
ON THE LOCATION OF SINGULARITIES OF A CLASS OF 
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 

IN FOUR VARIABLES 

R. P . G I L B E R T 

1. Introduction. In this paper we shall investigate the singular behaviour 
of the solutions to the elliptic equation 

where A (r2), C(r2) are entire functions of the complex variable 

r2 = Xp Xp (fi = 1, 2 , 3 , 4 ) . 

(Here repeated indices mean the summation convention is used.) The three-
variable analogue r 3 [ ^ ] = 0 has been investigated extensively by Bergman 
(3-8) and others (27; 28; 22; 23; 32). 

Fundamental to this procedure is the use of an integral operator B4[/] which 
maps holomorphic functions of three complex variables onto harmonic functions 
of four variables (13-18): 

(1.2) HÇK) = B4[/], B4[/] s - £? Jr2 J/(«, „, S) ^ | , 

» = x{l + 1 ) + ix{l - - 9 + x , ( i - I ) + ix{± + i ) , 

| |X — X°|| < e, X = (xi, x2, xz, x4), X° is an initial point of definition, 
T2 is a 2-cycle. (We frequently take as a 2-cycle the product of a simple contour 
C% in the f-plane and one, Cv, in the ^-plane. However, it is possible to extend 
our integral operator to the case where we use 2-chains instead.) The operator 
B4[/] maps the analytic function, 

co n 

(1.3) f(u,V,0= E E anmpu
n

v
mf, 

n=0 m,p=0 

onto the harmonic function, 
oo n 

(1.4) HQL) =Y, Y, anmpHn
mp(X), 

w=0 m,p=0 

where the Hn
mp(X) are harmonic, homogeneous polynomials of degree n which 

are defined by (12), 

Received February 10, 1964. This work was supported in part by the Air Force Office of 
Scientific Research under Grant 400-64, and in part by the National Science Foundation under 
Grant GP-3937. 

676 

https://doi.org/10.4153/CJM-1965-068-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-068-9


LOCATION OF S INGULARITIES 677 

(1.5) un = E i3- f ," ' ,(X)rV' (» = 0, 1, 2 , . . .)• 
K, 1=0 

These polynomials form a complete set with respect to the class of harmonic 
functions regular about the origin (12, 13). 

Another operator (18), which bears close resemblance to the one Bergman 
(3) introduced for the three-variable case, transforms holomorphic functions 
of three complex variables into solutions of T^] = 0. (Recently, Gilbert 
and Howard (19) have extended this operator to the case where we have 
p + 2 variables; in other words the operator SVf-2[/] generates solutions to the 
partial differential equation Tp+2[^] = 0.) 

(1.6) ¥ (X) = Qt[f] 

= -T^* f ~ f f f E(r,t)f(u[l-t2];r,,W, 
47T J\v\=i V « / |£ |= i ç J t=-i 

where 

£( f > t) = e x p ( - \ JTArdrJH(r, t); 

H(r, t), \t\ < 1 is a solution of 

(1.7) (1 - t2)Hrt - t~l(t2 + l)Hr + rt (HTT +^Hr + BHJ = 0, 

where B = \rA r — 2A — \r2A2 + C, and Hr/rt is continuous at r = t = 0. 
Using these operators it is possible to " transplant" properties of holomorphic 

functions to certain classes of solutions to T^] = 0 and • \F = 0 respectively. 
In particular, as Bergman has done in the three-variable situation (3), we 
may obtain results concerning the location of singularities (14; 15; 16) and 
information concerning the growth of solutions (19). 

In this paper we shall investigate further the location of singularities for 
solutions of 7^ W = 0. This will be done by making use of a recent result by 
Bergman (9) extending the Hadamard (21 ) and Mandelbrojt (25 ; 26) theorems 
(on locations of singularities) to the case of several complex variables. We shall 
also employ the (29) and Behnke-Thullen (2) theorems along with the author's 
envelope method (14; 18) to obtain representations for the singularity 
manifold. 

