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Capture-to-display delay measurement for
visual communication applications
haoming chen1, chao wei2, mingli song2, ming-ting sun1 and kevin lau3

We propose a method to measure the capture-to-display delay (CDD) of a visual communication application. The method does
not require modifications to the existing system, nor require the encoder and decoder clocks be synchronized. Furthermore, we
propose a solution to solve the multiple-overlapped-timestamp problem due to the exposure time of the camera. We analyze
the measurement error, and implement the method in software to measure the CDD of a cellphone video chat application over
various types of networks. Experiments confirm the effectiveness of our proposed method.
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I . I NTRODUCT ION

End-to-end delay is an important concern for two-way
visual communication applications. Video codec manufac-
turers need to measure the end-to-end delay of a video
codec system in order to develop low-delay video codecs.
Network service providers need to make sure the end-to-
end delay of a visual communication application is within
the application requirement. A simple and general tool for
measuring the end-to-end delay of a visual communica-
tion system is invaluable for applications related to two-way
visual communications.
Figure 1 shows an example of a mobile video chat sys-

tem. Video captured by the camera is compressed by a video
encoder. The encoder usually contains an encoder buffer to
smooth the video bit-rate as described in [1]. The video bit-
stream is then packetized and transmitted over the network.
At the decoder side, the video is decoded and displayed.
The decoder usually contains a decoder buffer to smooth
out the network jitter and to buffer the bit-stream before
the video decoding. The encoder and decoder buffers can
result in a relatively long delay. The end-to-end delay in
this example, is the latency from frame capturing at the
encoder side to the frame display at the decoder side, which
we call capture-to-display delay (CDD), including thewhole
chain of video encoding, encoder buffering, packetization,

1Department of Electrical Engineering, University ofWashington, Seattle, WA 98195,
USA
2College of Computer Science, Zhejiang University, Hangzhou, Zhejiang, China
3T-Mobile USA, Bellevue, WA 98006, USA

Corresponding author:
H. Chen
Email: eehmchen@uw.edu

network transmission, decoder buffering, and video decod-
ing.
The traditional way to measure the latency is by using

timestamps. A timestamp is a code representing the global
time. It can be generated by a counter driven by a net-
work clock commonly available to both the encoder and
the decoder. To measure the time delay between two points
A and B, a timestamp is inserted at point A, retrieved at
the point B, and compared with the global time at point B.
For example, for the visual communication system shown
in Fig. 1, to measure the end-to-end delay of the network
part, timestamps are generated from the network clock and
inserted at the network interface point in the encoder side.
These timestamps are retrieved at the network interface
point at the decoder side to compare with the global time.
Similarly, to measure the CDD, we can insert timestamps
at the video capture point, and observe the timestamps rel-
ative to the global time at the display point. As long as a
network clock is available and the encoder clock and the
decoder clock are synchronized, the delay can be calculated.
However, in order to do this, we need to be able to mod-
ify the hardware or software to insert the timestamps, and
retrieve the timestamps at the desired points. In many sit-
uations including our application scenario, cellphone video
codecs are implemented in hardware and software by the
developers. Thus, we cannot modify the video encoder and
decoder to insert or retrieve the timestamps. Also, usually
the encoder clock and the decoder clock are not synchro-
nized. These make the measuring of the CDD particularly
challenging.
Boyaci et al. [2] presented a tool to measure the CDD

of a video chat application running on a personal com-
puter (PC) platform. Their approach adds timestamps rep-
resented in barcodes at the encoder side. After the video is
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Fig. 1. An end-to-end visual communication system.

decoded at the decoder side, the barcodes are recognized
and compared with the time at the decoder side. However,
this method still requires the development of new software
inside the encoder and decoder machines in order to insert
and recognize the barcodes and compare the recognized
timestamps with the system time. Moreover, the encoder
clock and the decoder clock need to be synchronized.
Kryczka et al. [3] extended the tool “vDelay” [2] and added
tools tomeasuremouth-to-ear latency and the audio–visual
synchronization skew. The tool is called “AvCloak”. Since
[3] is built on top of [2], it also requires installation of new
software and clock synchronization between encoder and
decoder. Some other works to measure the delay of video
chat applications over two computers are in [4, 5].
As an increasing number of people have video chats

