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Abstract

We study a random field obtained by counting the number of balls containing a given point
when overlapping balls are thrown at random according to a Poisson random measure.
We describe a microscopic process which exhibits multifractional behavior. We are
particularly interested in the local asymptotic self-similarity (LASS) properties of the
field, as well as in its X-ray transform. We obtain two different LASS properties when
considering the asymptotics either in law or in the sense of second-order moments, and
prove a relationship between the LASS behavior of the field and the LASS behavior of its
X-ray transform. These results can be used to model and analyze porous media, images,
or connection networks.
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1. Introduction

The purpose of this paper is the study of a random field obtained by throwing overlapping
balls. Such a field is particularly well adapted for modeling three-dimensional porous or
heterogeneous media. In fact, we consider a collection of balls in R3 whose centers and radii
are chosen at random according to a Poisson random measure on R3 × R+. Equivalently, we
consider a germ–grain model where the germs are Poisson distributed and the grains are balls
of random radius.

The field under study, commonly known as a shot noise, is the mass density defined as the
number of balls containing each point: the more balls covering a given point, the higher is the
mass density at this point. From a mathematical point of view, the dimension-three case does
not yield any specific behavior, so the study will be carried out in dimension d ≥ 1. Let us
quote, for instance, that for d = 2 the number of balls covering each point defines the discretized
gray level of each pixel in a black-and-white picture. A one-dimensional (d = 1) germ–grain
model is also relevant for modeling communications networks: the germs represent the starting
times of the individual ON periods (calls) and the grains represent the ‘half-ball’ intervals of
duration. The process obtained is a counter which, at each time, delivers the number of active
connections in the network.
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We have in mind a microscopic model which yields a macroscopic self-similarity property.
In order to obtain this scaling property, we introduce some power law behavior in the radius
distribution and consider Poisson random measures on Rd × R+ with intensities of the type

ν(dξ, dr) = Cr−h dr dξ, (1.1)

for some h which may depend on the location ξ and some constant C > 0. The origin of the
random-balls model described in this paper can be found in the ‘micropulses’model introduced
by Cioczek-Georges and Mandelbrot [7] with a fixed power h in the intensity measure. The idea
is not new, but appeared eighty years ago whenWicksell [19] introduced a first model, the famous
‘corpuscles’ model, made of random three-dimensional balls defined as above. The aim of his
study was to answer a stereological question. Since then, this kind of model has been extensively
deepened and extended. We refer the reader to [18, Chapters 3 and 6] or [17, Chapter XIII]
for many examples of random models based on Poisson point process, germ–grain, or shot
noise models. Let us also mention two recent papers dealing with similar questions. A one-
dimensional germ–grain model with locations (arrival times) uniformly distributed on the time
axis and interval lengths (call durations) given by a power law was considered by Cohen and
Taqqu in [8]. A mixed moving average was performed that sums the height of connections,
and the so-called Poissonized telecom process was obtained. Also similar is the model recently
studied by Kaj et al. [12]: there the germs were uniformly chosen at random in Rd and the
grains obtained by random dilation of a fixed, bounded set. In contrast with the quoted models,
let us point out that our model is not stationary since we choose a nonstationary intensity
measure (1.1) with a nonconstant power h ≡ h(ξ).

This paper is not only concerned with the presentation of a model for random media; we
also propose two methods of analyzing the random media mass intensity. On the one hand,
self-similarity properties are explored; more precisely, we focus on a parameter that is supposed
to contain tangible information on the structure of the media, the local asymptotic self-similar
index, or LASS index. On the other hand, the action of an X-ray transform on the field is
investigated. This transform is the mathematical interpretation of a radiographic process. These
techniques are inspired by those created for Gaussian fields and are still valid in the Poisson
context. More specifically, we turn to [6], where anisotropic Gaussian fields were analyzed
by performing X-ray transforms and evaluating LASS indices. The fundamental aim of these
methods is to make a three-dimensional parameter directly tractable from X-ray images of the
media.

The notion of local asymptotic self-similarity was introduced in [3] in a Gaussian context
and extended to the non-Gaussian realm in [13] and [4], where a general presentation was
given for fields with stationary increments. The LASS index can also be related to other
parameters of interest, such as roughness index [2] or Hausdorff dimension [1]. In the area of
network modeling the notion of self-similarity, at small or large scales, is also fundamental,
and closely connected to long-range dependence. The usual self-similarity property requires
a scale invariance in distribution, valid for all scales. This is quite restrictive and we will deal
with self-similarity properties that are fulfilled ‘at small scales’ only.

We now introduce a slight refinement of the LASS property of [3].

Definition 1.1. Let X = {X(x) : x ∈ Rd} be a random field and let x0 ∈ Rd . We call the
distribution LASS (FDD-LASS) index of X at the point x0, denoted by Hfdd, the supremum of
α ≥ 0 such that

λ−α(�x0X(λ ·)− E(�x0X(λ ·))) fdd−−→ 0 as λ ↓ 0,
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where �x0X denotes the field of increments at x0,

�x0X(x) = X(x0 + x)−X(x0),

and ‘
fdd−−→’ denotes convergence in finite-dimensional distributions.

Let us remark that convergence in distribution towards the constant 0 is equivalent to
convergence in probability. More precisely, Hfdd is also equal to the supremum of α ≥ 0
such that

λ−α(�x0X(λx)− E(�x0X(λx)))
p−→ 0 as λ ↓ 0, x ∈ Rd .

When H = Hfdd(X, x0) is finite and the finite-dimensional distributions of the centered and
renormalized increments λ−H (�x0X(λ ·)− E(�x0X(λ ·))) converge to the finite-dimensional
distributions of a nonvanishing field as λ ↓ 0, the limit field is called the tangent field at point
x0 (see [9]).

When dealing with real-world data, it is almost impossible to see whether such a limit exists
in distribution. We therefore introduce another asymptotic self-similarity property, which only
uses the second-order moment.

Definition 1.2. Let X = {X(x) : x ∈ Rd} be a random field and let x0 ∈ Rd . We call the
covariance LASS (COV-LASS index) index of X at the point x0, denoted by Hcov(X, x0), the
supremum of α ≥ 0 such that

λ−2α cov(�x0X(λx),�x0X(λx
′)) → 0 as λ ↓ 0, x, x′ ∈ Rd .

By analogy with the situation forHfdd, whenH = Hcov is finite and the covariance function
ofλ−H�x0X(λ ·) converges to a nonvanishing covariance function asλ ↓ 0, the limit covariance
will be called the tangent covariance at point x0.

Note that the above self-similarity indices are equal for Gaussian fields but not in a general
setting. Note also that the existence of a tangent covariance does not imply the existence of the
tangent field, and vice versa. Actually, if Hcov is the COV-LASS index for X at point x0, then
the covariance function of λ−H�x0X(λ ·) converges to 0 as λ ↓ 0, for all H < Hcov. Thus,
the finite-dimensional distributions of its centered version also converge to 0 as λ ↓ 0, and the
FDD-LASS index for X at point x0 – if it exists – satisfies Hfdd ≥ Hcov.

Our main results can be summarized as follows.

• The proposed models provide microscopic descriptions of macroscopic, asymptotically
self-similar fields which look like (multi)fractional Brownian motions, depending on the
involved intensity measure.

