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Abstract
We propose a hierarchical cognitive navigation model (HCNM) to improve the self-learning and self-adaptive abil-
ity of mobile robots in unknown and complex environments. The HCNM model adopts the divide and conquers
approach by dividing the path planning task into different levels of sub-tasks in complex environments and solves
each sub-task in a smaller state subspace to decrease the state space dimensions. The HCNM model imitates animal
asymptotic properties through the study of thermodynamic processes and designs a cognitive learning algorithm to
achieve online optimum search strategies. We prove that the learning algorithm designed ensures that the cognitive
model can converge to the optimal behavior path with probability one. Robot navigation is studied on the basis of
the cognitive process. The experimental results show that the HCNM model has strong adaptability in unknown and
environment, and the navigation path is clearer and the convergence time is better. Among them, the convergence
time of HCNM model is 25 s, which is 86.5% lower than that of HRLM model. The HCNM model studied in this
paper adopts a hierarchical structure, which reduces the learning difficulty and accelerates the learning speed in the
unknown environment.

1. Introduction
The ability to autonomous navigation, in which the robot can learn and accumulate knowledge in real
environments for selecting optimal behavior autonomously, is a prerequisite for mobile robots to per-
form tasks smoothly in all applications [1]. Currently, several excellent methods have been proposed
for autonomous navigation, such as fuzzy logic [2], genetic algorithms [3, 4], random trees [5], and
neural networks [6–8]. However, these methods usually need to assume complete environmental con-
figuration information, which has to be adapted by agents in a large number of practical applications.
Therefore, how to improve the self-learning ability and adaptability of robot navigation in an unknown
environment has become a key technology for scholars to study. In particular, the self-learning abil-
ity and self-adaptability of robots are determined by the intelligence level of a robot’s perception and
response to the environment determines. Cognition and learning ability are the main ways in which
humans and animals acquire knowledge, and it is also a significant sign of their intelligence. Therefore,
many scholars have begun to simulate biological cognition and behavioral learning models in order to
conduct extensive research on mobile robot navigation systems [9–12].

Reinforcement learning algorithm is the optimal strategy to approach the target by interactive learn-
ing by maximizing the cumulative reward of agents in the environment. The algorithm is a model of
“closed-loop learning” paradigm. Reinforcement learning is applied to the learning ability of robots in
unknown environments. At present, reinforcement learning has been widely used in robot autonomous
navigation and has achieved many important results. Xu et al. [13]. proposed a reactive navigation
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method for mobile robots based on reinforcement learning and successfully applied it to the CIT-AVT-
VI mobile robot platform; Wen et al. [14] designed Q-learning obstacle avoidance algorithm based on
KEF-SLAM for NAO robot autonomous walking in unknown environment; Cherroun et al. [15] studied
autonomous navigation based on fuzzy logic and reinforcement learning. Although the reinforcement
learning-based navigation method can successfully navigate autonomously, the reinforcement learning
Q-learning learning information is stored in the Q table and needs to be updated continuously.

In 1938, Skinner first proposed the concept of operational conditional reflection (OCR) and thus cre-
ated the theory of OCR. Referring to Pavlov’ s concept of “reinforcement,” he divided “reinforcement”
into positive reinforcement and negative reinforcement. Positive reinforcement increased the response
probability of organisms to stimuli, and negative reinforcement increased the response of organisms
to eliminate the stimuli. Stimulus produces response, which affects the probability of stimulus, which
is the core of Skinner’s operational conditioned reflex theory [16]. Since the mid-1990s, Heisenberg
et al. have been focusing on the computational theory and model of Skinner’s OCR [17]. Moreover,
Touretzky et al. have further developed the computational model of Skinner’s OCR theory [18]. Later,
many scholars have carried out extensive research on the computational model of operational condi-
tioned reflexes [19–32]. Robots are showing more self-learning ability and self-adaptability, similar to
organisms. Zhang et al. proposed the Cyr-an outstanding representative, which enables biological agents
to learn from the results of previous actions by means of operational conditioned reflexes [19]. Ruan
et al. Have carried out a series of studies on the operational conditioned reflex model [24–32], includ-
ing the design and calculation model based on the operational conditioned reflex mechanism, combined
with probabilistic automata, neural network, and extended Kalman filter. In 2013, Ruan et al. designed
a bionic learning model based on operating conditioned reflex learning automata. When applied to
self-balancing control and autonomous navigation of two-wheeled robots, the results show that robots
can learn autonomously like animals, and their adaptability is better than reinforcement learning. In
2016, Ruan et al. designed Skinner-Ransac algorithm based on Skinner’s operating conditioned reflex
principle and extended Kalman filter, which can simultaneously realize positioning and map creation
(SLATM), and the pose estimation results of slam can meet the needs of mobile robot autonomous nav-
igation. In 2018, Cai Jianxian et al. designed a cognitive development model for autonomous navigation
based on biological cognition and development mechanism. This model can enable robots to simulate
animals to automatically acquire knowledge and accumulate experience from unknown environments
and acquire the skills of autonomous navigation through cognitive development.

Based on the idea of operational conditioned reflex cognitive model and hierarchy proposed by Ruan
et al. [24–32], this paper constructs a cognitive model based on operational conditioned reflex and hier-
archy to solve the self-learning and adaptive problems of mobile robot autonomous navigation system
in unknown complex environment. An operational conditioned reflex cognitive model uses the idea of
dividing and conquering; it divides the navigation tasks of mobile robots in complex environments into
sub-tasks at different levels and solves each sub-task in a small state subspace in order to reduce the
dimension of the state space. A cognitive learning algorithm is designed to simulate the thermodynamic
process and achieve the optimal navigation strategy for an online search. Based on the formation of
cognitive processes, we investigated autonomous path planning processes of mobile robots. The results
show that the hierarchical structure can reduce the learning difficulty and accelerate the learning speed
of mobile robots in unknown and complex environments. At the same time, robots can automatically
acquire knowledge and accumulate knowledge from the environment, like animals. Experience gradually
forms, develops, and perfects the robot’s autonomous path planning skills.

2. Basic principles of hierarchical reinforcement learning
Path planning of mobile robots involves finding an optimal path, which enables the robot to reach the
target point without collision and optimize performance indicators, such as distance, time, and energy
consumption. Distance is the most commonly used criteria. In order to better accomplish this task,
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in the process of reinforcement learning, robots need to perform different actions in order to obtain
more information and experience and to promote higher future returns. On the other hand, they need to
accumulate and execute the current actions with the highest returns according to their own experience.
This is called the tradeoff between exploration and exploitation [33]. Too little exploration hinders the
convergence of the system in regard to the optimal strategy and too much exploration leads to a higher
dimension of the general state space. The size of the state space affects the convergence rate of the bionic
learning system. When the state space is too large, mobile robots can spend a lot of time exploring; the
learning efficiency is consequently low and it is difficult to converge. In order to solve this problem, a
hierarchical reinforcement learning structure is proposed [34]. The aim is to reduce the learning difficulty
of the reinforcement learning systems in a complex environment through hierarchical learning. The core
idea of the hierarchical reinforcement learning method is to use an abstract method to divide the whole
task into different levels of sub-tasks and solve each sub-task in a small state subspace, in order to obtain
reusable sub-task strategies and speed up the solution to the problem.