2. The envelope method for location singularities. In earlier papers 
(14; 15) the author proved the following theorems. 

THEOREM 2.1. Let H(K) be a harmonic function generated by the integral 
operator B4[/]. Furthermore, let the singularity manifold of ^-1^-1/(w, rj, £) be 
represented by 

\Hu,ri,8 s S C X ; * , * ) = 0 } . 
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Then, the only possible singularities of H(X) must be contained in the intersection 

(2.i) {x|s = o } n | x | 

where £ = II (77) is an arbitrary analytic function. 

dS dSdU(rj) 
dr] d£ drj 

THEOREM 2.2. Let H(X) be a harmonic function generated as above; further
more, let the associated holomorphic function be rational, that is, let 

q{u,r],£) Q(X;r),£) 

where p, q, P, Q are polynomials. Then, the only possible singularities of H(X) 
must be contained in the intersection 

(2.3) {X|<2 = o} n {x\dQ/dV = o} n {x\dQ/dt = o}. 
In (15) we argued as follows. Since Q(X; rj, £) is a polynomial in 

X = (xi, x2, x3, x4), rj, and £, then for each fixed rj = TJ°, Q(X;r)°,£) has a 
decomposition of the form 

<2(X; v°, É) = U - A1(X; „»)]», . . . . [ * - ^ ( X ; „•)]»,, 

where the ra# (& = 1, 2, . . . , r) are non-negative integers. 
The critérium for a multiple pole singularity of the integrand is that there 

be an mk > 1, i.e. that dQ/d£ = 0 for some £ = Ak(K\ rj0). 
For a point X to be a singularity of the harmonic function, 

H(X) =Bt[F(u,r),t)l 

X must correspond to a singularity of the integrand on the domain of integra
tion which cannot be avoided by continuously deforming the domain of 
integration; see (13; 14; 15) for further details. Such points X must be con
tained in the set of points which correspond to two roots 

fc=.4t(X;V0,E, = 4,(X;V0 

coinciding in the £-plane, since in this case a contour C$ may be "pinched" 
between %k and £y. 

According to the argument used by Hadamard (in his theorem on the 
"multiplication of singularities" (21)) the only instance where it may not be 
possible to deform C% in order to avoid a singularity crossing it (as we vary X) 
is when two such %k and ^ "pinch" C$ between them. 

Interchanging the roles of rj and £ and combining this result with that of 
Theorem (2.1) we obtain Theorem (2.2), as is shown in (15). An alternative 
proof of this theorem may be found in a recent paper by the author with 
H. C. Howard (20). 

We consider first the class of functions M((S3) which are meromorphic in 
finite g3. As Poincaré (2; 30; 31) has shown, if / G M (S3) , then there exist 
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two entire functions g, h, whose simultaneous zeros are relatively prime, and 
such that / = g/h. Furthermore, from the theorems of Behnke-Thullen (2) 
and Oka (29) one may prescribe the analytic sets {hm(zi, z2l zd) }~=1 on which an 
/ 6 M ( Ë3) has pole-like singularities, provided no hn = 0 and a finite number 
of the gm vanish in any given region 93 C Ê3- Oka showed that it is always 
possible to find a meromorphic function having pole-like singularities on a 
given set of analytic surfaces provided the holomorphy domain is univalent. 
Hence in any finite region we can represent / as the following quotient of 
relatively prime entire functions : 

1 hf1 ...h, 

For the sake of simplicity we consider the case where / is a meromorphic 
function whose decomposition into a quotient of entire functions (as above) 
yields a single relatively prime factor in the denominator. That is, we assume 
the B4-associate of HÇK) has the form 

/9 4Ï f(v *s g(u,vA)_giai...gP
ap Gi(X; , , { ) • * . . . g,(X; g, £)"» 

Now for each fixed X, 0(X; 77, £) is an entire holomorphic function of the 
two complex variables 77, £ in finite Ë2. Consequently, by the Weierstrass 
preparation theorem (2; 10), we can expand 0(X, 77, £) in a neighbourhood 
9î0?o> £) about any zero (770, £0) = 0?o[X], £o[X]) in a unique manner, say 

(2.5) 0(X; 77, {) = (77 - r7o)^(X; 77, {)0(X; 77, {), 

where 

¥ (X; 77, £) - ft - ?o)m + ^ i ( X ; 77)^ - So)""1 + . . . + ^«(X; 77). 

12 (X; 77, £) is regular and nowhere vanishes in 5ft, and the ^4*(X; 77) are regular 
in a neighbourhood of 770 and vanish at 770. (We refer to the term ^ ( X ; 77, {) 
as a pseudo-polynomial.) We notice that the "constants" m, k actually vary 
with X; however, as can be shown, m(X), kÇS) are constant for certain regions 
of R4 and only change in value by an integral amount as X passes over certain 
distinguished hypersurfaces. 

From Theorem 2.1, we realize that HÇK) = B4[/] is regular at X provided 

X g {X|0(X;T7, £) = 0} H {X\dd/dr, + W^dd/dC = 0}, 

where 11(77) is an arbitrary analytic function of 77. Since, 6 = (77 — 770)*^, 
we have for the first variation of 0 with respect to 77, 

(2.6) ô,[0] = {d[(77 - fio)**Ù\/dr, + (77 - 77orn'(77)[^ 12 + tfûj]}^. 