• In contrast to the Gaussian case, the covariance LASS index and distribution LASS index
are not equal: the first can be finite while the second is infinite, or they can take different,
finite values.

• The asymptotic distributions are not necessarily Gaussian.

• We obtain explicit formulae that link the LASS indices of a field and the LASS indices
of its X-ray transform. In particular, when inhomogeneity or anisotropy is introduced
into the model, its presence can be inferred from the LASS indices.

The paper is organized as follows. The random-balls model, i.e. the field that counts
the number of balls covering each point, is introduced in Section 2. The intensities of the
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Poisson random measures we will use are prescribed by (1.1) for small radii. A constant power
h ≡ M will yield a field which is asymptotically stationary, isotropic, and (mono)fractional.
A nonconstant power h(ξ)will yield a multifractional model. We also introduce, in Section 2.2,
the X-ray transform. Section 3 is devoted to the scaling properties of the random-balls model
and its X-ray transform. Theorems 3.1 and 3.2 deal with the LASS properties in the respective
cases where h(ξ) is a smooth function and a singular function. We also compare our results to
homogenization results, in Section 3.2. In Section 4 we present some extensions of our model.
The proofs of Theorems 3.1 and 3.2 are detailed in Appendix A.

2. The random-balls model and its X-ray transform

2.1. The random-balls model

As in [12], we want to study the mass distribution generated by a family of balls B(ξj , rj )
with random centers ξj and random radii rj . We assume that the (ξj , rj ) are given by a Poisson
point process with intensity ν(dξ, dr), where ν is a nonnegative, σ -finite measure on Rd ×R+.
Inspired by [7], we assume that the radii of such a random grain model obey a power law.
Following a widespread idea [15], [3], [6], we assume that the exponent of the power law can
depend on the location, ξ , of the center of the ball. We define the field X that provides, at each
point x ∈ Rd , the number of balls B(ξ, r) that contain the point x, namely

X(x) = card{j : x ∈ B(ξj , rj )} =
∑
j

1B(ξj ,rj )(x) =
∫

Rd×R+
1B(ξ,r)(x)N(dξ, dr),

where N is a Poisson measure with intensity ν such that∫
Rd×R+

1B(ξ,r)(x)ν(dξ, dr) < ∞.

We consider intensity measures ν satisfying the following assumptions.

• ν(dξ, dr) = F(ξ, r) dξ dr for some nonnegative, measurable function F on Rd × R+.

• There exists a real function h, defined almost everywhere (a.e.) on Rd , such that for all
ε > 0 there exists a δ > 0 such that, for a.e. (ξ, r) ∈ Rd × R+,

|F(ξ, r)− r−h(ξ)| ≤ εr−h(ξ) (2.1)

for all r ≤ δ.

• There exists an M < d + 1 such that

h(ξ) ≤ M a.e. and F(ξ, r) ≤ Cr−M a.e. (2.2)

We call the fieldX = {X(x) : x ∈ Rd} the random-balls model with indexh. Note thatX admits
moments of all order. In particular, its mean value and its covariance function are respectively
given by

E(X(x)) =
∫

Rd×R+
1B(ξ,r)(x)ν(dξ, dr),

cov(X(x),X(x′)) =
∫

Rd×R+
1B(ξ,r)(x) 1B(ξ,r)(x′)ν(dξ, dr).
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2.2. X-ray transform

One motivation for this paper is to describe, model, and analyze heterogeneous media. We
have in mind the possibility of studying their three-dimensional behavior using X-ray images,
by which means it will be possible to perform an analysis of the media without entering it (a
noninvasive method). In this section the mathematical tool associated with X-ray images is
presented and tested on the random-balls model. We assume that d ≥ 2.

Following the usual notation (see [16, p. 13], for instance), the X-ray transform of a function
f ∈ L1(Rd) in the direction α ∈ Sd−1 = {x ∈ Rd : ‖x‖ = 1} is given by 〈α〉⊥ � y �→∫

R
f (y +pα) dp, where 〈α〉⊥ := {x ∈ Rd : x · α = 0} and ‘·’ denotes the usual scalar product

on Rd . We are interested in defining a kind of X-ray transform for the random-balls model. We
will work with the windowed X-ray transform defined in terms of a fixed window ρ. We assume
that ρ is a continuous function on R with fast decay, i.e. for allN ∈ N, |ρ(p)| ≤ CN(1+|p|)−N
for all p ∈ R and some constant CN . For any function f ∈ L1(Rd) with compact support, we
define the windowed X-ray transform of f in the direction α to be the map

〈α〉⊥ � y �→ Pαf (y) :=
∫

R

f (y + pα)ρ(p) dp.

It is straightforward to see that (ξ, r) �→ Pα 1B(ξ,r)(y) is integrable with respect to ν(dξ, dr)
for each y ∈ 〈α〉⊥. Thus, we can define the windowed X-ray transform of X in the direction α
to be the field given by

PαX(y) :=
∫

Rd×R+
Pα 1B(ξ,r)(y)N(dξ, dr), y ∈ 〈α〉⊥. (2.3)

Note that, for y ∈ 〈α〉⊥, by the Cauchy–Schwarz inequality, Pα 1B(ξ,r)(y) belongs to
L2(Rd × R+, ν(dξ, dr)), so PαX admits a second-order moment.

3. Scaling properties

3.1. Self-similarity properties

In this section we study the LASS properties of a random-balls model with index function
h and, simultaneously, the LASS properties of its X-ray transform. We are looking for links
between the LASS indices and the index h of the random-balls model.

When dealing with the COV-LASS properties, we have to study, in particular, the asymptotic
behavior of var(�x0X(λx)) as λ ↓ 0, for all x0, x ∈ Rd . By a change of variables,

var(�x0X(λx)) =
∫

Rd×R+
λd+1(1B(ξ,r)(x)− 1B(ξ,r)(0))2F(x0 + λξ, λr) dξ dr. (3.1)

Since we want to replace F(x0 + λξ, λr) by (λr)−h(x0+λξ), it appears that further assumptions
on h have to be made. We are mainly interested in two kinds of index functions. The first
kind are smooth on Rd , and are linked with the multifractional Brownian motion [15], [3]
obtained by substituting the Hurst parameterH by a Hölder regular function on the state space.
The second class is of functions h(ξ) that depend only on the direction of ξ , which induces a
singularity at the point 0. We consider a Hölder regular function on the sphere extended onto
Rd \ {0} by taking h(ξ) = h(ξ/‖ξ‖), i.e. h(λξ) = h(ξ) for all λ ∈ R \ {0}. This follows
the point of view taken in [6] to obtain anisotropic generalizations of the fractional Brownian
motion.

Let us recall the definition of a β-Hölder function.
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Definition 3.1. Let (E, dE) be a metric space and let β ∈ (0, 1]. A function f : E → R is
called β-Hölder on E if there exists a C > 0 such that, for any x, y ∈ E with dE(x, y) ≤ 1,

|f (x)− f (y)| ≤ CdE(x, y)
β.