State space decomposition, temporal abstraction, and state abstraction are commonly used techniques
in hierarchical reinforcement when a robot is learning to achieve hierarchy. The state space decomposi-
tion method divides the state space into several different subspaces and solves the task in the subspace of
lower dimensions. The temporal abstraction principle involves grouping the action space set in order to
realize the execution of multi-step actions in the process of agent reinforcement learning, thus reducing
the consumption of computing resources. The state abstraction method ignores the state space variables
that are not related to a sub-task, which reduces the dimensionality of the state space. Although the
above three methods layer the system with different methods, they also realize the function of reducing
the complexity of the system state space and accelerating the learning speed of the system.

Sequential decision-making problems are usually modeled by Markov Decision Processes (MDP)
[35]. When the execution of action strategies extends from a point in time to continuous time, an MDP
model also extends to a Semi-Markov Decision Processes (SMDP) model. An SMDP model can solve
the problem of learning, which needs to complete action execution in multiple time steps and make up
for the deficiency of reinforcement learning, which only assumes that an action is completed in a single
time step in the framework of the MDP model. The Bellman optimal equation of value function, based
on the SMDP model, is shown in Eq. (1), the Bellman optimal equation of state-action pair function is
shown in Eq. (2), and the Q-learning iteration equation is shown in Eq. (3):

V∗ (s) = max
a∈A

[
R (s, a) +

∑
s′ ,τ

γ τ P
(
s′, τ |s, a

)
V∗ (

s′)] (1)

Q∗ (s, a) = R (s, a) +
∑
s′ ,τ

γ τ P
(
s′, τ |s, a

)
max

a∈A
Q∗ (

s′, a′) (2)

Qk+1 (s, a) = (1 − α) Qk (s, a) + α
[
rt + γ rt+1 + · · · + γ τ−1rt+τ−1 + γ τ max

a∈A
Q∗ (

s′, a′)] (3)

In the formula, τ is the random waiting time, indicating the time interval after the agent executes action
a in state s; P(s′, τ |s, a) is the transition probability from action a in state s to action a after the agent
waits for time τ ; and R(s, a) = E[rt + γ rt+1 + · · · + γ τ rt+τ ] is the corresponding reward value.

HRL problems are often modeled based on the SDMP model. HRL (Hierarchical Reinforcement
Learning) adopts the strategy of divide and conquer; it divides the planning tasks of agents into sub-
tasks at different levels and solves each sub-task in a smaller state subspace, thus realizing the function
of reducing the dimension of the state space.

3. Hierarchical structure cognitive model design
3.1. Structure of the cognitive model
The complexity of the working environment, the size of the state space, and the size of the behavior
space of a mobile robot affect the robot’s learning rate. When the state space is too large, mobile robots

https://doi.org/10.1017/S0263574722001539 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001539


Robotica 693

Figure 1. Hierarchical cognitive model.

will spend a lot of time exploring, resulting in the “dimension disaster” problem; when the behavior
space is too large, mobile robots need to try to learn many times, which makes cognitive model learning
inefficient and difficult to converge to the optimal strategy. So robots need to acquire the ability to learn
in complex and unknown environments.

In view of these practical problems, considering that the path planning task of mobile robots is car-
ried out in an unknown environment with static or dynamic obstacles, the obstacle avoidance problem
for static and dynamic obstacles should be considered in the design of the hierarchical cognitive model.
In this paper, the path planning tasks of mobile robots are divided into three basic sub-tasks: “static
obstacle avoidance” for static obstacles, “dynamic obstacle avoidance” for dynamic obstacles, and “tar-
geting point” motion. Decomposed into small-scale state subspaces, each sub-task is solved in each state
subspace independently. Furthermore, considering that the bionic strategy is a trial-and-error learning
process, the mobile robot performs complex behaviors. Therefore, the complex behavior strategy is
decomposed into a series of simple behavior strategies and independent learning training. The structure
of the hierarchical structure cognitive model of the design is shown in Fig. 1.

In Fig. 1, the HCNM learning model includes two functional layers: sub-task selection and behavior
decomposition. The sub-task selection layer includes three sub-task selection modules, “static obstacle
avoidance,” “dynamic obstacle avoidance,” and “trend target point.” According to the observed environ-
mental state decision output, the corresponding sub-task is selected and the mobile robot is then selected
according to the sub-task. The planning strategy selects the behavior and executes it; the behavior set
of the sub-task selection layer adopts a roughly divided form. According to the selection result of the
sub-task’s behavior, the behavior decomposition layer is further finely divided and the number of layers
of the refined score is determined according to the degree of complexity of the actual behavior.

Therefore, the HCNM learning model is actually composed of multiple single cognitive systems.
If the hierarchical cognitive model is regarded as consisting of seven parts, HCNM = <A, S, �, P,
f , φ, L>, all CNM learning systems share elements {f, φ, L}, and other elements {S, A, �, P} are
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applied to the corresponding CNM learning system, respectively. Assuming that the number of optional
behaviors in the behavior set is r, there are three CNM learning systems: {CNM1, CNM2, CNM3}
for Level 1 (sub-task selection layer) of the HCNM learning model; Level 2 is the first level of the
behavior decomposition layer of the HCNM learning model, and there are 3r CNM learning systems:
{CNM11, . . . , CNM1r, CNM21, . . . , CNM2r, CNM31, . . . , CNM3r}. By analogy, there are 3rs CNM learn-
ing systems for the Level s layer. Through the s layer, the corresponding behavior a is selected and used
as the environment, and new state information s is observed. Based on this, the orientation evaluation
ϕ of the environment is obtained, and the updating L of learning knowledge is completed. In this way,
after many rounds of interactive learning with the environment, our model can make the most optimal
decision.

(1) The symbols in the HCNM learning model are defined as follows:

i. f : The state transition function of the HCNM learning model, f : S(t) × A(t)|P → S(t + 1). It
shows that the state s(t + 1) ∈ S of t + 1 time is determined by the state s(t) ∈ S at time t and
the probabilistic operation α(t)|P ∈ A at time t, which is independent of the state and operation
before t time.

ii. φ: The HCNM learning model orientation mechanism, φ = {φ1, φ2 . . . , φn}, φi ∈ φ, represents
the orientation value of the state si ∈ S, which represents the tendency of the state to update the
probability vector Pi, satisfying: 0 < φi < 1.

iii. L: The operation conditioned reflex learning mechanism of the HCNM learning model, L : (t) →
(t + 1). Update and adjust the probability according to P(t + 1) = L[P(t), φ(t), a(t)].