via cellphones, the measurement of CDD with cellphone
is important. Previous solutions (e.g. vDelay and AvCloak)
for PCs are not suitable for cellphones, since it is difficult to
synchronize the clocks on the cellphones and access to the
video encoding and decoding systems inside the cellphones
In addition, to recognize the timestamps, those software
require access to the screen on the receiver’s side. However,
the hardware or software cannot be modified to achieve
that in the cellphone chatting scenarios. In this work, we
address the technical problem “how to measure the CDD
associated with a practical video chat application between
two cellphones in a research environment?” We would like
to emphasize that, different from the existing measurement
methods for video chatting on two PCs, the main con-
straint in this problem is that, we cannot modify the video
chat applications and synchronize the clock in these two
cellphones.
To overcome the aforementioned problems, we pro-

pose a method that can be used to measure the CDD of
any visual communication applications, which does not
require modification to the application source code and
access to the inside of the system. It also does not require
the encoder and decoder clocks to be synchronized. It
is based on the simultaneous recognitions and compar-
isons of visual patterns of both timestamps captured at the
encoder side and displayed at the decoder side. Our contri-
butions include: (1) a proposal on a newCDDmeasurement
method that does not require modification to the visual
communication system nor synchronization between the

encoder and decoder clocks; (2) a solution to the multiple-
overlapped-timestamp problem encountered using this
approach; and (3) a measurement error analysis for this
approach.
The organization of the rest of this paper is as follows.

In Section II, we discuss our approach of measuring the
CDD. In Section III, we discuss the problem of multiple-
overlapped timestamps. In Section IV, we present our solu-
tion to the overlapped timestamps problem. In Section V,
we present experimental results to show the effective-
ness of our proposed methods. Section VI concludes the
paper.

I I . PROPOSED METHOD FOR
DELAY MEASUREMENT

A) The proposed CDDmeasurement
approach
The proposed CDD measurement approach is shown in
Fig. 2. Timestamps representing a stopwatch with millisec-
ond precision are displayed on the screen of an external PC,
Cellphone1, and Cellphone2 establish the video chat con-
nection. The timestamps shown on the screen of the PC are
captured by the Cellphone1 camera. In order to make the
measurement close to a realistic scenario, we pre-record a
chat-like video sequence and play it behind the timestamp,
so that the video contains both timestamp and the chatting
person. The video of Cellphone1 is encoded and transmit-
ted to Cellphone2. The decoded video is displayed on the
screen of Cellphone2. A webcam records the timestamps
on both the screens of the PC and Cellphone2. The delay
measurement software in the PC receives the video from
the webcam, and performs pattern recognitions for the two
timestamp patterns in the video frame. The value of the dif-
ference between the two timestamps is the CDD. Note that
the CDDmeasurement is usually performed in research for
investigating the end-to-end delay. In this application sce-
nario, the network provider or the codec manufacturer has
the control on routing the packets or using a network sim-
ulator to simulate the network. So the sender/receiver/PC

Fig. 2. The proposed approach to measure the CDD. The difference between
timestamps on the computer’s screen and Cellphone2’s screen is the CDD.
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have to be at the same site is not a serious limitation of the
proposed approach. This work actually comes out from a
real-life situation. In this actual situation, we like to know
how much delay is due to the video codec in a video chat
application over cellphones. However, since the video codec
is embedded in the cellphone, a way to be able to mea-
sure the video codec delay is needed. Our proposedmethod
addresses this need. There are many other situations with
the similar need such as a video codec vendor who like
to measure the delay of their video codecs, or low delay
coding researchers who like to know the end-to-end delay
of their approaches. In all these kinds of applications, the
encoder and decoder at the same location is not a problem
at all.
The software is implemented in an external PC which

includes two applications: CDD-T (for transmitter) and
CDD-R (for receiver). The CDD-T application generates
and displays timestamps on the PC screens every Tstamp
time. The CDD-R application receives the captured video
from the webcam, performs timestamp pattern recogni-
tions, and calculates and displays the CDD of every frame.
At the end of a measurement session, the CDD-R appli-
cation will also output the delay statistics such as the
minimum, maximum, mean, and the standard deviation
of CDD.