3.1.1. The smooth case. Let us first study the case of a β-Hölder function on Rd . By continuity
of h around x0 ∈ Rd , it intuitively follows from (3.1) that the COV-LASS index of X at point
x0 is equal to (d + 1 − h(x0))/2. Moreover, similar arguments can be applied to PαX, the
X-ray transform of X with the window ρ, given by (2.3). The COV-LASS index is equal to
(d + 2 −M(α, y0))/2, with

M(α, y0) := sup{h(y0 + tα) : t ∈ supp ρ},
where supp ρ denotes the support of ρ. This suggests the following theorem, whose detailed
proof is given in Section A.1. We denote by meas(·) the Lebesgue measure.

Theorem 3.1. Let d ≥ 2. Let h be a β-Hölder function on Rd such that d < h < d+ 1. LetX
be a random-balls model with index h and let PαX be its windowed X-ray transform in the
direction α ∈ Sd−1. The following statements then hold.

• At any point x0 ∈ Rd ,

Hcov(X, x0) = d + 1 − h(x0)

2
and Hfdd(X, x0) ≥ 2Hcov(X, x0).

Moreover, the covariance of λ−Hcov(X,x0)�x0X(λ ·) converges, up to a multiplicative
constant, to the covariance of a fractional Brownian motion of index Hcov(X, x0).

• At any point y0 ∈ 〈α〉⊥,

Hcov(PαX, y0) = Hfdd(PαX, y0) = d + 2 −M(α, y0)

2
.

Moreover, when meas({t ∈ supp ρ : h(y0 + tα) = M(α, y0)}) > 0, the covariance and
the finite-dimensional distributions of

λ−Hcov(PαX,y0)(�y0(PαX)(λ ·)− E(�y0(PαX)(λ ·)))
respectively converge, up to a multiplicative constant, to those of a fractional Brownian
motion of index Hcov(PαX, y0).

Remark 3.1. (Concerning the first point of Theorem 3.1.) First note that the first point of
Theorem 3.1 is still true in the one-dimensional case (d = 1). This result describes the small-
scale behavior of the number of active connections in a communications network: the covariance
is locally asymptotically self-similar and behaves like a fractional Brownian motion covariance.
More generally, the same is observed in the multidimensional case. Hence, the random-balls
model provides a microscopic description of random media which behave, up to the second-
order moment, like multifractional Brownian motion.

Concerning the FDD-LASS property, let us point out that Hfdd �= Hcov. Moreover, it is
straightforward to see that Hfdd = ∞ when F(ξ, r) = r−M 1(0,1)(r).
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Remark 3.2. (Concerning the second point of Theorem 3.1.) From a practical point of view, the
correspondence between the COV-LASS index of X and the COV-LASS index of PαX allows
for the estimation of the three-dimensional LASS index through the analysis of radiographic
images. However, note that only the suprema of h along straight lines in the support of ρ can
be recovered.

Remark 3.3. (Concerning the case in which h = M is constant.) When h = M is constant,
there is a one-to-one correspondence between the COV-LASS indices at any points:

Hcov(PαX, y0) = d + 2 −M

2
= Hcov(X, x0)+ 1

2
.

Note that the same link between the LASS indices was obtained in [6] for Gaussian fields of
fractional Brownian type.

3.1.2. The singular case. Now let us assume h to be an even β-Hölder function on the sphere
extended onto Rd \ {0} by taking h(ξ) = h(ξ/‖ξ‖) and choosing any value for h(0). Let
us remark that, unless h is constant, there is no way to extend h continuously at the point 0.
To distinguish the random-balls model associated with such a singular index h from the one
associated with a smooth h, we will call it the singular random-balls model. Let x0 ∈ Rd \ {0},
let ξ ∈ Rd , and note that∥∥∥∥ x0 + ξ

‖x0 + ξ‖ − x0

‖x0‖
∥∥∥∥ ≤ 2

‖ξ‖
‖x0‖ for ‖ξ‖ ≤ ‖x0‖

2
.

Thus, the β-Hölder assumption on the sphere and the boundedness of h imply that there exists
a C > 0 such that

|h(x0 + ξ)− h(x0)| ≤ C‖x0‖−β‖ξ‖β.
Thus, given that x0 is not 0, the LASS properties of the singular random-balls model at x0 are

the same as those of the smooth model, given in Theorem 3.1. The next theorem will therefore
only deal with the LASS properties around 0.

Theorem 3.2. Let h be an even, nonconstant β-Hölder function on Sd−1 such that d < h ≤
M = maxSd−1 h < d+ 1. LetX be the singular random-balls model with index h and let PαX
be its X-ray transform in the direction α ∈ Sd−1. The following statements then hold.

• For H = (d + 1 −M)/2,

Hcov(X, 0) = H and Hfdd(X, 0) = 2H.

When meas({h = M}) > 0, the covariance of λ−H�0X(λ ·) converges to

�H (x, x
′) =

∫
Rd×R+

1{h(ξ)=d+1−2H } ψ(x, ξ, r)ψ(x′, ξ, r)r−d−1+2H dξ dr,

x, x′ ∈ Rd ,

while the finite-dimensional distributions of λ−2H (�0X(λ ·) − E(�0X(λ ·))) converge
to the deterministic field

ZH(x) = −‖x‖2H
∫

Rd×R+
1{h(ξ)=d+1−2H } ψ

(
x

‖x‖ , ξ, r
)
r−d−1+2H dξ dr,

x ∈ Rd .
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Here ψ is given by

ψ(x, ξ, r) = 1B(ξ,r)(x)− 1B(ξ,r)(0) = 1{‖x−ξ‖<r≤‖ξ‖} − 1{‖ξ‖<r≤‖x−ξ‖} . (3.2)

• Hcov(PαX, 0) = Hfdd(PαX, 0) = (d + 2 − h(α)/2). Moreover, the covariance and
the finite-dimensional distributions ofλ−Hcov(PαX,0)(�0(PαX)(λ ·)−E(�0(PαX)(λ ·)))
respectively converge, up to a multiplicative constant, to those of a fractional Brownian
motion of index Hcov(PαX, 0).

Let us remark that, for the singular random-balls model, there exist both a COV-LASS index
and a FDD-LASS index, and that the latter equals twice the former. This multiplicative factor
is typical given the Poisson structure, since for Poisson random variables the variance equals
the mean.

Moreover, when {h = M} has positive measure, the tangent field at 0 is deterministic and
nonzero, and hence does not have stationary increments. This result is linked to a result of
Falconer [9] which states that at almost all points the tangent field – if it exists – must have
stationary increments. The point 0 therefore appears as an ‘exceptional point’ (see [14] for
other examples of exceptional points).

Finally, let us point out that the tangent field of the X-ray transform, when it exists, is
Gaussian – perhaps even fractional Brownian motion – whereas the tangent field of the singular
random-balls model is deterministic. This can justify, from a mathematical point of view, the
modeling of radiographic images using fractional Brownian motion even when the media under
study are far from being of this type (see [10] for an experimental study).

3.2. Comparison with homogenization results

There are different ways to consider self-similarity at small scales, depending on which part
of the signal is concerned with the scaling. Instead of performing a scaling on the increments
lag, as done in Section 3.1, we act on the radius of the balls as follows. Suppose we zoom in and
consider the balls B(ξ, r/ε) instead of the balls B(ξ, r), where the (ξ, r) are randomly chosen
by the Poisson random measure N and we let ε decrease to 0. Denoting by Xε the associated
field

Xε(x) =
∫

Rd×R+
1B(ξ,r/ε)(x)N(dξ, dr), x ∈ Rd ,

we look for normalization terms n(x0) such that εn(x0)(�x0X
ε − E(�x0X

ε)) converges in
distribution to a nondegenerate field. Note that the field Xε can also be considered to be a
random-balls model associated with a Poisson measure with intensity

νε(dξ, dr) = εF (ξ, εr) dξ dr.