(2) The elements of the HS-CNM learning models belonging to different CNM learning systems are
as follows:

Level 1: S1, S2, and S3 represent the internal discrete state set of three sub-tasks, respectively: Si′ ={si
′i| i′ = 1, 2, 3, i = 1, 2, · · · , n}, Si′ is a non-empty set composed of all possible discrete states of the

control system, and si
′i ∈ Si′ indicates that the HCNM system is in the first state at a certain time.Ai′

represents the behavior set of Level 1 hierarchy tasks: Ai′ = {αi′j1 |j1 = 1, 2, · · · , r}, αi′ j1 is the j1 operation
of sub-task i′. �i′ represents a set of conditional state-action random mappings for Level 1 sub-tasks. It
means that CNMi′ implements operation αi′j1 ∈ Ai′ according to probability Pi′ under the condition that
the state is si

′i ∈ Si′ . Pi′ denotes the probability vector of the operation behavior set Ai′ , pi′j1 ∈ Pi′ (j1 =
1, . . ., r) and denotes the probability value of the implementation of operation behavior αj1 , satisfying:
0 < pj1 < 1,

∑r
j1=1 pj1 = 1.

Level 2: CNMi′ j1 = {Si′ j1 , Ai′ j1 , �i′ j1 , Pi′ j1}: The output behavior of Level 1 is αi′ j1 as the internal state
set of the CNMi′ j1 learning system in the Level 2 layer: Si′ j1 = {ai′j1}. Ai′ j1 represents the set of opera-
tion behavior of the Level2 level CNM learning system: Ai′j1 = {αi′j1j2

|j2 = 1,2, · · · ,r}. �i′j1 represents
the conditional state of the Level2 level CNM learning system – the random mapping set of opera-
tion behavior: �i′ j1: {ai′ j1 → ai′ j1j2

(Pi′ j1 ), j2 = (1, . . . ,r)}. Pi′j1 denotes the probability vector of operation
behavior set Ai′ j1 and pi′ j1j2

∈ Pi′j1 denotes the probability value of operation behavior set αi′ j1j2
, which

satisfies: 0<pi′ j1j2
<1,

∑r
j2=1 pi′ j1j2

= 1.

The Levels layer CNMi′ j1j2...js−1
= {Si′ j1j2 ...js−1

, Ai′ j1j2 ...js−1
, �i′ j1j2 ...js−1

, Pi′ j1j2 ...js−1
}: The operation behavior

of the Level(s-1) layer is αi′ j1j2...js−2
as the internal state set of the CNM learning system in the Levels

layer: Si′ j1j2 ...js−1
= {ai′ j1j2...js−1

}. Ai′ j1j2 ...js−1
represents the set of operation behaviors of the Levels level CNM

learning system: Ai′ j1j2 ...js−1
= {αj1j2 ...js−1 |js−1 = 1,2, · · · ,r}.

�i′ j1j2 ...js−1
represents the conditional state of the Levels CNM learning system – the random mapping

set of operation behavior �i′ j1j2 ...js−1
: {ai′j1j2 ...js−1

→ ai′ j1 j2 ...js
(Pi′j1j2 ...js−1

), js−1 = (1, . . . ,r)}. Pi′ j1j2 ...js−1
denotes

the probability vector of the operation behavior set Ai′j1j2 ...js−1
and pi′j1j2 ...js−1

∈ Pi′j1j2 ...js−1
denotes the

probability value of implementing the operation behavior αi′ j1j2 ...js−1
, which satisfies: 0<pi′ j1j2 ...js−1

<1,∑3

i′=1

∑r
js−1=1 pi′j1j2 ...js−1

= 1.
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The working process of the HCNM learning model can be briefly summarized as follows: t = 0
time; the state condition signal si first activates the CNM learning system of the Level1 layer to
determine the sub-tasks to be performed. Then, it moves into the behavior decomposition layer and
chooses the refined behavior. The initial probability of behavior selection is the same; that is, pi′ j1 =
1

r

(
pi′ j1 ∈ P, j1 = 1, . . . , r

)
; pi′ j1j2

= 1

r

(
pi′ j1j2

∈ Pi′j1 , j1 = 1, . . . , r, j2 = 1, . . . ,r
)
. According to the prob-

ability vector Pi′ = (pi′1, pi′2, . . . , pi′r), the learning system randomly selects an operation behavior
(assumed to be ai′j1) from the behavior set Ai′ and transfers it to the next layer. Behavior ai′ j1 acts as
the internal state signal of the next layer of the CNM learning system, activates the corresponding
CNMi′j1 learning system, and then, the CNM learning system randomly selects a behavior (assumed to be
ai′j1j2

) from the operation behavior set Ai′ j1 , according to the probability vector Pi′ j1 = [pi′11, pi′2, . . . , pi′r],
and continues to transport it to the next layer. Similar operations range from Level 2 to Level s, and ulti-
mately output behavior ai′j1j2 ...js−1

as a control signal acting on the control system. After several rounds
of trial learning, the optimal decision aoptim

i′ j1j2 ...js
of each sub-task is finally learned.

In order to illustrate the learning process of the HCNM learning model more clearly, the following
definition is given:

Definition 1: Behavior path: From Level 1 to Level s, Sequence ai′ j1 , ai′ j1j2
, . . . , ai′ j1j2...js−1

, which is com-
posed of behaviors selected by the CNM learning system, is defined as a behavior path, expressed in
φi′j1j2 ...js−1

.

Remark 1: Behavior path selection probability: t time defines the behavior path φi′ j1j2...js−1
. The

probability of being selected is qi′ j1j2...js−1
, which satisfies:

qi′ j1j2...js−1
(t) = pi′ j1 (t) pi′ j1j2

(t) . . . pi′ j1j2...js−1
(t) (4)

Definition 2: The orientation values of behavior paths are defined as follows:

ϕi′ j1j2 ...js−1
(t) =

∣∣∣∣eγχ(t) − e−γχ(t)

eγχ(t) + e−γχ(t)

∣∣∣∣ (5)

Among χ (t) = ė(t) + ζe(t) and e(t) = s(t) − sd, sd is the expected state value, when orientation value
ϕi′ j1j2...js−1

(t) is zero, it indicates that learning performance is good and the orientation degree in this state
is high. When orientation value ϕi′j1j2 ...js−1

(t) equals 1, it indicates that learning performance is poor and
the orientation degree in this state is low.

