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Abstract

Predicting the magnitude of the annual seasonal peak in influenza-like illness (ILI)-related
emergency department (ED) visit volumes can inform the decision to open influenza care
clinics (ICCs), which can mitigate pressure at the ED. Using ILI-related ED visit data from
the Alberta Real Time Syndromic Surveillance Net for Edmonton, Alberta, Canada, we devel-
oped (training data, 1 August 2004–31 July 2008) and tested (testing data, 1 August 2008–19
February 2014) spatio-temporal statistical prediction models of daily ILI-related ED visits to
estimate high visit volumes 3 days in advance. Our Main Model, based on a generalised linear
mixed model with random intercept, incorporated prediction residuals over 14 days and cap-
tured increases in observed volume ahead of peaks. During seasonal influenza periods, our
Main Model predicted volumes within ±30% of observed volumes for 67%–82% of high-vol-
ume days and within 0.3%–21% of observed seasonal peak volumes. Model predictions were
not as successful during the 2009 H1N1 pandemic. Our model can provide early warning of
increases in ILI-related ED visit volumes during seasonal influenza periods of differing inten-
sities. These predictions may be used to support public health decisions, such as if and when
to open ICCs, during seasonal influenza epidemics.

Introduction

Influenza and influenza-like illness (ILI) can create considerable annual burdens on the
healthcare system, including increases in emergency department (ED) visit volumes and hos-
pital admissions [1, 2]. Annual epidemics of seasonal influenza, increases in other respiratory
virus infections, such as respiratory syncytial virus (RSV), and variation in ILI-related ED visit
volumes over the influenza season are expected. Furthermore, the timing of the highest sea-
sonal peak in ILI-related ED visit volumes is, in general, predictable; for example, during non-
pandemic years, ILI-related ED visits in Edmonton, Alberta, Canada always peaked during the
Christmas-New Year holidays [3]. However, despite this predictable timing, forecasting the
magnitude of the seasonal peak and the timing of high-volume days outside this peak may
help to inform healthcare management decisions regarding resource allocation and staffing,
and public health decisions, such as if and when to open influenza assessment centres or influ-
enza care clinics (ICCs) to manage surges in ED visit volumes. During the 2013–2014 influ-
enza season in Edmonton, EDs experienced especially high ILI-related visit volumes [3],
prompting the opening of an ICC in January 2014 [4]. In Ontario, during the 2009 H1N1 pan-
demic, decisions to open influenza assessment centres were supported by evidence from syn-
dromic surveillance systems [5]. These systems use pre-diagnostic indicators to monitor
disease incidence to enable early warning of outbreaks [6].

In this study, together with the Provincial Chief Medical Officer of Health, we used daily
ILI-related ED visit data from the Alberta Real-Time Syndromic Surveillance Net (ARTSSN)
[7] to develop and compare spatio-temporal statistical prediction models of daily ILI-related
ED visit volumes at the city level in Edmonton. Our goal was to create a model that estimated
high ED visit volumes ahead of time, was easily interpretable by and useful for public health
officials and ED management who already use syndromic surveillance data, and generalisable
to EDs elsewhere that use similar systems.

Methods

We accessed data from ARTSSN describing ED visits made from 1 August 2004 to 19 February
2014. ARTSSN monitors several data sources, including ED visits, telehealth calls [8] and
elementary school absenteeism, in real-time [7]. Using daily ILI-related ED visit data, our
goal was to predict daily ILI-related ED visit volumes 3 days ahead of time because this was
the estimated amount of time required to prepare for the opening of an ICC. We defined 3
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days ahead as 3 full days; for example, we used the observed data
until the end of the day on 1st May to allow prediction on 2nd
May for 5th May.

Time periods

We divided our dataset into two parts: a training set for model
development and validation set for model testing, similar to
methods described by Harrell [9]. We used the first 4 years of
data (1 August 2004–31 July 2008; 1461 days) as our training per-
iod and the remaining 5.5 years of data (1 August 2008–19
February 2014; 2029 days) as our validation period.

For years not affected by the 2009 H1N1 pandemic, we ana-
lysed data collected from 1 August of one calendar year to 31
July of the following calendar year (2004–2008 and 2010–2013)
to incorporate an entire influenza season; however, the data for
the 2013–2014 season ended on 19 February 2014. For
pandemic-affected years, we divided time periods to account for
and examine the predictive abilities of our models during the
2009 H1N1 pandemic. To this end, we defined the pre-H1N1 per-
iod as 1 August 2008–31 March 2009; the first wave of H1N1 as 1
April 2009–31 July 2009; the second wave of H1N1 as 1 October
2009–5 December 2009 and the post-H1N1 period as 6 December
2009–31 July 2010. Thus, we have an extended 2009–2010 season
from 1 April 2009–31 July 2010 to account for the 2-month per-
iod between the first and second H1N1 waves. The definitions of
the pandemic wave periods correspond approximately to those
described in Alberta’s report on the pandemic [10].