Actually, this procedure is nothing but homogenization and is close to the thermodynamical
limit investigated in [7] and the scaling limit in [11] or [12]. Computations similar to those for
the previous theorems yield the following results.

• If d < M := maxSd−1 h < d + 1 and the set {ξ : h(ξ) = M} has positive measure, then
the normalization term n(x0) is equal to (M − 1)/2 for all x0 ∈ Rd .

• Moreover, if h = M is constant, then the limit field is a fractional Brownian motion with
index (d + 1 −M)/2 (see [5] for similar ideas).
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4. Conclusion and more general setting

We have proposed to model, from a microscopic point of view, the mass intensity of porous
media or the number of connected customers in a network using a non-Gaussian field that
exhibits macroscopic (multi)fractional behavior. The rich structure of Poisson point processes
allows us to reach this goal and also to perform explicit computations, as in the Gaussian
case. In order to keep the model as intuitively clear as possible, we have not introduced more
general fields. The Poisson structure can obviously be exploited further by considering
more general integrators with respect to the Poisson measure. Replacing the ball B(ξ, r)
by a more general set will, for instance, allow one to model granular media with nonspherical
grains. One can also consider a general function f (· − ξ, r) instead of the indicator function
1B(ξ,r)(·), which leads to a nonstationary shot noise process. In order to obtain self-similarity
properties under the power law assumption on the intensity measure, one has to consider an
integrator f (· − ξ, r) that is asymptotically homogeneous. Another model for porous media
could be built up from a collection of random balls which no longer correspond to grains but
to pores or bubbles. This way, one will obtain a {0, 1}-valued field.

Appendix A. Proofs of the LASS properties

In this section we will give rigorous proofs for the LASS properties of the random-balls
models and their windowed X-ray transforms. We will first state a preliminary lemma which
allows us to replace the intensity measure by its equivalent when the radius decreases to 0. Note
that assumption (2.1) holds uniformly in ξ ∈ Rd . However, with smoothness assumptions on
the function h on Rd , we want to replaceF(x0 +λξ, λr) not by (λr)−h(x0+λξ) but by (λr)−h(x0).
In fact,

|r−h(x0+ξ) − r−h(x0)| ≤ Ce‖ξ‖β |ln(r)|r−h(x0)

holds for small r and ξ ∈ Rd such that ‖ξ‖β |ln(r)| ≤ 1, using the β-Hölder assumption on h.
We state the next lemma in this general setting.

Lemma A.1. Let d ≥ 1 and β ∈ (0, 1]. Let F , F0, and F∞ be nonnegative functions on
Rd × R+. Let us assume that, for all ε > 0, there exists a δ > 0 such that

|F(ξ, r)− F0(ξ, r)| ≤ εF0(ξ, r)

for almost every (ξ, r) in Rd × R+ such that r ≤ δ and ‖ξ‖β |ln(r)| ≤ δ. Let us also assume
that F and F0 are bounded from above by F∞, which satisfies

F∞(ξ, r) ≤ Cr−M a.e. (A.1)

for some M ∈ (d, d + 1).
Let (fλ) be a family of functions on Rd ×R+ bounded from above by a nonnegative function

f∞ such that, for some q0 and q1, q0 < M < q1,
∫

Rd

f∞(ξ, r) dξ ≤ Cmin(rq1−1, rq0−1) a.e. (A.2)

and, for all sufficiently large A > 0,
∫

‖ξ‖>A

∫
R+
f∞(ξ, r)r−M dr ≤ CA−(M−d). (A.3)

https://doi.org/10.1017/S000186780000135X Published online by Cambridge University Press

https://doi.org/10.1017/S000186780000135X


862 • SGSA H. BIERMÉ AND A. ESTRADE

Then, for any q such that max(q0, d) < q < M and any ε > 0, there exists a δ0 > 0 such that

∣∣∣∣
∫

Rd×R+
fλ(ξ, r)F (λξ, λr) dξ dr −

∫
Rd×R+

fλ(ξ, r)F0(λξ, λr) dξ dr

∣∣∣∣
≤ ε

∫
Rd×R+

|fλ(ξ, r)|F0(λξ, λr) dξ dr + Cλ−q

for λ ≤ δ0.

Proof. Let us choose an s ∈ (0, 1) and an n ∈ N with n �= 0, and let us remark that, for
‖ξ‖ ≤ λ−s and r ∈ (λn, δλ−1),

‖λξ‖β |ln(λr)| ≤ nλβ(1−s)|ln(λ)|.
Therefore, for ε > 0, we can choose λ small enough that

∣∣∣∣
∫
B(0,λ−s )×(λn,δλ−1)

fλ(ξ, r)(F (λξ, λr)− F0(λξ, λr)) dξ dr

∣∣∣∣
≤ ε

∫
Rd×R+

|fλ(ξ, r)|F0(λξ, λr) dξ dr.

Moreover,∣∣∣∣
∫

‖ξ‖≥λ−s

∫
(0,δλ−1)

fλ(ξ, r)F (λξ, λr) dξ dr

∣∣∣∣ ≤ Cλ−M
∫

‖ξ‖≥λ−s

∫
R+
f∞(ξ, r)r−M dξ dr

≤ Cλ−M−s(d−M)

by (A.1) and (A.3). On the other hand,
∣∣∣∣
∫
(0,λn)

∫
Rd

fλ(ξ, r)F (λξ, λr) dξ dr

∣∣∣∣ ≤ Cλ−M
∫
(0,λn)

rq1−M−1 dr

≤ Cλ−M+n(q1−M)

by (A.1) and (A.2), since M < q1. Finally,
∣∣∣∣
∫
(δλ−1,∞)

∫
Rd

fλ(ξ, r)F (λξ, λr) dξ dr

∣∣∣∣ ≤ Cλ−M
∫
(δλ−1,1)

rq0−M−1 dr

≤ Cδq0−Mλ−q0

by (A.1) and (A.2), since M > q0.
Since the same upper bounds are valid for F0, it is sufficient to take s = (M − q)/(M − d)

and n > (M − q)/(q1 −M) to complete the proof.

The following corollary will play the role of Lebesgue’s theorem to ensure convergence of
the integrals.

Corollary A.1. We make the assumptions of Lemma A.1. Let us assume, moreover, that there
exist a real number H ≥ M and two functions, f0 and F 0

0 , such that, for almost all (ξ, r) ∈
Rd × R+,

λHfλ(ξ, r)F0(λξ, λr) → f0(ξ, r)F
0
0 (ξ, r) as λ ↓ 0.
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Then

lim
λ↓0

∫
Rd×R+

λHfλ(ξ, r)F (λξ, λr) dξ dr =
∫

Rd×R+
f0(ξ, r)F

0
0 (ξ, r) dξ dr.