A behavior path is a control strategy. After the behavior path φi′j1j2 ...js−1
acts on the control sys-

tem, it will be fed back to an orientation value ϕi′j1j2 ...js−1
(t) to measure the orientation degree of the

learning system to the behavior path. The learning system adjusts the behavior probability vector
{Pi′j1 , . . . , Pi′ j1j2 ...js−1

} corresponding to the CNM learning system according to the orientation value.
Repeat the above learning process until you find the optimal behavior path φi′j∗1 j∗2 ...j∗s−1

. The optimal
behavior path satisfies the following inequality:

min E
{
ϕi′ j∗1 j∗2 ...j∗N

(t)
}

> max E
{
ϕi′ j1j2 ...js−1

(t)
}

(6)

Among them, ϕi′ j1j2 ...jN
(t) represents other path (non-optimal) orientation values, and

max (|j∗1 − j1|, |j∗2 − j2|, . . . , |j∗s−1 − js−1|) > 0.

3.2. Learning algorithm and convergence proof
3.2.1. Learning algorithm design
In both psychodynamics and biothermodynamics, a cognitive process can be regarded as a thermo-
dynamic process that can be studied thermodynamically. Thermodynamic methods can be used to
study it. Therefore, this paper combines a Monte Carlo-based simulated annealing algorithm to design
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a cognitive learning algorithm. A simulated annealing algorithm is a probabilistic algorithm with an
approximate global optimum. According to the Metropolis criterion, the probability of reaching the
equilibrium of energy in a particle at temperature T is exp (
E)/KB ∗ T . In the equation, E represents
the internal energy of a particle at temperature T , 
E is the variation of energy in a particle, and KB
is the Boltzmann constant.

p
(
αi

′
j1j2 ...js−1

(t) |si (t)
)

= exp

[
ϕi

′
j1j2...js−1

(t + 1) − ϕi
′
j1j2...js−1

(t)

KBT

]
(7)

Furthermore, suppose that the state of t is si(t), the operation behavior αi
′
j1j2 ...js−1

is implemented
and the state transition is t + 1 time state sj(t + 1). According to Skinner’s OCR Theory, if the differ-
ence between the orientation values of state sj(t + 1) and state si(t) is ϕi

′
j1j2 ...js−1

(t + 1) − ϕi
′
j1j2 ...js−1

(t) >

0, the probability p(αi
′
j1j2 ...js−1

(t)|si(t)) of implementing operational behavior αi
′
j1j2...js−1

in state si(t)
tends to increase in later learning and, vice versa, ϕi

′
j1j2 ...js−1

(t + 1) − ϕi
′
j1j2 ...js−1

(t) < 0, the probability
p(αi

′
j1j2...js−1

(t)|si(t)) tends to decrease. Therefore, based on the idea of simulated annealing, the cognitive
learning algorithm is designed as Eq. (8).

p
(
αi

′
j1j2 ...js−1

(t) |si (t)
)

= exp

[
ϕi

′
j1j2...js−1

(t + 1) − ϕi
′
j1j2...js−1

(t)

KBT

]
(8)

When the generated random number δ ∈ [0, 1] is less than p(αi
′
j1j2 ...js−1

(t)|si(t)), the random action
αi

′
j1j2 ...js−1

is chosen, whereas the action with the largest orientation value is selected according to the
strategy. The isometric cooling strategy is adopted to cool the temperature T = λn

T
T0. The temperature

decreases regularly, and the speed of change is slow. In the Equation, T0 represents the initial temperature
and n indicates the total number of iterations. λT is the value between [0,1]; the greater the value of λT ,
the slower the annealing rate.

The implementation of the simulated annealing strategy is as follows:

Step 1: Initialization of initial temperature T and iteration number n;
Step 2: Acquires the state i of the current solution and generates a new state j;
Step 3: The random number δ ∈ [0, 1] is generated, and the probability p of accepting the new solution

j with the current solution i and temperature control parameter T is calculated according to Eq. (4). When
δ < p, accepting the new solution to the current problem is not acceptable.

Step 4: If the end condition is satisfied, the optimal solution is output; otherwise, Step 5 is executed.
Step 5: If each temperature T reaches n times, then according to the annealing strategy, the temper-

ature T is cooled down to Step 1, and the temperature T after cooling is taken as the initial temperature
of this learning; otherwise, the temperature T is changed to Step 2 to continue learning.

At the beginning of learning, the value of temperature T is larger and the probability of choosing a
non-optimal solution is higher. With the increase in learning times and time itself, the value of temper-
ature T becomes smaller and the probability of choosing the optimal solution increases. When T → 0,
the non-optimal solution will not be selected and the global optimal solution will be found.

3.2.2. Proof of convergence of the learning algorithm
Suppose that the optimal path vector corresponding to the optimal path φi′∗ j∗1 j∗2 ...j∗s−1

is: Vi′∗ j∗1 j∗2 ...j∗s−1
(t) =

{vi′∗j∗1 j∗2 ...j∗s−11
(t),vi′∗ j∗1 j∗2 ...j∗s−12

(t), . . . ,vi′∗ j∗1 j∗2 ...j∗s−1r
(t)}.

Lemma 1: If the orientation value of each action in the orientation value vector is calculated by the
reference Eq. (5), the following inequalities are satisfied for the optimal learning system CNMi′∗ j∗1 j∗2 ...j∗s−1

:

E
{

vi′∗ j∗1 j∗2 ...j∗s−1
(t)

}
> E

{
vi′∗ j∗1 j∗2 ...j∗s−2is

(t)
}

(9)

Among them, i′∗ = 1, 2, 3;is, j∗s−1 = 1, 2, . . . , r is �= j∗s−1.
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Proof: In order to establish proof (8), we first give the following definition:

Definition 3: Assuming that the behavior path φi′ j1j2 ...js−1
at time t is selected and the orientation value

of the path ϕi′ j1j2...js−1
is calculated from the feedback information of the system, the current orientation

degree of path φi′ j1j2 ...js−1
is defined as: ui′ j1j2 ...js−1

(t) = ϕi′j1j2 ...js−1
, time t, and the current orientation value

of other paths φi′ ′ i1i2 ...is−1
(∃k, ik �= jk) is defined as:

ui′ ′ i1i2 ...is−1
(t) = ϕi′ ′ i1i2...is−1

(
τi′ ′i1i2 ...is−1

)
(10)

Among them, τi′ ′i1i2 ...is−1
is the nearest time chosen by the path φi′ ′ i1i2 ...is−1

, and ϕi′ ′i1i2 ...is−1
(τi′ ′ i1i2 ...is−1

)
indicates the orientation value of τi′ ′ i1i2 ...is−1

time.