Healthcare use and population data

We used ED visit data from nine Edmonton-area hospitals, three of
which began providing data after the start of the study period: two
during our training period in 2004 and 2005 and one during our
testing period in 2013 (which added approximately n = 88 visits).
For each ED visitor, we included the following variables: visit
date, date of birth, forward sortation area (FSA) of the postal
code and chief complaint. We grouped patient age into seven cat-
egories (⩽1 year and 2–4, 5–8, 9–17, 18–64, 65–74 and ≥75 years).
We defined ILI-related visits as those with a chief complaint related
to ‘cough’. In our previous work using these data, this definition
was significantly associated with laboratory detections for both
influenza A and RSV and had higher correlations with these detec-
tions compared to the chief complaint ‘fever’ [3]. However, the
chief complaint ‘cough’ has the potential to both include indivi-
duals with non-ILI-related illnesses as well as exclude individuals
with ILI who do not present with a cough. In these ED data,
only one chief complaint can be entered for each visit; therefore,
it is not possible to test combinations of symptoms, such as fever
and cough, which are commonly used to define ILI. We limited
the data to ILI-related ED visits for Edmonton residents (2006
population = 733 970 [11]; this excluded approximately 37% of
the total ILI-related visits made to the hospitals in our analysis),
based on their FSA (n = 36 FSAs), and divided the city into five
areas (northeast; downtown; west; southeast and southwest). We
included all eligible visits, regardless of the discharge disposition
(e.g. we included visits from patients who had left without being
seen). In addition to data from ARTSSN, we used the 2006 census
of the population to calculate population rates by FSA and age [11].
We received approval from the University of Alberta Health
Research Ethics Board to access and analyse ARTSSN data.

Model development

Our Main Model consisted of three elements: (1) generalised lin-
ear mixed model (GLMM) (without spatio-temporal characteris-
tics), (2) spatio-temporal characteristics and (3) an indicator
variable to capture increases in volume at the beginning of peaks.
In comparison, we examined two reduced versions of our Main
Model, which we refer to as Models 2 and 3, and a simple non-
parametric approach that used the count 3 days ahead directly as
the predicted count for the day of interest. Comparing these subsets
of the Main Model allowed us to see how each element of the mod-
elling contributed to the prediction capabilities.

Main Model

Generalised linear mixed model with a random intercept
Our Main Model was based on a Poisson regression model with
daily ILI-related ED visits P-days ahead of the day of interest as
the outcome, where P is the number of days ahead for which
we wished to make a prediction (we set P = 3), and log trans-
formed area- and age-specific population as the offset. As predic-
tors, we included the following main effects: (1) age group; (2)
area of the city; (3) Christmas and New Year holiday period (24
December–3 January); (4) day of the week and (5) natural cubic
splines to represent the day of the year (X = 1, 2, …, 365 or, for
a leap year, X = 1, 2, …, 366). We explored various values for
the number of knots to be used in the natural cubic splines and
chose the final value of 15 based on the Akaike Information
Criterion [12] of model with the main effects. We a priori
hypothesised seven possible interactions: (1) age group and day
of the year; (2) age group and area; (3) age group and day of
the week; (4) age group and holiday; (5) area and day of the
week; (6) area and day of the year and (7) area and holiday. We
used forward selection with the significance level for entry as
0.05, which resulted in three statistically significant two-way inter-
actions: age and day of the year, age and area, and age and day of
the week. Using GLMM, we added a random intercept following a
Gaussian distribution to the model to capture the extra Poisson
day-to-day variation; thus, over-dispersion is included in the
GLMM, which is described below in Equation (1):

Systematic part:

log(E[Yijk|rijk])= log(Population jk)+b0+rijk+b1jAgej

+b2kAreak+b3IHoliday+
∑6

l=0

b4lDayof theweekl

+
∑14

m=1

b5mS
(m)
i (X)+

∑14

m=1

l jmAgejS
(m)
i (X)

+d jkAgejAreak+
∑6

l=0

g jlAgejDayof theweekl

Random part:

(Yijk|rijk) � Poisson(E[Yijk|rijk])

rijk � Normal(0,s2)

Specifically, let Yijk, i = 1, 2, …, 1461; j = 1, 2, …, 7; k = 1, 2, …,
5 be the daily ILI-related ED visit count on the ith day in jth age
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group and the kth area; S(m) (i), m = 1, 2, …, 14 be the explana-
tory variables for the systematic seasonal variation represented
by the natural cubic splines; and rijk be the random day-to-day
extra-Poisson Gaussian variation. To capture the seasonal vari-
ation by S(m) (i), m = 1, 2, …, 14, we placed the first knot at
Day 15 (15th January) and the last knot at Day 350 and placed
the middle 13 knots at equal distances in between (i.e. we divided
the interval from Day 15 to Day 350 into equal pieces). The
GLMM provides the first component of our predicted
ILI-related ED visit count from its systematic part.