B) Timestamp representations
The timestamps can be represented in different patterns.
Two example patterns we investigated to encode the times-
tamps are shown in Fig. 3. Figure 3(a) represents a times-
tamp in digits and Fig. 3(b) represents a timestamp in a
quick response (QR)-code [6]. There is public domain soft-
ware that can recognize the digit and QR-code timestamps.
The digital timestamps can be read by the user to get a quick
read of the CDD. The QR-code is not human-readable.
However, the fast readability and greater storage capacity
compared with the standard barcodes make the QR-code
increasingly popular. For error-resiliency, Boyaci et al. [2]
used an european article number (EAN)-8 barcode because
of its checksum mechanism. The EAN-8 barcode with a
checksum can allow to detect whether the timestamp is con-
taminated, and refuse to read the barcode if it is damaged or
distorted. The QR-code not only has the checksum mecha-
nism but also the error correction capability. Even if a QR-
code has some local breakage, it still can restore the original
information. Furthermore, the QR-code is designed with
open standards.

(a) (b)

Fig. 3. Examples of timestamp formats (a) digits and (b) QR-code.

I I I . PROBLEM OF MULT IPLE -
OVERLAPPED T IMESTAMPS

Although the concept of the above proposed approach looks
simple, during our experiments, we found it has a problem
of multiple-overlapped timestamps due to the limited cam-
era shutter speed. In this section, we study this problem
and show the relationship between the maximum number
of overlapped timestamps and the camera exposure time.

A) Problems of multiple-overlapped
timestamps
When we use a camera to capture the timestamps, the
camera needs some time to expose a frame. The expo-
sure process is related to the camera’s aperture and shutter
speed [7], with the exposure time Te , which is the dura-
tion of time when the camera shutter is open. Timestamps
refresh quickly so that different timestamps appear during
the exposure period, and all these timestamps are captured
by the image sensor. This results in multiple-overlapped
timestamps on the display as shown in Fig. 4. Using pub-
lic domain software to recognize the multiple overlapped-
timestamp patterns causes serious errors. We cannot just
discard the blurred timestamp frames, because only about
50 of the frames are clear in our experiments. Here, a
clear frame means that the timestamps on both the PC and
the Cellphone2 screens could be correctly recognized. It
is also observed that the most recent timestamp may not
be the most visible timestamp in the multiple-overlapped
timestamps.

B) Relationship between the maximum
number of overlapped timestamps and the
camera exposure time
To investigate the extent of the multiple-overlapped times-
tamps and confirm the reason of multiple-overlapped
timestamps, we design a set of visual patterns to represent
the 10 digits as shown in Fig. 5. A black rectangular pat-
tern is split into 5 × 2 sub-blocks and the position of the
white sub-block represents a digit so that this visual pattern

(a) (b)

Fig. 4. Multiple overlapped-timestamps: (a) with digits and (b) with QR code.

Fig. 5. Special visual patterns and corresponding digits.
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Fig. 6. Multiple overlapped-timestamps with special visual patterns. The num-
ber of overlapped patterns can be easily counted.

is still human-readable. Since the white squares in the pat-
terns appear at different locations for different digits, we can
easily see how many timestamps are overlapped by count-
ing the numbers of brighter squares in the area representing
a digit. One example is shown in Fig. 6.
With these visual patterns, we conduct an experiment

as follows: fix the timestamp refresh interval and change
the camera exposure time. We fix Tstamp to 45ms and set
the webcam exposure time Te to 100, 67, 40, 33, 20, and
10ms in each test, take 10 pictures of timestamps on the
PC screen, and count the number of overlapped times-
tamps, denoted as n, in these pictures. The result is shown in
Table 1.
Results in Table 1 follow an equation:

N = ⌊
Te/Tstamp

⌋ + 2, (1)

where �•� is the floor function and N is the maximum
number of overlapped patterns on PC given the exposure
time and the timestamp refresh interval. Equation (1) can
be explained with an example in Fig. 7, with Te = 100ms
and Tstamp = 45ms. Under this situation, in the worst case,
there are two extra timestamps partially appearing at the
beginning and the end of the exposure period, so that the
overlapped patterns contain two fully exposed timestamps
and two partially exposed timestamps.
Note that equation (1) works for one exposure, however,

in our measurement system, the timestamps on Cellphone2
are exposed twice: the first is the exposure via Cellphone1
and the second is the exposure via the webcam facing PC
and Cellphone2. In this scenario, the maximum number N ′

Table 1. Statistics of pictures with
different number of overlapped patterns.