Remark 2: In layer s CNMi′ j1j2 ...js−1
of the HS-CNM learning model, the orientation values of all the

behaviors constitute vectors: Vi′ j1j2...js−1
(t) = {vi′j1j2 ...js−11(t), vi′ j1j2 ...js−12(t), . . . , vi′ j1j2...js−1r(t)}. Each part of

Vj1 j2...js−1 (t) is constructed as follows:
Layer s:

vi′ j1j2 ...js−1
(t) = ui′j1j2 ...js−1

(t) (11)

Layer s−1:

vi′ j1j2...js−1
(t) = max

{
vi′ j1j2 ...js−11 (t) ,vi′ j1j2...js−12 (t) , . . . ,vi′ j1j2...js−1r (t)

}
(12)

According to Eqs. (10) and (11), for the optimal learning system CNMi′∗j∗1 j∗2 ...j∗s−1
at level s, the

orientation value of the internal operation behavior satisfies:

E{vi′∗j∗1 j∗2 ...j∗s−1is
(t)} = E{ui′∗ j∗1 j∗2 ...j∗s−1is

(t)} = E{ϕi′∗ j∗1 j∗2 ...j∗s−1is
(τi′∗ j∗1 j∗2 ...j∗s−1is

)}iN = 1, 2, . . .r (13)

Eq. (13) can be obtained:

E
{

vi′∗ j∗1 j∗2 ...j∗s−1
(t)

}
= E

{
ϕi′∗j∗1 j∗2 ...j∗s−1

(
τi′∗ j∗1 j∗2 ...j∗s−1

)}
> E

{
ϕi′∗j∗1 j∗2 ...j∗s−1is

(
τi′∗j∗1 j∗2 ...j∗s−1is

)}
= E

{
vi′∗ j∗1 j∗2 ...j∗s−1is

(t)
}

(14)
Among them, is = 1,2,. . .,r; is �= j∗s−1.
It can be seen from the cognitive model of the s level that the orientation value of the operation

behavior is satisfied Eq. (8).
Next, we analyze the orientation value of the CNMi′∗ j∗1 j∗2 ...j∗s−2

operation behavior in the s-level optimal
learning system, which can be obtained by Eqs. (8) and (14):

E
{

vi′∗j∗1 j∗2 ...j∗s−2j∗s−1
(t)

}
= max

js−1

E
{

vi′∗j∗1 j∗2 ...j∗s−2j∗s−1
(t)

}
= E

{
vi′∗ j∗1 j∗2 ...j∗s−2j∗s−1

(t)
}

= E
{
ϕi′∗ j∗1 j∗2 ...j∗s−2j∗s−1

(
τi′∗ j∗1 j∗2 ...j∗s−2j∗s−1

)}
(15)

E
{

vi′∗j∗1 j∗2 ...j∗s−2j∗s−2is−1
(t)

}
= max

ls
E

{
vi′∗j∗1 j∗2 ...j∗s−2j∗s−2is−1ls

(t)
}

= E
{

vi′∗ j∗1 j∗2 ...j∗s−2j∗s−2is−1ls
(t)

}

= E
{
ϕi′∗j∗1 j∗2 ...j∗s−2j∗s−2is−1ls

(
τi′∗ j∗1 j∗2 ...j∗s−2j∗s−2is−1ls

)}
(16)

This can be obtained with Eqs. (15) and (16):

E
{

vi′∗ j∗1 j∗2 ...j∗s−2j∗s−1
(t)

}
= E

{
ϕi′∗ j∗1 j∗2 ...j∗s−2j∗s−1

(
τi′∗j∗1 j∗2 ...j∗s−2j∗s−1

)}

> E
{

vi′∗j∗1 j∗2 ...j∗s−2j∗s−2is−1
(t)

}
= E

{
ϕi′∗j∗1 j∗2 ...j∗s−2j∗s−2is−1ls

(
τi′∗ j∗1 j∗2 ...j∗s−2j∗s−2is−1ls

)}
(17)

where, ls, js-1 = 1,2,. . .,r; is 1 = 1,2,. . .,r; is−1 �= j∗s−2.
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Following the same steps, we can obtain the following conclusions:

E
{

vi′∗ j∗1 j∗2 ...j∗s−1j∗s−1
(t)

}
> E

{
vi′∗ j∗1 j∗2 ...j∗s−1is

(t)
}

(18)

where, is-1 = 1,2,. . .,r; is �= j∗s−1, and lemma is proved.

Theorem 1: When the probability of the operation satisfies 0 < pi′j1j2 ...js−1
< 1, the optimal path φi′∗ j∗1 j∗2 ...j∗s−1

is selected according to probability qi′ j1j2 ...js−1
(t) ≈ 1.

It has been proven that the probability of the operation behavior is satisfied: pmin ≤ pi′ j1j2 ...js−1
≤ pmax,

where pmax is close to 1 and pmax is close to 0. From lemma 1, it can be seen that the orientation value
corresponding to the optimal operation behavior is also the largest, so the occurrence probability of the
operation behavior corresponding to the optimal action path is satisfied: limt→∞ pi′∗j∗1 j∗2 ...j∗s−1

= pmax. Then,
the probability corresponding to the optimal action path is satisfied:

limt→∞ qi′∗ j∗1 j∗2 ...j∗s−1
(t) = limt→∞

{
pi′∗ (t) ,pi′∗ j∗1

(t) , . . . , pi′∗ j∗1 j∗2 ...j∗s−1
(t)

}
= limt→∞ pi′∗ (t) limt→∞ pi′∗ j∗1

(t) . . . limt→∞ pi′∗ j∗1 j∗2 ...j∗s−1
(t)

= pmax pmax . . . pmax = (pmax)
s

(19)

This can be obtained with type Eqs. (15) and (16), that Eq. (18) is limt→∞ qi′∗ j∗1 j∗2 ...j∗s−1
(t) ≈ 1, the

theorem is proved.

4. Realization of robot autonomous navigation
4.1. Robot State and Behavior Classification
4.1.1. Sub-task status division
The purpose of the robot path planning is to make the robot reach the target point safely and without
collisions, having departed from the starting point. It is necessary to consider the distance information
of the obstacles, as well as the movement state and the position and distance information of the target
point. These changing pieces of environmental information constitute a large state space, which seriously
affects the learning efficiency of the robot. According to the hierarchical and abstract strategy of the
hierarchical cognitive model, the path planning task of a mobile robot is divided into three basic sub-
tasks S = {S1, S2, S3}: static obstacle avoidance, dynamic obstacle avoidance, and moving toward the
target point. The state space is divided into three small-scale spaces in order to improve the learning
efficiency of the robot.

Assuming that the robot can turn freely in a narrow environment without touching any obstacles, the
radius of rotation of the robot is not considered in the navigation algorithm, and the robot is simplified
to a particle. The relationship between robots, obstacles, and target points is shown in Fig. 2.