Spatio-temporal characteristics
To construct the second component of our predicted ILI-related
ED visit count, we calculated the daily residual Rijk as the differ-
ence between the observed and the GLMM-predicted ILI-related
ED visit counts for each of the age group and area combinations.
Then, we summarised this residual information over a C-day win-
dow that is 3 days ahead of the predicted day using a mean
residual: �Rijk =

∑
i′ Ri′jk where the summation is over i

′
= i− P

− C, i− P− C + 1, …, i− P− 1, and P = 3 days ahead of the pre-
dicted day. To capture the potential relationship between ED vis-
its among neighbourhoods, we incorporated the residual
information from the four areas other than the area under predic-
tion. To do this, we fit a linear regression model with Rijk being
the outcome and using �Rijk and the mean, median and maximum
of the �Rijk for the other four areas as four predictors to calculate
the predicted residual (R̂ijk). This locally predicted residual is the
second component of our predicted ILI-related ED visit count
which attempts to capture local spatio-temporal variations over
and beyond the GLMM-predicted means and gives more weight
to recent data.

We considered four possible values of C (3, 7, 14 and 21) and
chose 14 based on cross-validation of predicting the observed
ILI-related ED visit count of ≥25 or <25 visits using data from
1 August 2004 to 31 July 2009 (the training data, pre-H1N1 per-
iod and the first wave of the H1N1 pandemic); 25 visits was the
75th percentile of daily counts of ILI-related visits in this portion
of the data.

Capturing the beginning of a peak in the ILI-related ED visit
count
The last component of our predicted ILI-related ED visit count
was motivated by our observation that the sum of the two com-
ponents of our predicted ILI-related ED visit count (i.e. the
GLMM-predicted means + the locally predicted residual) was
not sensitive enough to sudden changes in the observed
ILI-related ED visit count at the beginning of its peak. That is,
these sums were often lower (i.e. underpredicted) than the
observed counts. To improve the prediction for peak periods,
which are the critical periods of interest, we created a ‘hockey
stick-like term’ (HSLT) described below, similar to a hinge func-
tion [13], and included it as the third, final component of our pre-
dicted ILI-related ED visit count.

Specifically, we utilise R̂i−P−1, the residual of the day that is
P-days ahead (the last day in the 14-day time window, closest
to the 3 days that are the prediction target) and let it inform us
whether the peak might be coming. That is, we create

R̃ijk =
∑
i′

Yi′ jk
∑
i′ ,j,k

Yi′ jk
R̂i−P−1 as the fraction of R̂i−P−1 distributed to the

jth age group and kth area. Then we let HSLTijk = R̃ijk if

R̃ijk . 0 and HSLTijk = 0 otherwise: this function takes a shape
similar to an ice-hockey stick. Adding this HSLT to the sum of
the GLMM-predicted means plus the locally predicted residuals
completes our predicted ILI-related ED visit count (thereafter
referred to as ‘Main Model’) and allows it to be more sensitive
to the most recent time trend, increasing at the beginning of a
peak. The following equation (Equation (2)) describes the locally
predicted residuals and the HSLT:

Systematic part:

E[Rijk] = HSLT+ a0 + a1�Rijk + a2 Mean
l

(of �Rijl
′s)

+ a3 Median
l

(of �Rijl
′s)+ a4 Max

l
(of �Rijl

′s)

Random part:

Rijk � Normal(E[Rijk],s
2)

where i = 1, 2, …, 1461, j = 1, 2, …, 7, k = 1, 2, …, 5, l = 1, 2, …, 5,
l≠ k (where l represents the areas other than k).

The final estimated count for our Main Model is the sum of
the estimates obtained from Equation (1) plus Equation (2).

Models for comparison

To examine the performance of the three components of our pre-
dicted ILI-related ED visit count independently, we assessed two
reduced models: Model 2 included only the GLMM-based mean
component (i.e. we excluded both the locally-predicted residual
and HSLT) while Model 3 included only the GLMM-based
mean component and the locally predicted residual but without
the HSLT. For our final approach for comparison, we employed
a simple non-parametric method that used the count 3 days
ahead directly as the predicted count for day of interest.