Te n = 1 n = 2 n = 3 n = 4

100ms – – 8 2
67ms – 8 2 –
40ms 2 8 – –
33ms 4 6 – –
20ms 7 3 – –
10ms 9 1 – –

Fig. 7. Example of the worst case when the maximum number of overlapped
timestamp occurs.

of overlapped timestamps on Cellphone2 could be

N ′ = N1 × N2, (2)

where N1 is the maximum number of overlapped times-
tamps derived by equation (1) in the first exposure, and N2

is the maximum number of overlapped timestamps due to
the exposure time of the webcam, which can be determined
similar to equation (1) by:

N2 = ⌊
Te/Tc1_camera

⌋ + 2, (3)

where Te is the expose time of the webcam and Tc1_camera

is the display frame time of the Cellphone2 which is deter-
mined by the video encoding frame rate of camera of the
Cellphone1.
From the above experiments, we can conclude that the

longer camera exposure time causes the overlapped times-
tamp problem and more overlapping problems appear on
Cellphone2 than on PC according to equation (2). A shorter
timestamp refresh interval and/or a longer camera expo-
sure time will make the overlapped timestamp problem
worse. To overcome the overlapped timestamp problem,
one straightforward method is to minimize Te . However, in
our measurement system, the exposure time of the built-
in camera of Cellphone1 cannot be set manually. Another
method is to maximize the timestamp refresh interval time.
However, a long refresh interval increases the measurement
error, which will be discussed further in Section IV.

I V . SOLUT ION OF OVERLAPPED
T IMESTAMPS – SPACE D IVERS ITY
AND COLOR D IVERS ITY

From equations (1) and (2) we can see that the overlapping
timestamp problem is inevitable (N ≥ 2 in equation (1))
on both PC and Cellphone2 screens. Decreasing the cam-
era exposure time or increasing timestamp refresh inter-
val can only reduce the possibility of occurrence of the
multiple-overlapped-timestamp problem, rather than solve
it completely. In this section, we propose a solution to the
overlapped timestamp problem.
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A) Use space diversity to solve the
multiple-overlapped-timestamp problem
We solve the problem with space diversity, i.e. display-
ing consecutive timestamps at different locations so that
they do not overlap before they disappear. The number
of space diversity Ds depends on the maximum possible
number of overlapped timestamps. A video frame show-
ing the QR-codes with a space diversity of four is shown
in Fig. 8.

B) Combining color diversity to handle more
overlapped timestamps and reduce timestamp
area
Using space diversity can separate timestamps successfully,
but to handle more overlapped patterns, increasing the
number of the space diversity may look awkward in the
practical use. In this case, we can combine the color diversity
to handle more overlapped timestamps.
The main idea is to allow multiple timestamps captured

by the camera but make them separable in the color space.
Based on this, the visual patterns we designed in Fig. 5 can
add a color attribute (red, green, and blue); the example
of digit 0 is shown in Fig. 9(a). Using color diversity, we
can solve the problemwhen timestamps with different color
are overlapped. One example is shown in Fig. 9(b). In this
example, one green and one blue timestamp are overlapped.
By extracting the green and blue components separately, we
can segment the two timestamps.
Combining Ds number of space diversity and Dc num-

ber of color diversity can handle up to Ds × Dc number of
overlapped timestamps. So in our simulation test, to handle
four overlapped timestamps, we can use two space diver-
sity combined with three color diversity. In this way, we
save two spaces for timestamps compared with using only
the space diversity method. Theoretically, we could extend
to more colors to increase the color diversity. However, it
will make the detection of different colors under multiple-
overlapped timestamps more difficult. In Section V, we
test both the space diversity method and the space+ color
diversity method.

Fig. 8. A video frame showing the QR-codes with a space diversity of four.