The environmental information around the mobile robot is mainly detected by the camera. In order to
simplify the problem, the detection range of the sensor is divided into three areas: left, front, and right.
Thus, the environmental state between the robot and the obstacle can be expressed through distance
information in three directions. In addition, we do not pay attention to the specific location information
and determine the distance of the robot itself and all the obstacles, but rather only to the approximate
distance range and relative position direction of the nearest obstacle. Based on this, we define the state
space of the three sub-tasks.

Definition 4: The static obstacle avoidance task mainly considers the robot moving towards the target
point while avoiding obstacles. Therefore, the minimum distance measurements of static obstacles in
three areas detected by sensors, the angle between the moving direction of the mobile robot and the
direction of target point, and the distance between the mobile robot and the target point are taken as the
input state information of the static obstacle avoidance sub-task module:

S1 = {
dsr_l, dsr_f , dsr_r, dr_tar, θ

}
(20)
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Figure 2. The relationship between robots, obstacles, and target points.

In the Eq. (20), dsr_l is the distance from the left side of the robot to the static obstacle; dsr_f is the
distance between the front and the static obstacles of the robot; dsr_r is the distance from the right side of
the robot to the static obstacle; dr_tar is the distance between robots and target points; and θ is the angle
between the moving direction and the target point of the robot.

The distance from static obstacles in three directions is discretized into N (Near) and F (Far), as
shown in Eq. (21).

dsr_l, dsr_f, dsr_r} =
⎧⎨
⎩

N, ds ≤ min (dsr_l, dsr_f, dsr_r) < dm

F, min (dsr_l, dsr_f, dsr_r) > dm

(21)

ds represents the minimum dangerous distance, when any detection distance is less than ds represents
the mobile robot obstacle avoidance failure. dm represents the maximum safe distance, and the robot can
walk safely at the maximum speed when the detection distance in all directions is greater than dm.

The distance between the robot and the target point is also discretized into N and F, and the angle
between the direction of motion and the target point is discretized into zero and non-zero, {zero, not
zero}.

Definition 5: The dynamic obstacle avoidance task mainly considers avoiding dynamic obstacles while
avoiding collisions with static obstacles. Therefore, the minimum distance measurements of obstacles in
three areas detected by sensors, the moving direction of dynamic obstacles, and the location information
of dynamic obstacles are taken as the input state information of the dynamic obstacle avoidance sub-task
module:

S2 = {
dsr_l, dsr_f , dsr_r, ddr_l, ddr_f , ddr_r, θd

}
(22)

In the Eq. (22), ddr_l is the distance from the left side of the robot to the dynamic obstacle; ddr_f is the
distance from the front of the robot to the dynamic obstacles; ddr_r is the distance from the right side of
the robot to the dynamic obstacles; and θd is the angle between the direction of motion of a robot and
the direction of motion of a moving obstacle.

The distance from the dynamic obstacle in three directions is also discretized into n (Near) and F
(Far) whose form is the same as Eq. (21).

A virtual rectangular coordinate system is established, with the robot as the origin, and the direction
of the robot’s motion and the dynamic obstacle are used as the x-axis, as shown in Fig. 3.

The angle between the robot motion direction and the dynamic obstacle movement direction is
discretized as Eq. (23).

θd =
{

danger, θds ≤ |θd| ≤ π

safe, else
(23)

In Eq. (23), θds represents the minimum risk angle.
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Figure 3. Virtual rectangular coordinate system.

Definition 6: A target-oriented task mainly considers the way in which a robot can move radially towards
a target point along an optimal path. Therefore, the distance between the mobile robot and the target
point, and the angle between the direction of the mobile robot and the direction of the target point are
taken as the input state information of the sub-task module of the target-oriented task:

S3 = {dr_tar, θ} (24)

The form of discretization is the same as in Definition 5.

4.1.2. Sub-task status division
The control variables of the robot are linear speed v and robot motion angle 
θ . In the robot behavior
control structure, the goal of obstacle avoidance and orientation can be achieved by determining the
appropriate v and 
θ . Therefore, vi and 
θ are the behavior a of the robot.

a = {v, 
θ} (25)

When performing path planning tasks, the robot operation as follows:
If the robot is far from the static and dynamic obstacles, then the robot can directly navigate to the

target at its maximum speed and perform the sub-task of moving toward the target.
If there are static obstacles near the robot, the robot tries to move left or right along the nearest

obstacle in the direction of the target; that is, moving along the left or right static obstacles to perform
the static obstacle avoidance task.

If there are dynamic obstacles near the robot, the robot tries to move left or right along the nearest
dynamic obstacle, that is moving along the left or right dynamic obstacle to perform the dynamic obstacle
avoidance task.

Considering that the behavior of the sub-task selection layer is roughly divided, all sub-tasks adopt
the same behavior set A1 = A2 = A3 = {a1, a2, a3}.
Remark 3: The behavior set A of the robot in the sub-task selection layer is:

A1 = A2 = A3 = {a1, a2, a3} (26)

a1: The robot rotates +20◦ and advances 100 mm. a2: The robot rotates −20◦ and advances 100 mm. a3:
The robot advances 200 mm.

+: Clockwise rotation. -:Counterclockwise rotation.
The behavior of the coarse selection of the sub-task selection layer is refined by one level.

Remark 4: The behavior refinement layer set is shown in Table I.
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Table I. Layer thinning behavior set.

Level 1 layer Level 2 layer Explanation
Static obstacle avoidance
A1

{a1, a2, a3}

A11

{a111, a112, a113}
a111: rotate+22◦, advance50 mm;
a112: rotate+15◦, advance100 mm;
a113: rotate+10◦ advance 100 mm

A12

{a121, a122, a123}
a121: rotate−22◦, advance50 mm;
a122: rotate−15◦, advance100 mm;
a123: rotate−10◦, advance100 mm

Dynamic obstacle avoidance
A2

{a1, a2, a3}

A21

{a211, a212, a213}
A211: rotate+25◦, advance50 mm;
a212: rotate+15◦, advance50 mm;
A213: rotate+10◦, advance50 mm

A22

{a221, a222, a223}
A221: rotate−25◦, advance50 mm;
a222: rotate−15◦, advance50 mm;
A223: rotate−10◦ advance50 mm

A23

{a231, a232, a2233}
A231: stand still;
a232: rotate+5◦, advance50 mm;
A233: rotate−5◦, advance50mm

Tending to target
A3

{a1, a2, a3}

A31

{a111, a112, a113}
A311: rotate+10◦, advance100 mm;
a312: rotate+5◦, advance100 mm;
A313: advance100 mm

A32

{a121, a122, a123}
A321: rotate−10◦, advance100 mm;
a322: rotate−5◦, advance100 mm;
A323: advance100 mm