Since ^ is a pseudo-polynomial in £, the necessary and sufficient condition for 
a double root £ = £„[X;T7] to exist is that >£$ vanish for some £, say £„. In 
order for the integral in the representation HÇK) = B4[/] to exist we must 
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exclude second-order poles of the integrand coinciding with the domain of 
integration (15).) However, in order for 6 = (77 — 7]0)

Ktyiï to vanish for 
£ = £„[X; rj] and all 77 in the neighbourhood of 770, we must have ^ [ X ; 77, £„] = 0. 
These two facts imply that <90[X; 77, £]/d£ = 0, which, in turn, for II(£) an 
arbitrary analytic function, implies that d0[X; 77, £]/d77 = 0. By interchanging 
the roles played by 77, £ in (2.5) and proceeding in the above manner we find 
that a double 77-root also implies that 6$ = dv = 0. This conclusion leads us to 
the following extensions of Theorems 2.1 and 2.2. 

THEOREM 2.3. Let H(K) be a harmonic function generated by the operator 
B4[jf], where f(u, 77, £) is a meromorphic function with a decomposition into a 
quotient of entire functions of the type (2.4). Then HÇX) is regular provided that 

(2.7) X (Z {X(0(X; 77, £) = 0} H {X\dd/d^ = 0} p | {X\dO/dv = 0}. 

THEOREM 2.4. Let SF(X) = fiéf/] £e a solution of the partial differential 
equation T4[^] = 0 , where the coefficients A(r2), C(r2) of T^] are entire. 
Furthermore, let f(u, 77, £) be as above a meromorphic function in finite S3. Then 
^ (X) is regular provided that X is not contained in the intersection (2.7). 

3. Bergman's extension of the Hadamard-Mandelbrojt criteria. In a 
recent paper, Bergman (9) extended the Hadamard-Mandelbrojt theorems 
concerning the number and location of the singularities of analytic functions 
of a single complex variable to the case of functions of two complex variables. 
His results may be modified to the case of three complex variables which we 
discuss later in this work. 

Using Bergman's results, it is possible to obtain the analytic sets, wmich 
form the singularity manifold of meromorphic function of two complex 
variables. For instance, if 

CO OO 

(3.1) f(zh z2) = 2 ]C Û W S I V , 

then we may obtain as the singular sets 

(3.2) UM„ = {(zlfz2)\ \zi\ = p„(a),argzi = 4>vll(a);a = 22/21}. 

The pv(a) exp[i<j)vli(a)} are the singular points of Fa(zi) =f(zi,azi) for each 
fixed value of a; here we have ordered the singular points of each circle 
p = p(a) such that 4>v,p(a) < <j>Vtli+i(a). For the case where there is only one 
singular point of Fa(zi) in and on the circle p = p(a) we have the following 
representation given by (9): 

|~ I AT I i/N 
(3.3) p(a) = lim sup ] £ an-ktk a 

(3.4) < (̂a) = cos-1[i?+ '(0,a)]I 

https://doi.org/10.4153/CJM-1965-068-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-068-9


LOCATION OF SINGULARITIES 6 8 1 

where 

(3.5) R(h, a) = lim sup [\dN(h, a ) | w ] , h > 0, 

(3.6) d„(h, a) = g [(f)/(«)^'~*( E ^-*-,„ «")] , 
and i?+ '(0, a) is the right-hand derivative 

(3.7) £+ ' (0 , a) = lim IVYlim sup\dN(h, x)\1/N - l)! . 

Following Bergman (9), we can determine the number of singular sets, UM„2. 
Hence, it is possible to determine the representation for each singular set by 
subtracting successively the "meromorphic part" of f(zu z2), and considering 
two functions G (21, z2), H(zuz2) equivalent if their difference has at most 
a removable singularity in finite (S2. We assume, therefore, in the following 
that the sets U^2 are known. 

Since the singularities of a holomorphic function of two complex variables 
lie on an analytic set, the function ty(a) = p(a)ei4>{a) (where a = z2/zi) must 
be, with the exception of a "thin set" in 61, an analytic function of a (1). 
Consequently, with the exception of such a thin set, we may represent the 
singularity manifold of f(zu z2) in the form 

(3.8) U2 = X) X) {(?h 22)1*1 = ^^(z2/zi) = pv(z2/zx) exp[i<^(s2/3i)]}. 