(a)

(b)

Fig. 9. (a) Visual pattern for digit 0 with different colors and (b) an example
of two-overlapped timestamps, which are separable in the color space. Green
timestamps represent “03771” and blue timestamps represent “03765”. (Best
viewed in color.)

C) Measurement error analysis
Using the above space and color diversity methods, the
timestamps can be recognized accurately (the recognition
accuracy can reach 99.4, as will be shown in Section V).
However, due to the limited time resolutions of the times-
tamp generating, PC screen refreshing, Cellphone1 captur-
ing, and Cellphone2 displaying the actual time may not be
identical to the timestamp time, so measurement errors are
induced into themeasured delay. In this part, we analyze the
measurement error.
To make the analysis easier to understand, we define

some notations in Table 2.
Without losing generality, the measure process can be

described in a timeline shown in Fig. 10.
The displaying and capturing can be modeled as sam-

pling processes. We discuss steps in details as follows:

(1) Timestamp is generated in the PC every Tstamp time.
(2) PC screen samples the timestamp sequence and display
the timestamps on the screen every Tpc_screen time.

(3) Cellphone1 captures the PC screen every Tc1_camera time.

Table 2. Notations related to the measurement error analysis.

Example values
Notation Definition in our simulations

Tstamp Timestamp generating interval 10ms
Tpc_screen PC screen refresh interval 17ms (60Hz)
Tc1_camera Cellphone1’s camera frame capture

interval
40ms (25Hz)

Tc2_screen Cellphone2’s screen refresh interval 17ms (60Hz)
ti Time when i th timestamp is gener-

ated
–

tpi Time when i th timestamp appears on
PC screen

–
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Fig. 10. Timeline of timestamps on different devices. The bottom dashed line
indicates the time when timestamps on PC screen and Cellphone2 screen are
captured by the webcam.

(4) Cellphone2 receives and decodes the frame from Cell-
phone1, then displays the frame sequence every Tc2_screen
time.

(5) Webcam captures (a) PC’s screen and (b) Cellphone2’s
screen.

Among the above steps, (2), (3), (4), and (5) can be
modeled as sampling processes, which inducemeasurement
errors shown in Fig. 10. For example, in step (2), the time
when PC screen refreshes is tpi , which is

ti ≤ tpi < ti + Tstamp. (4)

The difference between the displaying time tpi and the
actual time ti is

e1 = tpi − ti . (5)

Since the timestamp generating and PC screen refresh-
ing processes are independent, this e1 follows a uniform
distribution,

e1 ∼ [
0, Tstamp

)
. (6)

Note that e4 associated with the timestamp t j in Fig. 10 has
the same distribution of e1, since it comes from the same
process as step (2).

e4 ∼ [
0, Tstamp

)
(7)

Similarly, based on this sampling model, e2, e3, and e5 are
errors involved in step (3), (5a), and (5b), and they all follow
the uniform distribution:

e2 ∼ [
0, Tpc_screen

)
, (8)

e3 ∼ [0, Tc2_screen
)

, (9)

e5 ∼ [
0, Tpc_screen

)
. (10)

The CDD is defined as the time from Cellphone1 cap-
tures the PC’s screen to Cellphone2 displays that frame,
which is denoted asCDDactual. However, themeasured delay

CDDmeasure is the time difference between two timestamps,
which is

CDDmeasure = t j − ti . (11)

From the timeline, CDDmeasure is calculated as

CDDmeasure = e1 + e2 + CDDactual + e3 − e4 − e5. (12)

Hence, the measurement error is

e = e1 + e2 + e3 − e4 − e5 (13)

Note that e1, e2, e3, e4, and e5 are non-identical independent
uniform random variables. The distribution of the sum of
non-identical uniform random variables is given in [8].
For a random variable x which is the sum of n inde-

pendent random variables, uniformly distributed in the
intervals [c j − a j , c j + a j ] for j = 1, 2,. . . , n, a j > 0,
its probability density function is given by equation (14).
In equation (14), the sum is over all 2n vectors of signs

fn(x) =
⎡
⎣ ∑

�ε∈{−1,1}n

⎛
⎝x +

n∑
j=1

(ε j a j − c j )