4.2. Three-dimensional simulation experiment
4.2.1. Test environment and parameter settings
The computer operating environment settings for all the simulation experiment are as follows: the com-
puter processor is Intel(R) Core(TM) i7-4790, the computer frequency of 3.6 GHz, and the computer
RAM is 8 GB. The simulation software adopts MobotSim in this paper. A three-dimensional simulation
experiment is carried out based on the software platform. The robot is approximately circular, with a
diameter of 0.5 m. The robot is marked in red, and the target point is a smaller yellow circle, as shown
in Fig. 4. There are obstacles in the environment: five in total from the starting point to the destination.
The shapes and sizes of the obstacles are different. Three obstacles surround the robot in three directions
and the other two obstacles surround the destination in two directions. The starting position of the robot
is in the lower left corner of the environment, and the target is located in the upper right corner of the
environment. The time interval of the time step is 0.1 s, and the speed of the robot center is 0.2 m/s. The
mobile robot system can detect the distance of obstacles in different directions through detection devices
and can sense the current location and target location information. It can then avoid obstacles through
autonomous learning, and find the best or a better path through which to reach the target point.

The initial conditions of the experiment are as follows: In the probability renewal Eq. (4), the initial
temperature KBT = 10,000, the cooling coefficient λT = 0.9; the minimum dangerous distance ds = 0.1
m, the maximum safe distance dm = 0.9m; the maximum speed Vmax = 0.15 m/s; and the initial selection
probability of each action in the behavior set is the same.

4.2.2. Experimental results and analysis
First, in the static obstacle environment, the feasibility of autonomous learning ability of cognitive model
based on operational conditioned reflex and hierarchical structure is tested. Figure 5 shows the simulation
results of path planning in a static environment. Figure 5 shows the simulation result of path planning
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Figure 4. 2D simulation environment.

Results of the first round Results of the second round Results of the third round

Figure 5. Results of the three-dimensional simulation experiments.

in a static environment. From the results of the first round of experiments, it can be seen that the robot
has not yet learned and has not accumulated enough knowledge about the environment. Therefore, the
path appears to be more chaotic. Several failed attempts were made, in which the robot collided with
obstacles but, after a period of exploration and further attempts, the robot can solve the predicament
and continue to move toward the destination. The results of the second round of experiments show that
the number of collisions is reduced, and the time it takes to solve the problem is shortened after the
collisions occur. This shows that, after cognitive learning, the robot has a certain level of environmental
experience. From the results of the third round of experiments, we can see that the robot has learned a
relatively optimal path without collision. This shows that, after three rounds of experiments, the robot
has grasped the general situation of the starting point, end point, and distribution of obstacles and can
make a relatively stable judgment. The results of the follow-up experiments also show that the robot’s
judgment of the route has been amended, indicating that the model converges and the learning is over.
Experiment results shown in Fig. 5 depict the way in which the trained mobile robot can reach the target
point from the starting point without collisions and find an almost optimal path.

From Definitions 1 and 2, we can know the behavior path and behavior path selection probability.
The histogram shown in Fig. 6 depicts the evolution process of each behavior probability. From the
simulation results shown in Fig. 6, it can be seen that, at the end of the first round of learning, the
probability values of each behavior are no longer equal, but a gap is not obvious. When the second
round of learning is carried out, the probability of one behavior occurring continues to increase, while
the probability of other behaviors occurring gradually decreases. After three rounds of learning, the
probability of one behavior occurring is close to 1, while the probability of other behaviors is close to
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Figure 6. Probability evolution process of the static obstacle avoidance behavior path.

Figure 7. Environment after adding dynamic obstacles.

0. This shows that robots have learned to choose the most favorable behavior for themselves by learning
and starting to choose behavior autonomously.

Changing the environmental information, adding a dynamic obstacle, and replacing it with a robot
moving at a uniform speed v, as shown in Fig. 7, means that the best behavior learned before is no longer
adapted to the new environment. Due to the complexity of environmental information, the robot needs
to explore more. Therefore, the cooling coefficient is greatly increased λT = 0.95, slowing down the
cooling rate and increasing the randomness of the robot action selection at the initial stage of training.
Because the randomness of action selection is increased, the success rate is low in the initial stages.
After four rounds of learning, the optimal path is acquired. Figure 8 is the result of the fourth round of
learning. As can be seen in the graph, when the robot is about to reach point A, the sub-task of avoid-
ing dynamic obstacles is selected to avoid collision with dynamic obstacles at point A. After reaching
point B, the dynamic obstacle avoidance sub-task is completed. The static obstacle avoidance sub-task
is selected again according to the environmental state. The robot is in a safe environment at point C.
Therefore, the static obstacle avoidance sub-task is ended and the sub-task tending to the target point
is selected. The histogram shown in Fig. 9 shows the evolutionary process of each behavior probabil-
ity. After the fourth round of learning, the robot has learned the new optimal behavior. Compared to the
experimental results shown in Figs. 5 and 6, the hierarchical model designed has a certain generalization
ability for the autonomous path planning of robots. Comparing Figs. 6 and 9, it can be seen that without
dynamic obstacles, the robot converges after three rounds of learning, and after adding dynamic obsta-
cles, the robot converges after four rounds of learning. This shows even if the environmental information
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Figure 8. Dynamic obstacle avoidance path.

Figure 9. Probabilistic evolution process of the dynamic obstacle avoidance behavior path.

changes, the learning convergence speed does not decrease significantly and the robots can adapt to the
environment quickly and rediscover the rules, which show the learning ability and adaptability similar
to animals and can solve the dimensionality disaster problem in a complex environment.

In order to further test the autonomous navigation performance of the robot, the experiment that the
robot faces both dynamic and static obstacles when it meets with dynamic obstacles is added. As shown
in Fig. 10, the experimental results show that the robot encounters dynamic obstacles at point A and
static obstacles at point C at point B, and the robot can avoid dynamic and static obstacles at the same
time and successfully reach the target point.

In order to prove the rapidity of the hierarchical cognitive model, the results are compared with
the single cognitive model. We can see that the probability of successful navigation is 80% by using
single structure based on twenty times experiments; however, the hierarchical structure is about 94%.
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Figure 10. Autonomous navigation results facing dynamic and static obstacles.

Figure 11. The comparison of running time on hierarchical structure and single structure.

The results of four times successful navigation were extracted from the experimental results, and their
running times were compared as shown in Fig. 11.

According to the above experiments, it can be concluded that although the cognitive model of single
structure can successfully realize robot autonomous navigation, its convergence speed is much slower
than that of hierarchical structure. From the practical point of view, the hierarchical structure is better
than the single structure.