Proof. Let ε > 0. From Lemma A.1, there exists a δ0 > 0 such that, for λ ≤ δ0,

∣∣∣∣
∫

Rd×R+
λHfλ(ξ, r)F (λξ, λr) dξ dr −

∫
Rd×R+

λHfλ(ξ, r)F0(λξ, λr) dξ dr

∣∣∣∣
≤ ε

∫
Rd×R+

λH |fλ(ξ, r)|F0(λξ, λr) dξ dr + CλH−q .

Moreover, by (A.1),

λH |fλ(ξ, r)|F0(λξ, λr) ≤ CλH−Mf∞(ξ, r)r−M

with f∞(ξ, r)r−M ∈ L1(Rd × R+) according to (A.2). Lebesgue’s theorem then implies that

lim
λ↓0

∫
Rd×R+

λHfλ(ξ, r)F0(λξ, λr) dξ dr =
∫

Rd×R+
f0(ξ, r)F

0
0 (ξ, r) dξ dr,

which yields the result.

A.1. Proof of Theorem 3.1

Let us first consider the COV-LASS property of the random-balls model. Let x0 ∈ Rd . For
H ∈ (0, 1) and λ > 0, let us write �Hλ (x0, ·) for the covariance function of λ−H�x0X(λ ·). By
the same change of variables used to obtain (3.1), for x, x′ ∈ Rd , �Hλ (x0, x, x

′) is equal to

∫
Rd×R+

λ−2H+d+1ψ(λx, λξ, λr)ψ(λx′, λξ, λr)F (x0 + λξ, λr) dξ dr,

withψ , given by (3.2), satisfyingψ(λx, λξ, λr) = ψ(x, ξ, r). In order to apply Corollary A.1,
let us check that ψ satisfies assumptions (A.2) and (A.3) of Lemma A.1.

Lemma A.2. Let M ∈ (d, d + 1). There exists a constant CM ∈ (0,∞) such that, for all
p ∈ (0,∞) and x ∈ Rd ,

∫
Rd×R+

|ψ(x, ξ, r)|pr−M dξ dr = CM‖x‖d+1−M,

with ∫
Rd

|ψ(x, ξ, r)|p dξ ≤ C(x)min(rd , rd−1) (A.4)

and, for A > 2‖x‖,

∫
‖ξ‖>A

∫
R+

|ψ(x, ξ, r)|pr−M dξ dr ≤ 2M−d

M − d
C(x)A−(M−d), (A.5)

where C(x) is a positive constant that depends on x.
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Proof. Note that |ψ(x, ξ, r)|p = |ψ(x, ξ, r)| = 1{‖x−ξ‖<r≤‖ξ‖} + 1{‖ξ‖<r≤‖x−ξ‖}. Hence,
for all x, ξ ∈ Rd , the integral

∫
R+ |ψ(x, ξ, r)|pr−Mdr is equal to

1

M − 1
(1{‖ξ‖<‖x−ξ‖} − 1{‖x−ξ‖<‖ξ‖})(‖ξ‖−M+1 − ‖x − ξ‖−M+1).

For d < M < d + 1, the function ξ �→ ‖ξ‖−M+1 − ‖x − ξ‖−M+1 is integrable on Rd .
The equality is obtained by rotational invariance and homogeneity.

Let us prove (A.4) and (A.5). It is straightforward to see that
∫

Rd

|ψ(x, ξ, r)|p dξ ≤ C((r + ‖x‖)d − rd),

whence (A.4) holds with C(x) = Cmax(2d , 2d−1d)max(‖x‖, 1). Finally, let us choose
A > 2‖x‖ and note that

∫
‖ξ‖>A

∫
R+

|ψ(x, ξ, r)|pr−M dξ dr ≤
∫ ∞

A/2

∫
Rd

|ψ(x, ξ, r)|pr−M dξ dr;

thus, (A.5) holds as a consequence of (A.4), and Lemma A.2 is proved.

Let us remark that, according to (2.1), (2.2), and the β-Hölder assumption, F(x0 + · , ·)
satisfies the assumptions of Lemma A.1 with F0(ξ, r) = r−h(x0). We first establish that, for
H = (d + 1 − h(x0))/2,

�Hλ (x0, x, x
′) → �H (x, x′) as λ ↓ 0, (A.6)

where

�H (x, x′) =
∫

Rd×R+
ψ(x, ξ, r)ψ(x′, ξ, r)r−d−1+2H dξ dr.

Then we prove that (up to a constant) �H is the covariance function of a fractional Brownian
motion with Hurst index H .

We set fλ(ξ, r) = ψ(λx, λξ, λr)ψ(λx′, λξ, λr) = ψ(x, ξ, r)ψ(x′, ξ, r). Then f∞ = |fλ|
satisfies (A.2) and (A.3) with q0 = d and q1 = d − 1, using the Cauchy–Schwartz inequality,
(A.4), and (A.5). Moreover, for f0 = fλ,

λh(x0)fλ(ξ, r)F0(λξ, λr) → f0(ξ, r)r
−h(x0) as λ ↓ 0. (A.7)

Thus, (A.6) is obtained from Corollary A.1, for −2H + d + 1 = h(x0). It remains to show that
(up to a constant) �H is the covariance function of a fractional Brownian motion with Hurst
index H = (d + 1 − h(x0))/2. A straightforward computation gives

∫
Rd×R+

(ψ(x, ξ, r)− ψ(x′, ξ, r))2r−h(x0) dξ dr =
∫

Rd×R+
ψ(x − x′, ξ, r)2r−h(x0) dξ dr.

This allows us to write �H as �H (x, x′) = 1
2 (v(x) + v(x′) − v(x − x′)), where v(x) =

�H (x, x) = c‖x‖2H according to Lemma A.2.
This proves the covariance part of the first point of Theorem 3.1. Now let us prove the

convergence in finite-dimensional distributions. Let us denote by X̃ = X− E(X) the centered
version ofX. For the sake of notational simplicity, we will only consider the limit in distribution

https://doi.org/10.1017/S000186780000135X Published online by Cambridge University Press

https://doi.org/10.1017/S000186780000135X


Poisson random balls SGSA • 865

of λ−H�x0X̃(λx) for a fixed x in Rd , instead of a random vector (λ−H�x0X̃(λxj ))1≤j≤n.
The general case follows along the same lines. For H > 0, x ∈ Rd , and s ∈ R, let us write

E exp

[
is
�x0X̃(λx)

λH

]
= exp[(H, λ, x0, x, s)],

where (H, λ, x0, x, s) is given by∫
Rd×R+

(exp[isλ−Hψ(λx, ξ − x0, r)] − 1 − isλ−Hψ(λx, ξ − x0, r))F (ξ, r) dξ dr.

By a change of variables, (H, λ, x0, x, s) is equal to∫
Rd×R+

λd+1(exp[isλ−Hψ(x, ξ, r)] − 1 − isλ−Hψ(x, ξ, r))F (x0 + λξ, λr) dξ dr.

Lemma A.2 allows us to split the integral into  = 1 + (−1), where 1(H, λ, x0, x, s)

is equal to ∫
Rd×R+

λd+1(exp[isλ−Hψ(x, ξ, r)] − 1)F (x0 + λξ, λr) dξ dr.