⎞
⎠

n−1

×sign
⎛
⎝x +

n∑
j=1

(ε j a j − c j )

⎞
⎠ n∏

j=1

ε j

⎤
⎦/

⎡
⎣(n − 1)!2n+1

n∏
j=1

a j

⎤
⎦ , (14)

where

�ε = (ε1, ε2, . . ., εn) ∈ {−1, 1}n i.e., each ε j = ±1, (15)

and

sign(y) =

⎧⎪⎨
⎪⎩

1 if y > 0

0 if y = 0

−1 if y < 0

. (16)

With equations (14)–(16), the distribution of measurement
error in equation (13) can be expressed with n = 5,

c =
[

Tstamp

2
,
Tpc_screen

2
,
Tc2_screen

2
,
−Tstamp

2
,
−Tpc_screen

2

]
,

(17)

a =
[

Tstamp

2
,
Tpc_scr een

2
,
Tc2_s cr een

2
,
Tstamp

2
,
Tpc_screen

2

]
.

(18)

The range of the measurement error is

− Tstamp − Tpc_screen < e < Tstamp

+ Tpc_screen + Tc2_screen. (19)

The expectation of the measurement error is

E (e) = Tc2_screen/2, (20)
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and the variance is the sum of five individual variance

Var (e) = T 2
stamp

6
+ T 2

pc_screen

6
+ T 2

c2_screen

12
. (21)

To verify this error distributionmodel, we simulate the sam-
pling processes involved in Fig. 10 with the typical numbers
in Table 2. We randomly set the sampling starting time of
“timestamp generate”, “PC screen refresh”, “Cellphone1 cap-
ture”, “Cellphone2 display”, and “Webcam capture”. For each
transmitted frame, we also randomly selected a network
delay time associated with it. In one simulation the “Web-
cam” captures 100 times. Given starting time and delay time
of this “transmission”, we can calculate the actual delay time
for this 100 “capturing”. Also, knowing the time on two “cap-
tured frames”, the measured delay time can be calculated.
With actual delay and measured delay of 100 capturing, 100
measurement errors can be obtained. We repeat the simu-
lation 105 times with randomly selected starting time and
delay time. The probability mass function of the total num-
ber of 107 errors is plotted in Fig. 11 with a time resolution
of 1ms. Note that the resolution is 1ms, which makes the
original continuous distribution to a discrete distribution,
so a continuity correction (a 0.5 addition) [9] is applied. We
also plot the density function derived by equation (14), with
n = 5, c , and a in equations (17) and (18). From the figure,
we can see the simulation results and the theoretical results
match very well. The expectation of the measurement error
is 8.5ms, and the standard deviation is about 9.4ms. These
errors are usually acceptable in typical CDD measurement
applications.
From the above error analysis, our measurement is

biased with Tc2_screen/2. So we can subtract it from the
final measurement. To reduce the variance, we can only
reduce the timestamp interval, since Tpc_screen and Tc2_screen
are intrinsic property of PC and Cellphone2. In Fig. 12, we
show the measured error distribution with different Tstamp.
Our error analysis models the capture and displaying

processes as sampling processes. The lower bound and
upper bound of the measurement error are [−Tstamp −
Tpc_screen,Tstamp + Tpc_screen + Tc2_screen]. After adjusting, the
measurement is unbiased.

Fig. 11. Distribution of simulation results and the probability density function
from equation (14).

Fig. 12. Distribution of errors with different Tstamp. For shorter Tstamp, the
variance of errors is smaller.

V . IMPLEMENTAT ION OF THE
MEASUREMENT SYSTEM AND
S IMULAT ION RESULTS

We have fully implemented the delay measurement system
and successfullymeasured theCDDofmany two-way visual
communication applications over various networks.