Model evaluation

We tested and compared the performance of our models and the
non-parametric approach above using the testing data. As we
assumed predicting days with high rather than low visit volumes
would be of primary interest, we evaluated our models based on
their ability to predict higher volume days. We defined a high-
volume day as one in which the number of ILI-related ED visits
exceeded the 95th percentile of the training data (2004–2008).
In addition to defining peak high-volume days, we examined
the maximum seasonal peak volume and assessed how closely
the observed and predicted seasonal peaks were in terms of mag-
nitude and timing for our Main Model, which is of interest retro-
spectively. We evaluated and compared all models based on their
ability to predict peak days and examined how closely our predic-
tions estimated observed values. Our main evaluation criterion
was based on what we considered to be of importance to health-
care system planning: the percentage of days in which the pre-
dicted volume was within ±30% of the observed volume,
focusing again on high-volume days. In addition, we examined
how well the model estimated the highest peak volumes each per-
iod and calculated area under the receiver operator characteristic
curve (AUC), root mean squared error (RMSE) and the relative
percentage difference between the observed and estimated visit
volumes for each model over each period and for each
Christmas-New Year holiday. To visualise model performance,
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we also examined plots comparing predicted visit volumes for
each model to observed visit volumes. We analysed the data
using R (versions 2.14.2 and higher) [14].

Results

ILI-related ED visit volumes

The median visit volumes in our training and validation datasets
differed. During the 1461-day training period (2004–2008), the
median visit volume was 17 visits/day (range by season = 16–19
visits/day) and the 95th percentile was 36 visits/day; we used
this value to define a high-volume day as one with a visit volume
≥36 visits/day. In comparison, during the 2029-day testing period
(2008–2014), visit volumes were, overall, higher (median of 23
visits/day and 95th percentile of 49 visits/day) and the median
daily visit volumes varied more from season-to-season than dur-
ing the training period (Table 1). During the extended 2009–2010
season (1 April 2009–31 July 2010), the median visit volume was
22 visits/day; however, median visit volumes were much higher
during the first and second pandemic H1N1 waves (25 visits/
day and 50 visits/day, respectively; Table 1). Over the last four sea-
sons of the testing period (2010–2014), the median visit volumes
increased from 21 visits/day in 2010–2011 to 22.5 visits/day in
2011–2012, 26 visits/day in 2012–2013 and 32 visits/day in the
first part of 2013–2014 (Table 1).

Model evaluation

Visual comparisons
A visual comparison of predicted vs. observed volumes for each
model illustrates the differences in the models’ abilities to capture
variation in the visit volumes over time (Fig. 1–4; Supplementary
Figs S1–S4). The Main Model and the non-parametric model
responded to variation in observed volumes most effectively;
this is especially obvious in the high-volume seasons, 2012–
2013 and 2013–2014 (Figs 1–2). Figure 2 (Main Model) appears
to show evidence of the ICC that opened in January 2014. That is,
the predicted volumes from our Main Model were much higher
than the observed volumes during the period in mid-January
that the ICC was opened; note that visits to the ICC were not
incorporated into observed data.

Area under the curve, RMSE and relative percentage difference
Defining a high-volume day as one with ≥36 visits, AUC
values ranged from 0.600 to 0.969 considering all models
(Supplementary Table S1). AUC values for the Main Model ran-
ged from 0.710 (H1N1 wave 1) to 0.921 (H1N1 wave 2) over all
periods and, outside the H1N1 period, ranged from 0.818 to
0.896 (Supplementary Table S1). We provide RMSE in
Supplementary Table S2 and the relative percentage difference
between observed and estimated visit volumes in Supplementary
Figures S5 and S6.

Predicting maximum seasonal peak visit volumes
Our Main Model predicted the timing of seasonal peak visit
volumes to occur between 8 days before and 4 days after the
date of observed seasonal peaks and frequently predicted seasonal
peaks to occur on Sundays (Table 1). Predicted peaks for the first
and second waves of the 2009 H1N1 pandemic were 4 May 2009
and 1 November 2009, whereas the observed peaks were 3 May
2009 and 28 October 2009, respectively. However, even though

the predicted peak for the first pandemic wave was only 1 day
later than the observed peak, this prediction was responding to
the increase that had already been observed in the first part of
the peak, rather than predicting the highest volume that followed
(Supplementary Fig. S2). Using the Main Model, over all the time
periods examined in the testing data, the magnitude of the pre-
dicted peak visit volume was between 13.3 visits lower and 22.3
visits higher than the observed peak volume, or a relative percent-
age difference from the observed peak magnitude of between 0.3%
and 21.4% (Table 1).