Let us set fλ(ξ, r) = exp[isλ−Hψ(x, ξ, r)] − 1. Using (3.2), we note that

|fλ(ξ, r)| ≤ 2 × 1{ψ(x,ξ,r)�=0} = 2|ψ(x, ξ, r)|.
Then λd+1fλ(ξ, r)F (x0 + λξ, λr) → 0 as λ ↓ 0, since F(ξ, r) ≤ Cr−M with M < d + 1.
Corollary A.1 implies that

lim
λ↓0

1(H, λ, x0, x, t) = 0.

The second term, 2 = −1, is given by

−is
∫

Rd×R+
λd+1−Hψ(x, ξ, r)F (x0 + λξ, λr) dξ dr.

Corollary A.1 with fλ(ξ, r) = ψ(x, ξ, r), F0(ξ, r) = r−h(x0), andH = d + 1 − h(x0) implies
that

lim
λ↓0

2(H, λ, x0, x, s) = −is
∫

Rd×R+
ψ(x, ξ, r)r−h(x0) dξ dr = 0,

since
λd+1−Hfλ(ξ, r)F0(λξ, λr) → ψ(x, ξ, r)r−h(x0) as λ ↓ 0. (A.8)

This proves that Hfdd(X, x0) ≥ H = 2Hcov(X, x0).
Now let us prove the LASS properties of the windowed X-ray transform. As for the model

itself, we begin with the COV-LASS property. Let d ≥ 2 and α ∈ Sd−1. For y0, y ∈ 〈α〉⊥, let
us consider

�y0PαX(y) = PαX(y0 + y)− PαX(y0) =
∫

Rd×R+
Gρ(y, ξ − y0, r)N(dξ, dr),

where

Gρ(y, ξ, r) =
∫

R

ψ(y, ξ − pα, r)ρ(p) dp
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with ψ as given by (3.2). Let us write ξ = γ + tα, with γ ∈ 〈α〉⊥ and t ∈ R, and denote
by ρt the window obtained by translation of t , namely ρt (p) = ρ(t + p). By a change of
variable, Gρ(y, ξ, r) = Gρt (y, γ, r). Let us denote by KH

λ (y0, ·) the covariance function of
λ−H�y0PαX(λ ·) for H ∈ (0, 1) and y0 ∈ 〈α〉⊥. Then

KH
λ (y0, y, y

′) =
∫

〈α〉⊥×R×R+
λ−2HGρt (λy, γ−y0, r)Gρt (λy

′, γ−y0, r)F (γ+tα, r) dγ dt dr

for y, y′ ∈ 〈α〉⊥. Let us remark that Gρt (λy, λγ, λr) = λGρt (λ ·)(y, γ, r) by a change of
variables. Thus, KH

λ (y0, y, y
′) is equal to

∫
〈α〉⊥×R×R+

λ−2H+d+2Gρt (λ ·)(y, γ, r)Gρt (λ ·)(y′, γ, r)F (y0 + tα + λγ, λr) dγ dt dr,

which can be written as∫
R×〈α〉⊥×R×R+

λ−2H+d+2ψ(y, γ − pα, r)ρt (λp)

×Gρt (λ ·)(y′, γ, r)F (y0 + tα + λγ, λr) dp dγ dt dr.

Let us set t ′ = t + λp and ξ = γ − pα ∈ Rd ∼= 〈α〉⊥ × R. In this notation, we can write
KH
λ (y0, y, y

′) as
∫

Rd×R+×R

λ−2H+d+2ψ(y, ξ, r)Gρt ′ (λ ·)(y′, ξ, r)F (y0 + t ′α + λξ, λr)ρ(t ′) dξ dr dt ′.

In order to apply Lemma A.1 and Corollary A.1, let us check assumptions (A.2) and (A.3) for

fλ(ξ, r) = ψ(y, ξ, r)Gρt ′ (λ ·)(y′, ξ, r). (A.9)

We remark that, in the special case where ρ ≡ 1, writingG instead ofG1, a simple computation
gives

G(y, γ, r) ≡ G1(y, γ, r) = (r2 − ‖y − γ ‖2)
1/2
+ − (r2 − ‖γ ‖2)

1/2
+

for y, γ in 〈α〉⊥ and r in R+, where, as usual, t+ := max(0, t) for all t ∈ R.
Lemma A.4 provides upper bounds for the integral ofG(y, ·). We first provide a preliminary

result necessary in its proof.

Lemma A.3. Let n ∈ N with n ≥ 1. There exists a constant C > 0 such that∫
Rn

|(r2 − ‖x − e‖2)
1/2
+ − (r2 − ‖x + e‖2)

1/2
+ |2 dx ≤ Crn ln(2 + r),

for all directions e ∈ Sn−1 and all r > 0.

Proof. For n = 1, we have to prove that there exists a constant C such that, for r > 0,

∫ r+1

0
|(r2 − (x − 1)2)1/2+ − (r2 − (x + 1)2)1/2+ |2 dx ≤ Cr ln(r + 2).

This is an easy consequence of the fact that the function that we integrate is bounded by 4r for
x ∈ [r − 1, r + 1] and by 16r2((r − 1)(r − x + 1))−1 for x ∈ [0, r − 1] when r > 1.

https://doi.org/10.1017/S000186780000135X Published online by Cambridge University Press

https://doi.org/10.1017/S000186780000135X


Poisson random balls SGSA • 867

In the general case (n > 1), we write x = x′ + x′′e with x′ ∈ 〈e〉⊥ and x′′ ∈ R. From the
one-dimensional case, for x′ ∈ 〈e〉⊥,

∫
R

|(r2 − ‖x′‖2 − |x′′ − 1|2)1/2+ − (r2 − ‖x′‖2 − |x′′ + 1|2)1/2+ |2 dx′′

≤ C(r2 − ‖x′‖2)
1/2
+ ln(r + 2).

However, ∫
〈e〉⊥

(r2 − ‖x′‖2)
1/2
+ dx′ = rn|Sn−2|

∫ 1

0
(1 − t2)1/2tn−2 dt.

Finally, we can change the constant C such that∫
Rn

|(r2 − ‖x − e‖2)
1/2
+ − (r2 − ‖x + e‖2)

1/2
+ |2 dx ≤ Crn ln(2 + r),

which concludes the proof.

Lemma A.4. Let M ∈ (d, d + 2). There exists a constant CM ∈ (0,∞) such that, for all
y ∈ 〈α〉⊥, ∫

〈α〉⊥×R+
G(y, γ, r)2r−M dγ dr = CM‖y‖d+2−M (A.10)

with ∫
〈α〉⊥

G(y, γ, r)2 dγ ≤ C(y)min(rd+1, rd−1|ln(r)|). (A.11)

Proof. For y ∈ 〈α〉⊥, on the one hand,∫
〈α〉⊥

G(y, γ, r)2 dγ ≤ r2
∫

〈α〉⊥
(1{‖y−γ ‖<r} + 1{‖γ ‖<r}) dγ ≤ Crd+1. (A.12)

On the other hand, for y �= 0 and r > 0, a change of variables gives

(‖y‖
2

)−(d+1) ∫
〈α〉⊥

G(y, γ, r)2 dγ

=
∫

〈α〉⊥

∣∣∣∣
((

2r

‖y‖
)2

−
∥∥∥∥γ − y

‖y‖
∥∥∥∥

2)1/2

+
−

((
2r

‖y‖
)2

−
∥∥∥∥γ + y

‖y‖
∥∥∥∥

2)1/2

+

∣∣∣∣
2

dγ.