This representation of the singular sets may be used to compute the possible 
singular points of certain classes of harmonic functions whose B4-associates 
can be written as double series; for instance, those of the form 

(3.9) /(«, n, £) ^ £ È M«rè)Wr, 

where k, I are constants. In this case, one may represent the singularity 
manifold of (3.9) as 

(3.10) SM,(X; n, « - rtY+ VZ + £Z* + F* - p\^£j e x p [ * * M , ( ^ ) j = 0, 

where the notation 

F = Xi + ix2l F* = xi — ix2, Z = x3 + ix4, Z* = — (x3 — ix±) 

is introduced in (24). Combining this observation with Theorem 2.3 we obtain 
the following result. 

THEOREM 3.1. Let H(X) = B4[/] be a harmonic function of four variables 
with an associate of the form (3.9). Then HÇK) is regular at all points X not 
included in the intersections 
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{X|s„ = 0} n {xias /̂aiy = 0} n {x\ds>,/dt = o}. 
w^ere SM* is given by (3.10). 

I t is clear that this result has a simple extension to solutions of T4[\f
r] = 0, 

and also to other B4-associates, which may be represented as formal, double 
power-series. 

We mention that in the case where f(u, 77, £) is a function of just one complex 
variable, we may use the original Hadamard-Mandelbrojt criteria to obtain 
the following result. 

THEOREM 3.2. Let -ff(X) be a harmonic function of four variables defined by a 
series representation 

(3.11) #(X) = £ a^/K+*,s"+'(X), 

where m,p,}i,q,l are constants, such that p,q < m. Furthermore, if 

lim 
i->oo fe)--lP = lim|Z>, (P) 1 Vn 

where 

D ^ 

&n+p ^n+p+1 

&n+p 
an+p+l 

then in general the only singularities of HÇK) lie on two-dimensional algebraic 
manifolds. 

The B4-associate of (3.11) is 

(3.12) f(u, ,, É) = £ an „-^*j«+». 

We consider the simplest form of an associate of this type since it will be clear 
from this case what the more general situation is. We suppose that 

(3.13) /(«, v, S) = E a»(«uE)VE' = F(urt)fel, 

where F(v) has singularities at the points av = p„ e^v{y = 1 ,2 , . . . ) (which we 
can locate by the ordinary Hadamard-Mandelbrojt criteria). (A necessary and 
sufficient condition for F{ur\£) to be meromorphic is that 

l i m y ^ = 0. 
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In this case all of the finite singularities are isolated and we may consider the 
associated singularities of HÇK) separately (21; 25; 4; also 13).). Here, the 
singularity manifold of the integrand may be represented as 

(3.14) £ , {S„(Z; n, a)=rtY+vZ + tZ+Y-av= 0}. 

Consequently, Theorem 2.3 implies that H(K) is regular at those points not 
contained in the set 2Z„ {YY* — zz* — avY = 0}, which may be written as 
the sum of spheres, 

(3.15) E > [ { ( * i - è R e ^ ) 2 + (x2+ hlmavy + xz
2 + xS = |a,/2|2} 

Pi {xi Im av -f x2 Re av = 0}]. 

For the associate (3.12) the singularity manifold may be represented as 

£ „ {S,(X; ry, £) = (iff F + 77Z + £Z* + F*)* - av ^ - - ^ ( - * > = 0}. 

It is clear that in general one obtains upon eliminating rj, £ from 

S, = 0, dS./dry = 0, dSv/d£ = 0 

a two-dimensional algebraic manifold. This proves our result. 
There are a number of other generalizations of the Hadamard approach 

to the coefficient problem for solutions to T4[^] = 0, and for harmonic functions 
with expansions of the form (3.11). These are similar to the results obtained by 
S. Bergman for the case of harmonic functions of three variables (7; 8; 9). 

4. The general coefficient problem for harmonic functions of four 
variables. Let H(K) be an arbitrary harmonic function of four variables 
regular about the origin with the expansion 

co n 

(4.1) H(X) = £ £ anvwHn
m-*(X), | |X| | < p. 

w=0 m,p=0 

The "general" coefficient problem is the determination of the singularities 
of H(K) in terms of the coefficients {anmp}. It is possible for us to approach this 
problem by using a three-variable analogue of Bergman's theorem in connection 
with our Theorem 2.3. We proceed as follows. 

