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The illusion of a Kolmogorov
cascade
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The theory of Kolmogorov, enunciated for very large Reynolds numbers, has progressively
been shown to be inoperative for characterizing flows of practical relevance. Yet, in
a recent study by Alves Portela et al. (J. Fluid Mech., vol. 896, 2020, A16), the
turbulence statistics in the very near wake of a square prism at modest Reynolds numbers,
reveal a significant portion of scales complying with a cascade of Kolmogorov type.
By resorting to a generalized version of the Kiarman—Howarth—Kolmogorov equation,
this intriguing observation is shown to be an illusion, hiding a measurable influence of
coherent structures and statistical inhomogeneity. This striking conclusion highlights that
a complete statistical theory of turbulence cannot dispense with the influence of large
scales, possibly coherent, motions.
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1. Introduction

Despite its ubiquity, turbulence continues to challenge mathematicians, physicists and
engineers because of the complex hierarchy of eddies of fluid motion, which interact in a
puzzling manner. Kolmogorov (1941a) was the first to hypothesize that, for asymptotically
large Reynolds numbers, a clear separation is expected between the processes acting at
large, intermediate and dissipative scales. The information conveyed by the large scales
is likely to decline after the first nonlinear interactions so that there should exist a scale
beyond which turbulence becomes universal and therefore locally isotropic. Under the
same assumption of sufficiently large Reynolds numbers, Kolmogorov (19415) carried out
a statistical analysis of the velocity field by considering the turbulent kinetic energy probed
at fixed scale defined as the distance between two points. His analysis showed that, for
locally isotropic turbulence, the energy transfer between scales in the intermediate range
is constant and proportional to the mean energy dissipation rate. This result, known as the
4/5th law, is often considered the only exact (yet asymptotic) theory of turbulence.
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However, the Reynolds numbers achievable in laboratory experiments are far smaller
than would be required for Kolmogorov’s 4/5th law to apply. In such situations scale
separation does not occur. The effect of finite Reynolds number, i.e. the combined
influence of small-scale (viscous) and large-scale effects, has been accounted for in
the generalized Kdrman—Howarth—Kolmogorov equation, which is derived from first
principles without the need to invoke any particular symmetry of the flow (e.g. Danaila
et al. 2001; Hill 2001). Extensive research on this theory in the last three decades (see, e.g.
Qian 1997; Danaila, Anselmet & Antonia 2002; Marati, Casciola & Piva 2004; Antonia
& Burattini 2006; Valente & Vassilicos 2015) has demonstrated the predominant role of
non-stationarity in decaying flows, statistical inhomogeneities, turbulent kinetic energy
production, turbulent/pressure diffusion and the general concept of forcing.

To complicate matters further, the large scales sometimes reveal an identifiable and
regular behaviour related to the type of hydrodynamical instability that has led to their
creation. These are generally referred to as coherent structures (see, for example, Reynolds
& Hussain 1972). They occur within most flows but they remain poorly understood
because coherent motion possesses non-universal characteristics associated with initial
and boundary conditions. Townsend (1990) synthesized this conundrum in the following
terms: ‘at this distance [50’s] it may seem to be nearly the end of purely statistical
approaches before concepts of eddy structure began to assume importance.” Eighty
years since Kolmogorov’s theory open questions still remain such as the way coherent
motion interacts with randomly fluctuating turbulent eddies and how the former can be
incorporated into a statistical theory of turbulence. Does the organized motion influence
the cascade process? Since coherent structures generally emerge from velocity shear, does
the cascade process become sensitive to inhomogeneities? The recent work by Alves
Portela, Papadakis & Vassilicos (2020) sheds new light on these long standing questions
and proves that the effect of coherent motion needs to be explicitly accounted for.

2. Overview

The turbulence community owes a great deal to Reynolds & Hussain (1972) who first
highlighted the dynamical influence of coherent structures or ‘organized waves.” They
came up with the astute idea of decomposing the fluctuating field into mean, coherent and
random components and found that a portion of the energy conveyed by the organized
structures could be transferred to random motion. However, they considered one-point
statistics and thus could not gain insight into the scales affected by the coherent motion.