Seven days ahead of maximum seasonal peaks
Outside of the 2009 H1N1 pandemic waves, in the 1- to 7-day
period immediately preceding the highest peak(s), the percentage
of days in which the predicted volume was within 30% of the
observed volume was highest for our Main Model (ranging
from 57% to 100%), while ranging from 29% to 86% for the non-
parametric method; 0% to 100% for Model 2; 14% to 100% for
Model 3 (Table 1). Aside from the 2009 H1N1 pandemic, the
two influenza seasons during our study period with the highest
visit volumes were 2012–2013 followed by 2013–2014. In 2012–
2013, predictions from our Main Model were within 30% of
observed volumes for 100% of the 7 days leading up to the sea-
sonal peak, which occurred Wednesday, 26 December 2012
(Table 1; Fig. 1); however, our Main Model predicted that the
highest peak volume would occur 4 days later, on Sunday, 30
December 2012 (Table 1). In 2013–2014, our Main Model pre-
dicted the correct date of the peak (Sunday, 29 December
2013), with a predicted magnitude approximately 17 visits greater
than observed (Table 1; Fig. 2). By comparing our Main Model to
Models 2 and 3 (both GLMMs), we see that each of these models
also predicted the peak would occur 29 December 2013 (Fig. 2).
Therefore, the peak predicted by our Main Model was not due
to temporally local changes in visit volumes, such as the almost
identical peak that occurred previously (i.e. on 25 December
2013 the visit volume rose to n = 92 visits; Fig. 2), but to the sys-
tematic variations in visit volumes.

Percentage of high-volume days with predicted visit volumes
within 30% of observed visit volumes
Of the 1542 days occurring outside the extended 2009–2010 sea-
son (i.e. excluding the 1 April 2009–31 July 2010 period), between
8.5% (2010–2011, n = 31 days) and 39% (2013–2014, n = 79 days)
were high-volume days (Table 2). Considering all models, pre-
dicted visit volumes were within 30% of the observed visit
volumes for between 2.5% (n = 2 days, Model 2, 2013–2014)
and 86% (n = 19 days, Model 3, pre-H1N1 period) of these high-
volume days outside the extended 2009–2010 season (Table 2).
Our Main Model was consistent, with between 67% (2011–
2012, n = 22 days) and 82% (pre-H1N1, n = 18 days) of high-
volume days having predicted volumes within 30% of the
observed volumes, and achieved the highest percentage during
three of these five time periods outside the extended 2009–2010
season and also the highest percentage (71%, n = 12 days) during
the post H1N1 period (Table 2). Using this metric, Model 2
(GLMM) did not perform as well as the other models during
the higher volume seasons (2012–2013 and 2013–2014) (Table 2).

Of the 188 days occurring during the first and second H1N1
waves, 54 (29%) were high-volume days: 15 days during the
first wave and 39 days during the second wave (Table 2). Using
the non-parametric method, predicted volumes for 53% (n = 8
days) of these high-volume days during the first wave and 44%

4 L. J. Martin et al.

https://doi.org/10.1017/S0950268819001948 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268819001948


Table 1. Comparing observed vs. predicted maximum peaks in daily ILI-related ED visit volumes, in terms of magnitude and timing, Edmonton, Alberta, 2008–2014

Time period

Median
no. of
visits/
day

Observed peak
ILI-related visit volume

and date
Predicteda peak ILI-related

visit volume and date

Difference between observed and
predicteda maximum peak

ILI-related volumes (relative %) and
date

No. (%) of the 7b days ahead of the seasonal peak when predicted
volume was within 30% of observed volume

Non-parametric
method

Model 2:
GLMM

Model 3: GLMM
and

locally-predicted
residual

Main
Model

Pre-H1N1
(1 Aug 08–31 Mar 09)

19 52
47

Thu, Jan 1/09
Mon, Mar 2/09

42.5
47.6

Sun, Dec 28/08
Sun, Feb 22/09

−9.5 (−18.2%)
0.6 (1.2%)

−4 days
−8 days

9 (64.3) 9 (64.3) 11 (78.6) 11 (78.6)

H1N1 Wave 1
(1 Apr 09–31 Jul 09)

25 57 Sun, May 3/09 58.9 Mon, May 4/09 1.9 (3.3%) +1 day 5 (71.4) 1 (14.3) 2 (28.6) 3 (42.9)

H1N1 Wave 2
(1 Oct 09 –5 Dec 09)