In order to further prove the validity of the design model HCNM, we compared it with the similar
hierarchical reinforcement learning model (HRLM). The similarity between the two models is that they
are hierarchical, reward-based, "trial-and-error" learning. The difference is that the learning information
of Q-learning which is the main algorithm reinforcement learning is stored in the Q table, which needs
to update continuously. However, the learning algorithm of this paper can obtain autonomously the
environmental information. The experimental results are shown in Figs. 12 and 13.

When the robot can navigate to the target point autonomously, it represents convergence. The time
from the beginning of robot navigation to the end of navigation is the convergence time. Figures 12 and
13 show that HCNM is better than HRLM both in experimental effects and convergence time. The final
path of HCNM model is clearer, and the effect is better. From the point of view of convergence speed, the
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Figure 12. The navigation of HCNM and HRLM model.

Figure 13. The convergence time of two models.

Figure 14. Experimental system of a bionic robot fish.

convergence time of the HCNM is significantly reduced, which indicates that the convergence speed of
HCNM is faster than HRLM. In addition, in this experiment, there are obstacles on the three sides of the
target point, which increase the difficulty of navigation. The results show that the robot can successfully
reach the target point through autonomous learning.
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Figure 15. Top view of the experimental environment.

Figure 16. Schematic diagram of the experimental environment simulation.

4.3. Physical experiment
A simple biomimetic robotic fish (also known as a mechanical fish, artificial fish, or fish-like robot) is
used in the physical experiments. As shown in Fig. 14(a), the robot is a lightweight mobile robot, which
is suitable for navigation experiments in underwater environments. Robots perceive the environment
through external cameras and the camera coverage must cover the entire site. Therefore, two cameras
located in the center of the navigation environment are set up. The cameras are Mercury MER-040-60UC
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Figure 17. Obstacle avoidance and navigation process for robotic fish.

models, as shown in Fig. 14(b). Visual positioning can be accomplished by calculating the coordinate
system established on the site. The position of the bionic fish is tracked in real time.

The kinematic model [30] of the robotic fish is approximated by a polynomial and sinusoidal
synthesis, as shown in formula (27).

f B (x, t) = (
c1x + c2x2

)
sin (ωt + kx) (27)

where f B(x, t) is the lateral displacement of fish body, c1 is the primary coefficient of fish wave amplitude
envelope. c2 is the quadratic coefficient of fish wave amplitude envelope, k is the wave number of fish
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Figure 18. Comparison of error between simulation and physical experiment.

wave (k = 2π/λ, λ is the wavelength of fish body wave), ω is the wave frequency of fish body (ω =
2π f = 2π/T).

The robot experiment takes place in a 3 m × 2 m × 0.35 m cuboid fish pond environment. Considering
the size of the fish and the experimental environment, four static obstacles and one dynamic obstacle
are set up, which make the environment more complex. The bionic fish starts cruising from the lower
right corner of the space and the destination is set at the upper left side of the initial position. The top
view of the experimental environment is shown in Fig. 15. The schematic diagram of the experimental
environment is shown in Fig. 16. After the bionic fish starts to move, it traverses obstacles from the
starting point of the environment to its destination. If the robot fish touches a wall, touches obstacles, or
arrives at its destination, the experiment ends.

A video recording of the obstacle avoidance navigation process of the robot is made. Figure 17 shows
some screenshots of a successful experiment.

When the robot deviates from the target point, there is navigation error. The degree and number of
robots deviating from the target point are the magnitude of navigation error. We compare the navigation
errors between the simulation experiment and the physical experiment as shown in Fig. 18. As shown
in Fig. 18, there is a deviation between physical experiments and simulation experiments, and the simu-
lation results are closer to the expected navigation in both the navigation accuracy and the convergence
velocity. The main reason is that the robotic fish is seen as a particle in simulation experiment; however,
the size of the robot fish cannot be ignored in physics experiments. However, simulation results provide
many valuable references for physics experiments, such as learning methods and learning directions.

5. Conclusion
According to the Skinner OC mechanism, a hierarchical cognitive model is constructed to improve the
self-learning and self-adaptive ability of mobile robots in unknown and complex environments. The
cognitive model adopts the idea of dividing and conquering; it divides the navigation tasks of mobile
robots in complex environments into sub-tasks at different levels and solves each sub-task in a smaller

https://doi.org/10.1017/S0263574722001539 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001539


710 Jianxian Cai et al.

state subspace to reduce the dimension of the state space. The cognitive learning algorithm imitates the
thermodynamic process to design and realize an online search, in order to determine the best navigation
strategy.

Based on the formation of the cognitive process, the autonomous path planning activities of mobile
robots were studied. The experimental results show that: (1) The cognitive model designed can enable
mobile robots to successfully avoid obstacles in the environment and reach their goals via a better path.
It can automatically acquire knowledge and accumulate experience from the environment, just like ani-
mals. Through cognitive learning, we have gradually formed, developed, and perfected autonomous path
planning skills. (2) In time-varying and complex dynamic environments, robots can still quickly acquire
the optimal path. The adaptive ability of robots shows that the hierarchical structure can reduce the
learning difficulty of mobile robots in unknown complex environments, accelerate the learning speed,
and avoid dimension disasters. (3) In order to prove the accuracy and rapidity of the hierarchical cogni-
tive model, we compared it with the single cognitive model. The experimental results show that in the
same complex environment, the navigation success rate of hierarchical structure is 94%, which is 14%
higher than that of single structure. The running time of the layered structure is 200 s, 850 s higher than
that of the single structure. (4) To prove the effectiveness of the design model HCNM, we compared it
with a similar HRLM. The experimental results show that, in the same complex environment, HCNM
navigation path is clearer and better than HRLM in experimental effect and convergence time, and the
convergence time is accelerated by 160 s.

The significance of this paper is mainly in two aspects. On one hand, based on the operating con-
ditional reflection mechanism of humans and animals, the paper designs cognitive learning behaviors
similar to humans and animals for robot, enabling them to achieve autonomous navigation. It has cer-
tain guiding significance for artificial intelligence, robot technology, and cognitive science. On the other
hand, compared with the operation-conditioned reflex learning model, the hierarchical cognitive model
designed in this paper divides the navigation task of the mobile robot in the complex environment into
different levels of sub-tasks through the hierarchical structure, which reduces the learning difficulty of
the robot in the unknown environment and accelerates the learning speed of the robot. However, this
method also has some limitations. After adding dynamic obstacles, the method needs four rounds of
learning to converge, and the convergence speed is reduced, but the reduction is not obvious. In addi-
tion, for the selection of new paths, the hierarchical cognitive model needs to constantly try and make
mistakes to find the best path. After the robot navigation method based on deep learning trains enough
samples, the trained model can complete the navigation task of the new path without retraining. In the
follow-up work, the application of deep learning methods in mobile robot navigation will be the next
focus of the author.
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