : [to,T] -> R1 of bounded variation on [to,T] and recall that \R\ (t) = R+(t) +
R~(t) where R = R+ — R~ is the decomposition of R into nondecreasing functions [4,
Theorem 12.3].

PROOF OF LEMMA 1: Let ||/|| = maxto^<^T 1/(01 where / is continuous. Then
from [4, Theorems 12.9 and 12.17] for any [r,t] C [to,T] we have

\F(t) - F(r)\ = I f f(S) dR(s) - fT f(s) dR(s)
\Jt0 Jt0

max fd\R\(s)
JT

ll/ll V}(R).

Now VT'(iZ) -» 0 as i -* T + and T - . i - by the continuity of R [4, Theorem 12.2],
so F is continuous on [<o,T]. Moreover for any partition {<,•} of [to,T], in view of [4,
Theorem 12.1] it follows that

\F(ti+l) - F(U)\ *

so F is also of bounded variation on [<0)T]. D

PROOF OF THEOREM 1: We shall first establish local existence and uniqueness
on a subinterval [T^TJ+I] C [iojT1] for |Ti+i — Ti\ small enough by means of a con-
traction mapping argument on the space C([7v,T,-+i],R.n) of continuous functions
X : [Ti,Ti+1] -» Rn with the norm \\X\l = maxTt.^1<T.+l \X(t)\.

Let Xi £ Rn be given. For X G C([T<,T<+1],R
TI) we define TtX : [T,-,T,+1] -> R"

as

(23) (TiX)(t) = Xi + f a(s,X(s)) ds + ^ / bj (s,X(s)) dR
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for t G [Ti,T,-+i]. Since the coefficients a,bi, ... ,bm and X are continuous in their
variables, the integrands a(-,X(-)), bi(-,X(-)), . . . , bm(-,X(-)) are all continuous func-
tions. By Lemma 1 the m Riemann- Stieltjes integrals are thus continuous and of
bounded variation as functions of the upper integration endpoint t £ [r<,Tj+i], while the
first, Riemann integral is absolutely continuous and hence continuous and of bounded
variation on [TJ,TV+I]. Thus TiX is continuous and of bounded variation on [T,-,T;4.I],

with (TiX)(Ti) = xt. In particular TtX £ C([T,-,Ti+1],R
n). Moreover, by the global

Lipschitz bound (3) for X, X G C([Tf,r,+1],Rn) we have

\TiX-TiX\ {a(s,X(s))-a(s,X(s))} ds

n - i i
K \\X-X \\ ds K X-X\\d\Ri\it

\\X-X

where Vr7
+l is defined as in (22). We can make the factor K{\ri+1 - n\ +mFT7+1} less

than 1 by making |ri+i — r^| small enough by the continuity of V*. The contraction
mapping principle [4, Theorem 13.2] then says that Ti has a unique fixed point TiX, =
Xi G C([T,-,Tj+i],Rn). From the construction Xi is also of bounded variation on
[ri,Ti+1] and Xi(Ti) = Xi.

The global solution is then formed by patching together the above local solutions
with Xi+i = Xi(ri+i) using an equispaced partition of [to,T] with |7"i+i — Ti\ — A <
\/K such that

V2+1 < (1 - KA)/m.

This is possible by the continuity of V*. The solution so obtained is obviously unique
for the given initial condition X(to) = XQ . D

PROOF OF THEOREM 2: For any partition {U} of [to,t] C [to,T] we have
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+ E ^ (*<• *(-*.<)) (* fc+o - * (**))}

The lines above preceding the limit hold with certain «,• and Sk,i G [<i, <i+i] by the
mean value theorem for derivatives [4, Theorem 4.12] applied to each first order partial
derivative of U, while the limit in the last line exists and takes the asserted value by
the definition of Riemann and Riemann-Stieltjes integrals, since the components Xk
of a solution of the Stieltjes differential equation (1) are continuous and of bounded
variation. Thus

rt ajj

E/ £
The chain rule formula (8) then follows from the form of equation (1), the definition
(6)-(7) of the operators L°, L1, . . . , Lm and the following lemma. D

LEMMA 2 . Suppose that f : [to,T] -> R1 is continuous, that X : [to,T] -> R1 is
a continuous solution of the Stieltjes differential equation (1) with n = m = 1, tAat is

(25) dX{t) = a(t,X{t)) dt + &! (t,X(t)) dR^t),

and that the standard continuity assumptions hold. Then

(26) / f(t)dX(t)= ( f(t)a(t,X(t))dt+ f /(<)6i (*,*(<)) «**!(*).
Jto Jto Jt0

PROOF: For any partition {U} of [to,T] we have

(27)

E [ /<+l r + l bx (t,X(t)) dR.it)

E ̂  co
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The first two sums in (27) converge to the desired integrals on the right side of (26) as
\ti+i — U\ —> 0, while the last two sums vanish as we shall now show. From the uniform
continuity of a(-,X()) and bi(-,X()) on [to,T] for every e > 0 there exists a S(e) > 0
such that

\a(s,X{s)) - a(t,X(t))\ < e, \b1(s,X(8)) - Ol(t,X(t))\ < e

for all s, t G faoiT1] with |s — t\ < S(e). Hence if the partition satisfies |i,-+i — i,-| < S(e)
we have

dt

\J2 P+l \a{t,X(t))-a{U,X(U))\dt
i Jt'

a n d

ll/ll E /1 1(0

• « + l

This completes the proof of lemma 2. u
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