50 275 Wed, Oct 28/09 297.3 Sun, Nov 1/09 22.3 (8.1%) +4 days 2 (28.6) 0 (0.0) 0 (0.0) 3 (42.9)

Post-H1N1
(6 Dec 09–31 Jul 10)

20.5 51 Tue, Mar 2/10 50.2 Sat, Mar 6/10 −0.8 (−1.6%) +4 days 3 (42.9) 7 (100) 5 (71.4) 5 (71.4)

2010–11
(1 Aug 10–31 Jul 11)

21 62 Sun, Dec 26/10 48.7 Sun, Dec 26/10 −13.3 (−21.4%) 0 days 2 (28.6) 5 (71.4) 5 (71.4) 4 (57.1)

2011–12
(1 Aug 11–31 Jul 12)

22.5 59
54

Sun, Jan 1/12
Tue, Feb 28/12

50.5
53.9

Mon, Dec 26/11
Sat, Mar 3/12

−8.5 (−14.4%)
−0.1 (−0.3%)

−6 days
+4 days

7 (50.0) 14 (100) 14 (100) 12 (85.7)

2012–13
(1 Aug 12–31 Jul 13)

26 125 Wed, Dec 26/12 145.6 Sun, Dec 30/12 20.6 (16.5%) +4 days 6 (85.7) 0 (0.0) 1 (14.3) 7 (100)

2013–14 (1 Aug
13–15 Feb 14)

32 93 Sun, Dec 29/13 110.3 Sun, Dec 29/13 17.3 (18.6%) 0 days 4 (57.1) 0 (0.0) 1 (14.3) 6 (85.7)

aPredicted volumes are based on our Main Model.
bThe pre-H1N1 and 2011–2012 season each had two similarly sized maximum peak volumes that occurred at notably distinct times within each of these periods; therefore, we examined the combined no. (%) over the 7 days ahead of each of these
peaks (14 days total).
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Fig. 1. Comparing the predicted and observed number of ILI-related ED visits for each method for the 2012–2013 influenza season (1 August 2012–31 July 2013),
Edmonton, Alberta. Observed visit volumes (blue) are compared to predicted visit volumes from the non-parametric method (black), Models 2 (light blue) and 3
(green) and the Main Model (red).

Fig. 2. Comparing the predicted and observed number of ILI-related ED visits for each method for the 2013–14 influenza season (1 August 2013–19 February 2014),
Edmonton, Alberta. Observed visit volumes (blue) are compared to predicted visit volumes from the non-parametric method (black), Models 2 (light blue) and 3
(green) and the Main Model (red).
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Fig. 3. Comparing the predicted and observed number of ILI-related ED visits for each method for the 2011–2012 influenza season (1 August 2011–31 July 2012),
Edmonton, Alberta. Observed visit volumes (blue) are compared to predicted visit volumes from the non-parametric method (black), Models 2 (light blue) and 3
(green) and the Main Model (red).

Fig. 4. Comparing the predicted and observed number of v-related ED visits for each method for the 2010–11 influenza season (1 August 2010–31 July 2011),
Edmonton, Alberta. Observed visit volumes (blue) are compared to predicted visit volumes from the non-parametric method (black), Models 2 (light blue) and
3 (green) and the Main Model (red).
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(n = 17 days) of these high-volume days during the second wave
were within 30% of the observed volume, which were the highest
combined percentages during these two periods (Table 2). Using
this metric, our Main Model performed similarly well as the non-
parametric method during the first pandemic wave, with pre-
dicted volumes within 30% of observed volumes for the same per-
centage of high-volume days (53%) (Table 2). However, during
the second pandemic wave, our Main Model met this criterion
for only 26% (n = 10 days) of high-volume days. Models 2 and
3 did not perform as well compared to the other models during
the H1N1 waves based on this metric (Table 2).

Discussion

We developed and compared prediction models to forecast
ILI-related ED visit volumes 3 days in advance, incorporating
variation by visitor age, area of residence and season using com-
pletely separate datasets for model development and model valid-
ation. Based on our main evaluation criterion (percentage of
high-volume days in which the predicted volume was within
±30% of the observed volume), our Main Model performed
most effectively outside of the 2009 H1N1 pandemic period and
improved upon the use of the volume of the current day directly
as a prediction for the volume 3 days ahead of time.

During seasonal influenza periods, our Main Model discrimi-
nated high-volume days, demonstrated by high AUC values; pre-
dicted volumes using our Main Model were within 30% of
observed volumes for 67% to 82% of high-volume days and within
0.3% and 21% of the observed maximum seasonal peak visit
volumes. In comparison, for the non-parametric method that dir-
ectly predicted the volume 3 days ahead of time, AUC values were
somewhat lower during seasonal influenza periods and predicted
volumes were within 30% of observed volumes for only 39% to
70% of high-volume days; for this method, maximum peak
volumes matched exactly, but were always 3 days late.