Lemma A.3 provides an upper bound for the last quantity: we obtain
∫

〈α〉⊥
G(y, γ, r)2 dγ ≤ C‖y‖2rd−1 ln

(
2 + 2r

‖y‖
)
. (A.13)

SinceM ∈ (d, d + 1), inequalities (A.12) and (A.13) imply the integrability ofG2. The result,
(A.10), is then obtained by homogeneity as in the proof of Lemma A.2.

Let us verify that fλ, given by (A.9), satisfies the assumptions of Lemma A.1. First let us
remark that |Gρt ′ (λ ·)(y′, ξ, r)| ≤ ‖ρ‖∞|G(y′, γ, r)|, meaning thatfλ is bounded byf∞(ξ, r) =
‖ρ‖∞|ψ(y, ξ, r)G(y′, ξ, r)|, with ‖ρ‖∞ = supt∈R |ρ|. Moreover,

∫
R

|f∞(γ + pα, r)| dp ≤ ‖ρ‖∞|G(y, γ, r)| × |G(y′, γ, r)|,
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and (A.11) implies (A.2) for all q0 > d and q1 = d + 2. In order to prove (A.3), let us note
that, for A > 0 large enough in comparison with y, ψ(y, ξ, r) = 0 for ‖ξ‖ > A and r ≤ A/2.
Hence, ∫

‖ξ‖>A

∫
R+

|f∞(ξ, r)|r−M dξ dr ≤
∫ ∞

A/2

∫
Rd

|f∞(ξ, r)|r−M dr dξ

≤ C(y, y′)Aq0−M

for any q0 ∈ (d,M), according to (A.2). Then Lemma A.1 holds with F0(ξ, r) = r−h(y0+t ′α).
Moreover, for M(α, y0) = sup{h(y0 + tα) : t ∈ supp ρ}, as λ decreases to 0,

λM(α,y0)fλ(ξ, r)F0(λξ, λr)ρ(t
′)

→ ψ(y, ξ, r)G(y′, ξ, r)r−M(α,y0)ρ(t ′)2 1{h(y0+t ′α)=M(α,y0)} .

By Corollary A.1 and then Lebesgue’s theorem, for −2H + d + 2 = M(α, y0),

KH
λ (y0, y, y

′) →
(∫

R

1{h(y0+t ′α)=M(α,y0)} ρ2(t ′) dt ′
)
KH(y, y′) as λ ↓ 0,

where

KH(y, y′) =
∫

〈α〉⊥×R+
G(y, γ, r)G(y′, γ, r)rd+2−2H dγ dr.

The identification of KH as the covariance of a fractional Brownian motion defined on 〈α〉⊥
with Hurst indexH = (d + 2 −M(α, y0))/2 is straightforward following the same arguments
as for the random-balls model itself.

If {t ∈ supp ρ : h(y0 + tα) = M(α, y0)} has positive measure then the proof of the COV-
LASS property is complete. Otherwise, it is sufficient to remark that, following the same lines as
in the proofs of LemmaA.1 and CorollaryA.1, for all ε > 0 andH = (d + 2 −M(α, y0))/2+ε
we can find a C > 0 such that, for small enough λ, a lower bound of KH

λ (y0, y, y) is given by

C

∫
Rd×R+×R

λ−εG(y, γ, r)2r−M(α,y0)+ε 1{h(y0+t ′α)≥M(α,y0)−ε} ρ(t ′)2 dξ dr dt ′.

This proves that Hcov(PαX, y0) ≤ H and yields the result.
Finally, we consider the FDD-LASS property at point y0 for the X-ray transform. As

above, we restrict the computation to the one-dimensional distribution and denote by P̃αX =
PαX − E(PαX) the centered version of PαX. For any y ∈ 〈α〉⊥, s ∈ R, and H ∈ (0, 1), we
write

E exp[isλ−H (P̃αX(y0 + λy)− P̃αX(y0))] = exp[(H, λ, y0, y, s)],
where (H, λ, y0, y, s) is given by∫

Rd×R+
(exp[isλ−HGρ(λy, ξ − y0, r)] − 1 − isλ−HGρ(λy, ξ − y0, r))F (ξ, r) dξ dr.

By the same change of variables as in the covariance part of the proof, (H, λ, y0, y, s) is
equal to ∫

〈α〉⊥×R×R+
λd(exp[isλ1−HGρt (λ ·)(y, γ, r)] − 1 − isλ1−HGρt (λ ·)(y, γ, r))

× F(λγ + tα + y0, λr) dγ dt dr.
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Let us remark that, for δ ∈ [0, 1],
∣∣∣∣exp[isλ1−HGρt (λ ·)(y, γ, r)] − 1 − isλ1−HGρt (λ ·)(y, γ, r)+ s2

2
λ2−2HGρt (λ ·)(y, γ, r)2

∣∣∣∣
≤ C(s)λ(1−H)(2+δ)Gρt (λ ·)(y, γ, r)2+δ.

Following the same kind of computations as in the proof of the COV-LASS property, we replace
fλ, from (A.9), by fλ(ξ, r) = ψ(y, ξ, r)G1+δ

ρt ′ (λ ·)(y, ξ, r). Since |Gρt (λ·)(y, γ, r)| ≤ Cr , by
choosing δ ∈ (0,M − d) for H = (d + 2 −M(α, y0))/2 we obtain

lim
λ↓0

∫
〈α〉⊥×R×R+

λd+2−2H+δ(1−H)Gρt (λ ·)(y, γ, r)2+δF (λγ + tα + y0, λr) dγ dt dr = 0.

Therefore, as λ decreases to 0,

(H, λ, y0, y, s) → −1

2
s2

(∫
R

1{h(y0+t ′α)=M(α,y0)} ρ(t ′)2 dt ′
)
�H (y, y),

which concludes the proof.

A.2. Proof of Theorem 3.2

We now assume that h is given by an even β-Hölder function on the sphere, extended onto
Rd \ {0} by taking h(ξ) = h(ξ/‖ξ‖).

Let us prove the COV-LASS property for the random-balls model at point x0 = 0. We retain
the notation of Section A.1. We have

�Hλ (0, x, x
′) =

∫
Rd×R+

λ−2H+d+1ψ(λx, λξ, λr)ψ(λx′, λξ, λr)F (λξ, λr) dξ dr.

In this case, F satisfies the assumption of Lemma A.1 with F0(ξ, r) = r−h(ξ/‖ξ‖). For M =
maxSd−1 h, (A.7) is replaced by

λMfλ(ξ, r)F0(λξ, λr) → f0(ξ, r)r
−M 1{h(ξ)=M} as λ ↓ 0.