Let © be the space of three complex variables Ê3. Then through each point 
(^i°, 22°, z*°) £ © (except 0) there passes a unique "pair of analytic planes," 

(4.2) W»(a) EE {z2 =az1}J $& (ft ^ {z, = pZl}, 

Re a > 0, Re 0 > 0, where a = 2 2 %A P = *3°/V- We introduce next the 
two-dimensional intersection ^i2) (a, fi) = ^ (4)(«) n^)3(4)(/5), which is a com
plex linear manifold (of complex dimension 1). Following Bergman (9) we 
require that the origin of © coincide with the origin of ^ (2 ) (a, fi) and that the 
positive x-axis is that part of ^2(a, 0) P\ {yi = 0} on which x2 > 0. Hence, 
we may introduce polar co-ordinates p(a, 0), <j>(a, 0) in each "plane" ^3(2)(a, 0), 
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and associate in this manner each point of © with the three complex numbers 
a, ft, pe't 

Let 

/(Zl, 22, 2 3 ) = E E E flow *iM; 
M =0 j>=0 ff=0 

v a 
%2 Z% (4.3) 

and let Fa,p(zi) be denned by 

(4.4) F.M s /(2l> «*, 0*0 = E E E <W s/'+'+V/T 
M=0 y=0 a = 0 

oo / N \ 
= Z ) * i V Z ) aA^_(M+,),M),«

/x/3,') . 
jV=0 \ M+^=0 / 

oo oo oo 

After Bergman, we introduce certain functions 

(4.5) p(a, ft) = lim sup ZJ aN-(p+v),p,v OL ft 
/*+»/= 0 

1/JV 

(4.6) M*! «, 0) = E (ï)p(«, i8)*Aw-*( E <%-(„+*)-*,„,, « T ) , A > 0, 

(4.7) R(h;a, ft) = lim sup [ | ^ ( A ; a , / 3 ) | w ] , 

and finally the r ight-hand derivat ive of R(h; a, ft) with respect to h a t 0, 

(4.8) R+'(0;a, ft) = lim I V Y l i m sup\dN(h;a, ft)\1/N - l ) l . 

I t is possible, then, to obtain a three-variable analogue of Bergman 's lemma 
concerning the domain of regulari ty of f(z\, z2, z^). T h e proof differs from 
Bergman 's in t h a t one "pulls a bi-cylinder a w a y " from a boundary point 
instead of a disk before proceeding to employ Har togs ' theorem. T h e reader 
is referred to the original paper of Bergman (9) . 

L E M M A 4 .1 . Let f(zi, z2, z3) be a holomorpkic function of three complex 
variables with a Taylor expansion (4.3). Furthermore, for each (a0, fto) let there 
exist a neighbourhood 5ft4 (a0, fto) = 5ft2 (ao) X 9î2(i#o) and an h > 0, such that 

p(a + ft)[R+'(!0;a, ft) + h - 1] > Ô > 0, for every (ce, ft) 6 9î4(a0, fto). 

Then f(zi, z2, zz) is regular in S \J I5, where 

2 s {|2l| <p(a,ft),\a\ < 00,101 < oo}, 

I5 = {\Zl\ = p ( a , / 3 ) , | * | < $(ayft),\a\ < oo |0| < » }, 

$ ( a , 0) s= lim inf |cos_1 .R+ ' (0; ah a2)\. 

In the same way as in Section I I I , one m a y obtain representat ions for the 
four-dimensional singular sets U 4 : 

(4.9) uv- {fe,*.s.)|2l. *,.fe,a) , Ja ,a)«J, J a , s ) | . 
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Here ^^(a,/3) is a holomorphic function of the two complex variables a,/3 
with the exception of certain points on a thin set in S2. Then again using 
Theorem 2.3 we obtain a general representation theorem for the possible 
singularities of an arbitrary harmonic function of four variables. 

THEOREM 4.2. Let HÇK) be an arbitrary harmonic function of four variables 
regular about the origin, with the representation 

oo n 

HÇ&) =A2Z2 anmpHn
m'pÇXi). 

n=Q m,p=0 

Then the only possible singularities of H(X) lie on the intersections 
(ji, v = 1, 2 , . . .) 

(4.10) {X|SM,(X; 77, £) = u — pv{?)U~x, £u~l) exp[i4>fJLV(rju~1
i %u~1)] = 0} 

n {x\ds,v/dv = 0} n {x|dSM,M = o}. 
COROLLARY 4.3. The solution of T4[^] = 0 (where A, Care entire) that has the 

representation 

œ n 

n=0 m,j)=0 

where 

^ , P (X) = J_̂  £(r,0^m'P(X[l - ^2]) ,̂ 

ma;y Z>̂  singular only on the sets (4.10). 
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