By modelling the residuals, we were able to account for
changes in volumes over time, allowing our model to respond
to increases in volume beyond what would have been predicted
using the training data alone. This was especially important
given that higher visit volumes occurred in our validation dataset
compared to our training dataset. Furthermore, by incorporating
an indicator variable (HSLT) in the model, we were better able to
predict increases in volume during high-volume days, which was
most evident during the 2012–2013 and 2013–2014 influenza sea-
sons. Possible alternative approaches to the use of the HSLT could
be weighting residuals based on how recently they occurred rela-
tive to the day in question. A strength of our approach is that the
patterns in the ILI-related ED visits predicted by our model using
syndromic data are related to patterns in laboratory detections for
both influenza A and RSV [3]. However, our models did not per-
form as well during the 2009 H1N1 pandemic period; as Viboud
et al. suggest, compartmental models may be more useful in this
type of scenario [15].

One of our goals was to create a model to inform decisions
regarding the opening of an ICC. These decisions require estima-
tion of the expected timing and intensity of the peak in ILI-related
ED visit volumes. During non-pandemic seasons, the timing of
this peak can be expected during the Christmas-New Year holi-
days [3], which provides an indication of when such a clinic
should likely be opened. However, determining if an ICC should
be opened also requires estimating the expected intensity of the
peak volume; this estimation requires additional evidence,

which our model can provide. For example, our Main Model pre-
dictions were within 30% of the observed volumes for 7 and 6 of
the 7 days leading up to the date of the maximum seasonal peaks
in 2012–2013 and 2013–2014, respectively, which improved upon
the other methods we explored. The next best model was the non-
parametric approach, for which 6 and 4 of the 7 days leading up
to the date of the maximum seasonal peak in 2012–2013 and
2013–2014, respectively, were within 30% of the observed
volumes. The other two models met this objective for either 0
or 1 of these 7 days. These two seasons are most important to
consider because of high volume (in 2012–2013) and the decision
to open an ICC (in 2013–2014). Furthermore, the volume during
these 7 days is likely a critical consideration in deciding whether
or not to open an ICC; therefore, earlier and more accurate esti-
mates are especially important at this time.

Aspects of our modelling approach are similar to those of
Kleinman et al. [16], who used GLMM with spatio-temporal
data. Other than census data, our models did not rely on data
external to the ED. Although others have considered telehealth
data for forecasting ILI-related ED visits [17], we found that
these data did not improve our model predictions (results not
shown). In addition to considering telehealth data as a possible
external data source for modelling ILI-related ED visits, other
prediction models have incorporated weather-related data [18]
and Google Flu Trends estimates [19]. Although these types
of external data sources may be useful for predictions, we
believe that limiting models to internal data is also advanta-
geous. First, it is a simpler approach, as no other data are
required beyond what are currently collected by the medical
centres themselves and available through the census. Second,
it reduces the risk of the model being impacted by changes in
these external data (e.g. changes in the Google Flu Trends algo-
rithm [20] or loss of availability of its data [21]). Finally, it
makes the models more easily transferable to other real-time,
electronic ED surveillance systems regardless of the availability
of additional data in these systems.

This study and our models have several limitations. First,
changes in the data occurred during the study that likely impacted
our estimates. During both the 2009 H1N1 pandemic and the
2013–2014 influenza seasons, ILI-related ED visits decreased
after the influenza assessment centres or care clinics were opened.
Since our model did not consider these external visits, these
decreases in volume likely impacted our models’ estimates.
Additionally, we did not include the total number of ED visits
in our analysis, so we cannot examine surges in overall volume
or ILI-related ED visits as a proportion of all visits. Second,
although the population of Edmonton grew considerably over
the study period, we used only the 2006 census of the population
to determine rates. However, the impact of this is alleviated to
some extent because we modelled the residuals rather than the
counts directly. Third, we did not consider long-term trends in
our modelling approach. Doing so could help to account for
the increase in the number of ILI-related ED visits observed
between the training and testing data and the increasing RMSE
observed over time. However, we do not know how well a long-
term trend would truly apply in the long term, especially given
economic and political changes that have occurred in Alberta
over the past several years. Fourth, Edmonton residents may
have attended EDs outside the city, which would not be repre-
sented in these numbers. Fifth, we did not consider epistemic
uncertainty in our analysis. Finally, we did not break down our
predicted volumes by area of the city, hospital or patient age
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Table 2. Number and percentage of days in which the predicted visit volume was within 30% of the observed visit volume, Edmonton, Alberta, 2008–2014