A) Implementation details
Based on the error analysis discussed in the previous
section, we select 10ms as the Tstamp in our experiments.
Using 10ms as the interval, we can omit the last (1ms)
digit of the timestamp, which can save space. Moreover, less
number of digits can reduce the probability of recognition
error. The associated measurement error is not significant
for typical applications.
We use Bass Generator [10], a commercial QR-code

generator Demo SDK, to encode the system time into a QR-
code timestamp. With the space diversity and color diver-
sity methods, although the multiple-overlapped-timestamp
problem is solved, it could result in some faded QR-code
patterns. In the QR-code recognition, CDD-R first carries
out the binarization for every QR-code pattern. Our thresh-
oldingmethod used in the binarization is based on the Otsu
algorithm [11].
Due to non-uniform lighting, evenwithin one timestamp

pattern, the intensity may vary at different parts, as shown
in Fig. 13(a). In this case, the top part is brighter than the

(a) (b) (c)

Fig. 13. (a) Intensity of pixels within one timestamp may vary due to the
nonuniform lighting, (b) binarized image with one global threshold, and (c)
binarized image with two local thresholds.
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bottom part. Using one global threshold may lose the infor-
mation in the top part; a result is shown in Fig. 13(b). To
overcome this problem, we split one QR-code into two half
parts (top and bottom), and apply local thresholds derived
by the Otsu algorithm. After performing the local binariza-
tion, we combine the two parts into one binary image, as
shown in Fig. 13(c).
After binarization, the QR-code timestamp appearance

is much enhanced. Experimental results show that the
thresholding in the binarization contributes to improve
the recognition accuracy significantly. The binary image is
read using ZXing [12], an open source, multi-format one-
dimensional/two-dimensional barcode reader. The read-
ing accuracy of the QR-code shown on the LCD monitor
reaches 99.7 and the one on theCellphone2 screen is 95.0
in the experiments (see Section V). Given four columns of
QR-codes, CDD-R recognizes all of themfirst. The columns
without QR-code observed are removed. The timestamp
with the latest time value is chosen as the time of the cur-
rent video frame. When no recognition of the QR-code is
successful, the system marks its time as “Invalid”.
A similar recognition process is run on the visual

patterns combining two space and three color diversity.
Three color components of the overlapped timestamps are
extracted. Then the binarization is applied on each compo-
nent. Combined with the space diversity of two, up to six
possible timestamps can be recognized.Among these times-
tamps, the latest timestamp is selected as the time of the
current frame.

B) Simulation results
The computer we used has a 3.1 GHz Intel Core i3-2100
CPU, 4GB of RAM, and a NVIDIA GeForce 7600 GT
graphics card. We use a Dell E2311H 23” widescreen mon-
itor, with a refresh rate of 60Hz. The machine runs the
Windows 7 operating system. In our experiments, we pay
special attention to the accuracy, precision, and the recogni-
tion time of different methods. There are roughly two steps
of the timestamp recognition process: (1) read the pattern
from the frame and (2) recognize the number of this pat-
tern. Suppose there areMtotal received frames, among those
Mreadable frames are read. Among these readable frames,
timestamps on Mcorrect frames are recognized correctly.
Note that a readable timestamp cannot guarantee a cor-
rect timestamp because of possible recognition errors. The
accuracy and precision are defined as follows:

Accuracy = Mcorrect

Mtotal
, (22)

Precision = Mcorrect

Mreadable
. (23)

The Accuracy is the overall recognition accuracy and
the Precision evaluates the effectiveness of the method of
embedding time into a timestamp pattern (e.g. QR-code,
human-readable digital numbers, and special rectangle
visual patterns, as shown in the Section II). The processing
time is the average processing time of all frames.

We tested the timestamps in digits without space diver-
sity or color diversity as in Section IV. The accuracy and
precision for the timestamps on the PC screen are 95.5 and
99.4, respectively, which are good. However, the accuracy
and precision for the timestamps on the Cellphone2 screen
are only 17.2 and 46.9, respectively. It means that among
25 frames, only about 12 frames are read successfully and
only four frames are recognized correctly. The poor result
is due to the multiple-overlapped-timestamp problem. We
also investigated the recognition time.Without applying the
proposed diversity scheme, it takes 30.7ms/frame.
We then experiment the QR-code and the visual patterns

we designed as shown in Fig. 3 with a space diversity of
four. Table 3 shows the results. These results confirm the
effectiveness of our proposed strategy. The precision of the
QR-code reaches 100 and 99.8 for both the PC and Cell-
phone2 screens due to its checksum mechanism and error
correction capability. The results using the visual patterns
in Fig. 5 are also good.
We also test the visual patterns with space diversity of