Thus, using Corollary A.1, we find that �Hλ (0, x, x
′) tends to

∫
Rd×R+

1{h(ξ)=M} ψ(x, ξ, r)ψ(x′, ξ, r)r−d−1+2H dξ dr =: �H (x, x′)

for −2H+d+1 = M . Let us remark that�H vanishes if and only if {ξ ∈ Rd \{0} : h(ξ) = M}
has measure 0. In this case, for d + 1 − 2H = M − 2ε with ε ∈ (0, (M − q)/2) and for λ
small enough, Lemma A.1 yields

�Hλ (0, x, x) ≥ λ−ε

2

∫
Rd×(0,1)

1{h(ξ)>M−ε} ψ(x, ξ, r)2r−h(ξ) dξ dr − CλM−2ε−q,

where {ξ ∈ Rd \{0} : h(ξ) > M−ε} has positive measure. The above quantity thus tends to ∞
as λ decreases to 0. Hence, the exponent H = (d + 1 −M)/2 is proved to be the COV-LASS
index for X at x0 = 0.
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Let us now prove the remainder of point one of Theorem 3.2. In the notation of Section A.1,
for H = d + 1 −M = 2Hcov(X, 0), (A.8) is replaced by

λd+1−Hfλ(ξ, r)F0(λξ, λr) → ψ(x, ξ, r)r−M 1{h(ξ)=M} as λ ↓ 0,

since F0(ξ, r) = r−h(ξ/‖ξ‖) in this case. By Corollary A.1, we obtain

lim
λ↓0

(H, λ, 0, x, s) = lim
λ↓0

2(H, λ, 0, x, s)

= −is
∫

Rd×R+
1{h(ξ)=M} ψ(x, ξ, r)r−d−1+H dξ dr.

In the following, we will distinguish between two cases according to whether or not {ξ : h(ξ) =
M} has positive measure.

First assume that {ξ : h(ξ) = M} has positive measure. Hence, the finite-dimensional dis-
tributions of λ−H�0X(λ ·) converge to the finite-dimensional distributions of the deterministic
field

ZH(x) = −
∫

Rd×R+
1{h(ξ)=M} ψ(x, ξ, r)r−d−1+H dξ dr, x ∈ Rd .

It remains to show that ZH is nonzero. This follows from the next lemma since, by continuity
of h, {ξ : h(ξ) �= M} contains a ball.

Lemma A.5. Let M ∈ (d, d + 1). For all Borel sets E ⊂ Rd with positive measure, if
∫

Rd×R+
1E(ξ)ψ(x, ξ, r)r−M dξ dr = 0

for all x ∈ Rd , then the (complement) set Ec does not contain an open ball.

Proof. Let us write IME (x) = ∫
Rd×R+ 1E(ξ)ψ(x, ξ, r)r−M dξ dr for x ∈ Rd . Note that

∫
R+
ψ(x, ξ, r)r−M dξ dr = (M − 1)−1(‖x − ξ‖−M+1 − ‖ξ‖−M+1).

Then, for all Borel sets E ⊂ Rd ,

IME (x) =
∫

Rd

1E(ξ)(M − 1)−1(‖x − ξ‖−M+1 − ‖ξ‖−M+1) dξ.

Let us suppose that we can find an open, nonempty ball B ⊂ Ec. Then IME is smooth on B.
The Laplacian of IME is

�IME (x) = (M + 1 − d)

∫
Rd

1E(ξ)‖x − ξ‖−M−1 dξ

and proves to be positive on B. Thus, IME does not vanish on B. This completes the proof
of Lemma A.5 and, thus, that of Theorem 3.2 in the case where {ξ : h(ξ) = M} has positive
measure.

Now assume that {ξ : h(ξ) = M} is of measure 0. We will establish that the FDD-LASS index
ofX at 0 is still equal to d+1−M . ForH ≤ d+1−M , we find that limλ↓0(H, λ, 0, x, s) = 0.
On the other hand, for H > d + 1 −M , we have to prove that there exists at least one x ∈ Rd
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such that 2(H, λ, 0, x, s) does not tend to 0. First, let us remark that, from Lemma A.1 and
for all x ∈ Rd , 2(H, λ, 0, x, s) is equivalent to −is̃2(H, λ, x) as λ decreases to 0, with

̃2(H, λ, x) =
∫

Rd×R+
λd+1−H−h(ξ)ψ(x, ξ, r)r−h(ξ) dξ dr.

However, ̃2(H, λ, x) may be written as
∫

Rd
(h(ξ)− 1)−1λd+1−H−h(ξ)f (x, ξ) dξ with

f (x, ξ) = ‖x − ξ‖−h(ξ)+1 − ‖ξ‖−h(ξ)+1.

The function f (·, ξ) is smooth on Rd \ {ξ}, and its Laplacian, given by

�f (x, ξ) = (h(ξ)+ 1 − d)(h(ξ)− 1)‖x − ξ‖−h(ξ)−1,

is positive. Approximating the Laplacian by the second-order increments, we can thus find a
C > 0 such that∣∣∣∣

∑
1≤j≤d

f (x+δej , ξ)+f (x−δej , ξ)−2f (x, ξ)− δ
2

2
�f (x, ξ)

∣∣∣∣ ≤ Cδ3‖x−ξ‖−h(ξ)−2 (A.14)

whenever ‖x − ξ‖ �= 0 and δ ≤ 1
2‖x − ξ‖. Let us choose H such that minSd−1 h < d +

1 − H < M , and note that the sets {ξ : h(ξ) < d + 1 − H } and {ξ : h(ξ) ≥ d + 1 − H }
have positive measures. Moreover, by continuity of h, there exists an open, nonempty ball
B ⊂ {ξ : h(ξ) < d + 1 −H }. For every x ∈ Rd , we introduce

̃λ(x) :=
∫

Rd

1{h(ξ)≥d+1−H }(h(ξ)− 1)−1λd+1−H−h(ξ)f (x, ξ) dξ

and write
̃2(H, λ, x) = ̃λ(x)+ (̃2(H, λ, x)− ̃λ(x)).

The second term tends to 0 with λ, by Lebesgue’s theorem. Suppose that ̃λ(x) tends to 0 with
λ for every x in Rd . Then

�
(2)
δ ̃λ(x) :=

∑
1≤j≤d

(̃λ(x + δej )+ ̃λ(x − δej )− 2̃λ(x)) → 0 as λ ↓ 0, (A.15)

for all x ∈ Rd and all δ ∈ R. However, for x ∈ B and a δ > 0 small enough that B(x, δ) ⊂ B,
according to (A.14) we have

�
(2)
δ ̃λ(x) ≥ C(δ)

∫
Rd

1{h(ξ)≥d+1−H }(h(ξ)+ 1 − d)‖x − ξ‖−h(ξ)−1 dξ ≥ 0,

since λd+1−H−h(ξ) 1{h(ξ)≥d+1−H } ≥ 1{h(ξ)≥d+1−H }. Equation (A.15) then implies that
{ξ : h(ξ) ≥ d+ 1 −H } has measure 0, which contradicts the assumption that d+ 1 −H < M .

The proof of the first part of Theorem 3.2 is now complete.
Let us conclude with the proof of the LASS properties of the windowed X-ray transform.

It is sufficient to remark that, for any t �= 0, since h is β-Hölder on Sd−1 with 0 < β ≤ 1, we
obtain

|h(tα + x)− h(α)| ≤ C|t |−β‖x‖β.
We can therefore argue in the same way as we did in proving Theorem 3.1, with y0 = 0,
M(α, y0) = h(α), and 1{h(y0+tα)=M(α,y0)} = 1 a.e.
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