Model

Pre-H1N1
(1 Aug 2008–31

Mar 2009)

Extended 2009–2010 season

2010-2011
(1 Aug 2010–31

Jul 2011)

2011–2012
(1 Aug 2011–31

Jul 2012)

2012–2013
(1 Aug 2012–31

Jul 2013)

2013–2014
(1 Aug 2013–19

Feb 2014)

Whole period
(1 Apr 2009–31

Jul 2010)

H1N1 Wave 1
(1 Apr 2009–31

Jul 2009)

H1N1 Wave 2
(1 Oct 2009–5
Dec 2009)

Post-H1N1
(6 Dec 2009–31

Jul 2010)

All days included in calculation

Total no. of days in period 243 487 122 66 238 365 366 365 203

Main Model 168 (69.1%) 285 (58.5%) 66 (54.1%) 29 (43.9%) 156 (65.5%) 235 (64.4%) 253 (69.1%) 238 (65.2%) 131 (64.5%)

Model 2: GLMM 178 (73.3%) 227 (46.6%) 27 (22.1%) 12 (18.2%) 160 (67.2%) 227 (62.2%) 194 (53.0%) 105 (28.8%) 31 (15.3%)

Model 3: GLMM and
locally-predicted residual

186 (76.5%) 319 (65.5%) 87 (71.3%) 18 (27.3%) 167 (70.2%) 269 (73.7%) 298 (81.4%) 272 (74.5%) 144 (70.9%)

Non-parametric method 149 (61.3%) 268 (55.0%) 65 (53.3%) 34 (51.5%) 131 (55.0%) 199 (54.5%) 211 (57.7%) 230 (63.0%) 127 (62.6%)

Only high volume (≥36 visits) days included in calculation

No. of days in each period
with ≥36 visits (% of total
days in period)

22 (9.1) 71 (14.6) 15 (12.3) 39 (59.0) 17 (7.1) 31 (8.5) 33 (9.0) 84 (23.0) 79 (38.9)

Main Model 18 (81.8%) 30 (42.3%) 8 (53.3%) 10 (25.6%) 12 (70.6%) 23 (74.2%) 22 (66.7%) 58 (69.0%) 59 (74.7%)

Model 2: GLMM 11 (50.0%) 8 (11.3%) 0 (0.0%) 0 (0.0%) 8 (47.1%) 17 (54.8%) 13 (39.4%) 7 (8.3%) 2 (2.5%)

Model 3: GLMM and
locally-predicted residual

19 (86.4%) 18 (25.4%) 3 (20.0%) 5 (12.8%) 10 (58.8%) 24 (77.4%) 21 (63.6%) 50 (59.5%) 45 (57.0%)

Non-parametric method 13 (59.1%) 34 (47.9%) 8 (53.3%) 17 (43.6%) 9 (52.9%) 15 (48.4%) 13 (39.4%) 54 (64.3%) 55 (69.6%)

Note: The highest percentage(s) in each period is shown in bold.
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group because of the consequential reduction in model power and
precision. However, most visits were made to two large EDs in the
city and our model predictions could be roughly estimated for
each hospital by considering the proportion of visits occurring
in each area or hospital.

Our recommendations for future work include examining
model refinements. For example, model predictions could be
updated after the 3-day window of advanced warning; that is,
update estimates post-prediction. Additionally, predictions at a
smaller geographic area or at the hospital-level, and by age cat-
egory could also be explored as well as other methods to model
the spatial distribution of the visits across the city. Finally,
model performance could be evaluated based on other influenza
season characteristics, including the main influenza virus subtypes
in circulation; incidence of other respiratory viruses, such as RSV;
and vaccine timing and effectiveness. Furthermore, our model
should be tested in practice to determine its usefulness in public
health preparedness and decision-making during the influenza
season.

In conclusion, we developed spatio-temporal models to predict
ILI-related ED visits 3 days in advance to help inform healthcare
and public-health decision-making, such as the opening of an
ICC, especially during seasonal influenza periods. Based on our
evaluation, the most effective modelling approach considered
was our Main Model, which was based on a GLMM with random
intercept and incorporated spatio-temporal characteristics as well
as an indicator variable similar to a hinge function. Our approach
herein provides an example of how syndromic surveillance data
can be used to provide early warnings of increases in healthcare
use for the monitored syndrome itself. These models can be fur-
ther tested in practice and adapted to other real-time, electronic
surveillance systems monitoring ILI-related ED visits, and poten-
tially modified for other infectious diseases.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268819001948.
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