This issue has been addressed more recently by Thiesset, Antonia & Danaila (2013)
who showed that coherent motion may act to force the cascade between scales. They
found that in contrast with classical decaying turbulence, the transfer of energy in wakes
behind two-dimensional generators was systematically enhanced, and, therefore, closer to
the asymptotic Kolmogorov scaling. This observation was further confirmed by invoking
structure functions conditioned by the phase of the coherent motion (Thiesset, Danaila &
Antonia 2014), which is the two-point extension of the one-point phase-averaged statistics
introduced by Reynolds & Hussain (1972). Within this framework they showed that both
the energy distribution and its transfer at a given scale are modulated (in amplitude)
by the time-periodic dynamics of the coherent motion. Using two-point statistics, they
derived the transport equations for the second-order structure functions of both coherent
and random components of the velocity field to characterise the turbulent cascade process
in the presence of coherent structures. They found that at a fixed location in the flow,
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energy transfer between scales is significantly enhanced when coherent motion is present,
and diminished in its absence.

Alves Portela et al. (2020) apply a similar methodology to derive fully inhomogeneous
and anisotropic Kdrman—Howarth—Kolmogorov equations for the kinetic energy in the
presence of quasi-periodic coherent structures, accounting for inhomogeneities of the
mean flow. The novelty of their approach is to use this theoretical framework to explore
the very near field of the wake behind a prism where the scale/space features remain
largely unknown, in contrast with intermediate and far-field flows. They use direct
numerical simulations (DNS) to calculate the contributions of all processes including
turbulence decay and production, pressure/turbulent-diffusion and the forcing due to
coherent structures.

The total (coherent 4+ random) energy transferred is restored, because all terms are
computed from the first principles. Alves Portela et al. (2020) then discovered that there
exists a reasonable portion of scales which surprisingly comply with the Kolmogorov
constant energy transfer in the cascade. The authors qualify this result as ‘a clearly
non-Kolmogorov yet Kolmogorov sounding [cascade].” Indeed, Kolmogorov’s theory
should not apply for the Reynolds numbers investigated by Alves Portela ef al. (2020)
in the presence of the strong inhomogeneity and anisotropy of the flow. Could coherent
motion and/or inhomogeneity be responsible for this apparent constant energy transfer?
Using the previously introduced triple decomposition for the velocity structure functions,
Alves Portela et al. (2020) showed that the constant total energy transfer hides a
contribution of the forcing associated with the coherent motion. By further decomposing
the total transfer term into an inhomogeneous and homogeneous contribution, they
find that inhomogeneities also contribute directly to the energy transfer in addition to
manifesting themselves through the appearance of additional terms in the generalized
Kéarman-Howarth—Kolmogorov equations.

Impressively, they characterise how energy is transferred from the injection, through the
mean velocity gradients, to the coherent motion and finally to the random fluctuations.
While this general picture is believed to apply to most flows, this is the first time that this
complex process is unravelled in a quantitative way, enabled uniquely by the combination
of theory and DNS. Moreover, the Karman—Howarth—Kolmogorov equation for turbulent
motion in the presence of coherent structures appears to be the most appropriate framework
to quantify the extent and range of scales over which each effect influences the total
energy transfer, including the forcing associated with the coherent motion. The work of
Alves Portela et al. (2020) provides a significant step forward in characterising the effects
of inlet/boundary conditions in a complex, inhomogeneous and anisotropic flow, with
the ultimate aim of predicting them at Reynolds numbers typically encountered in the
laboratory.

3. Future

The work by Alves Portela et al. (2020) opens new avenues of investigation of
the intricate interactions between coherence and turbulence. Will the organized motion
continue to influence the cascade process when the inlet velocity is increased, and/or
when travelling through the intermediate and far field? How are each individual velocity
components and cross-correlations affected? How do different directional components of
energy flux perceive the coherent motion, beyond the circularly averaged transfer term
considered by Alves Portela et al. (2020)? How can this information be used to build
physics-informed predictive tools such as large-eddy simulation models? Answers to these
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open questions may be provided by generalized Kdrmdn—Howarth—Kolmogorov equations
in the presence of periodic forcing.

In addition, the decomposition of the transfer term proposed by Alves Portela et al.
(2020) into homogeneous and inhomogeneous contributions may help to ascertain the
role of statistical inhomogeneity. The question of the uniqueness of such a decomposition,
which is addressed in Alves Portela ef al. (2020), should be further examined.

Finally, it is worth stressing that in some flows, coherent structures do not possess
a periodic signature or multiple periodic motions can be at play (e.g. farms of wind
turbines). In such situations, phase averages are precluded and classical two-point statistics
(correlation and structure functions) may not remain appropriate. One is then likely to
rely on some other statistical tool such as low-pass or band-pass filters, proper orthogonal
decomposition or dynamic mode decomposition, or wavelets to name a few. By pursuing
work in this direction, one should be able to explicitly identify the different processes
(transfer, production, dissipation) in such a new space of scales, flow positions and time.
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