two+ color diversity of three. The results are shown in
the last column of Table 3. The accuracy and precision are
similar to those using space diversity only. Note that the pre-
cision is slightly worse than w/o color diversity due to the
error in color segmentation, but the main advantage of this
method is that it takes less space and requires less time to
recognize the timestamps.
Table 3 also shows the read time of a frame with a

resolution 720 × 1280. The read time includes the recog-
nition time and the selection time. The system needs to
read two groups of timestamps (one on the PC screen and
the other on the Cellphone2 screen) and select the latest
time (among four columns due to the diversity of four)
for each group separately. The system based on digits in
Fig. 3(a) takes 44.7ms/frame. The system based on the QR-
code takes 55.0ms to process a frame. The system based on
the visual patterns in Fig. 5 without color diversity takes
26.7ms/frame. The system based on the visual patterns in
Fig. 9 with color diversity takes 24.3ms/frame. It should be
noted that we have not tried to optimize the speed of the
code. With optimization, the speed should be able to be

Table 3. Accuracy, precision, and recognition time of timestamps
recognition for one frame (resolution 720 × 1280).

Visual
Visual patterns

Digits QR-code patterns (with color)

Accuracy () Timestamps
on PC

95.6 99.7 99.4 99.4

Timestamps
on phone

55.2 95.0 97.6 94.6

Precision () Timestamps
on PC

97.2 100 99.4 99.4

Timestamps
on phone

72.8 99.8 97.6 94.8

Process time
(ms/frame)

44.7 55.0 26.7 24.3
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(a)

(b)

Fig. 14. CDD of video chat sessions measured with the QR-code. (a) Face-
time application over a WiFi network and (b) Facetime application over a 4|G
network.

further improved. The QR-code takes more time due to its
error correction function.
After recognizing the timestamps, we can perform error

corrections. The timestamps can only go up. Also, for the
timestampsmarked “invalid”, they can be interpolated from
the neighboring correctly recognized timestamps. Since it
is difficult to simulate the network connection between two
cellphones with a simulator, we test our measurement sys-
tem over actualWiFi and 4G networks. Figure 14 shows the
final CDD of video chat sessions using FaceTime over the
campus WiFi network and a 4G network when the session
is established through a stable wireless connection. To show
the resultant figure clearly, we choose a typical video con-
sisting of 500 frames to conduct the experiment. From the
figure, we can clearly see that the delays of all frames in this
example are relatively stable. UnderWiFi network, themin-
imal delay is 160ms, the maximal delay is 280ms, the mean
delay is 214ms, and the standard deviation is about 21ms.
Under the 4G network, the minimal delay is 200ms, the
maximal delay is 340ms, the mean delay is 277ms, and the
standard deviation is about 27ms.

C) Discussion
The wireless network may not be very reliable, which may
have long delay, narrow bandwidth, and packet loss. In this
part, effects of these conditions are discussed as follows:

(1) Long delay

Our proposed model has no assumption that the delay
should be short. In practice, tomeasure a long delay, a larger
number of timestamps can be used which can represent a
large time difference. In our real applications, considering

the delay of our interest is always relatively short, we use a
timestamp which can represent delay time up to 99.99 s and
is long enough to measure the delay of most practical video
chat applications.

(2) Narrow bandwidth and packet loss

Our proposed method does not assume that the receiver
should receive all frames captured by the sender success-
fully. The encodermay discard some frames under a narrow
bandwidth, or some frames may be lost due to the packet
loss situations. However, as long as one frame is transmit-
ted, received, and displayed on the receiver side, the delay
associated with this frame can be measured.

V I . CONCLUS IONS

We developed an approach to measure the CDD of
visual communication applications. The approach does not
require modifications to any video application source code
nor require access to the internal of the existing system.
Also, it does not require the encoder and decoder clocks
to be synchronized. The method is universal so that it can
be used to measure the CDD of any visual communication
applications. It has been successfully implemented in soft-
ware. We investigated the multiple-overlapped-timestamp
problem associated with the proposed approach and pro-
posed a solution with space and color diversity. We analyze
the distribution of the measurement error. Experimental
results confirm the effectiveness of the proposed approach.
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