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Abstract

There are many ways to measure how people manage risk when they make decisions. A standard approach is to measure

risk propensity using self-report questionnaires. An alternative approach is to use decision-making tasks that involve risk and

uncertainty, and apply cognitive models of task behavior to infer parameters that measure people’s risk propensity. We report the

results of a within-participants experiment that used three questionnaires and four decision-making tasks. The questionnaires

are the Risk Propensity Scale, the Risk Taking Index, and the Domain Specific Risk Taking Scale. The decision-making

tasks are the Balloon Analogue Risk Task, the preferential choice gambling task, the optimal stopping problem, and the bandit

problem. We analyze the relationships between the risk measures and cognitive parameters using Bayesian inferences about

the patterns of correlation, and using a novel cognitive latent variable modeling approach. The results show that people’s risk

propensity is generally consistent within different conditions for each of the decision-making tasks. There is, however, little

evidence that the way people manage risk generalizes across the tasks, or that it corresponds to the questionnaire measures.

Keywords: risky decision making, sequential choice tasks, optimal stopping problems, bandit problems, Balloon Analogue

Risk Task, cognitive latent variable modeling

1 Introduction

From financial investments to choosing dating partners, peo-

ple regularly encounter risky decision-making situations.

We are constantly evaluating the potential gains and losses,

and the probabilities of each occurring. An individual’s

intrinsic tendency to be risk seeking, known as their risk

propensity, has been argued to be a meaningful latent con-

struct that can be interpreted as a dominant influence on peo-

ple’s behavior in risky situations (Dunlop & Romer, 2010;

Frey et al., 2017; Josef et al., 2016; Lejuez et al., 2004;

Mishra et al., 2010; Pedroni et al., 2017; Sitkin & Weingart,

1995; Stewart Jr & Roth, 2001). Frey et al. (2017) suggest an

analogy with the general intelligence construct ‘g‘ from psy-

chometrics (Deary, 2020), raising the possibility of a similar

latent construct that guides the balance between risk-seeking

and risk-avoiding behavior in uncertain situations.

There are many ways to assess risk propensity. One ap-

proach relies on self-report questionnaires, usually in the

form of responses to questions using Likert-type scales. An-

other involves measuring the frequency and type of real-

world behaviors related to risk that people engage in. A

third approach uses decision-making tasks that involve un-

certainty, so that different patterns of decisions can be as-

sociated with different risk propensities. If risk is a stable

trait, there should be clear relationships between these three

types of measures. Accordingly, there is a body of research

that examines the relationship between risk questionnaires
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and decision-making tasks that aim to measure risk (e.g.,

Frey et al., 2017; Josef et al., 2016; Szrek et al., 2012). The

most commonly used tasks are ones that require choices be-

tween gambles (De Martino et al., 2006; Russo & Dosher,

1983; Rieskamp et al., 2006), but other cognitive tasks are

also considered. For example, Frey et al. (2017) use the

Balloon Analogue Risk Task (BART: Lejuez et al., 2002,

2003a), the Columbia Card Sorting task (Figner et al., 2009),

as well as various decision-from-description and decision-

from-experience tasks, lotteries, and other tasks. Berg et al.

(2005) use a variety of different forms of auctions. Typically,

measuring risk propensity using decision-making tasks re-

lies on simple experimental measures. For example, Frey

et al. (2017, Table 1) rely entirely on direct behavioral mea-

sures of risk, such as counting the number of pump decisions

in the BART.

The findings from this literature have been mixed. There is

some evidence of risk propensity having a trait-like breadth

of influence and stability over time when measured by ques-

tionnaires about attitudes and patterns of real-world behavior

(e.g., Josef et al., 2016; Mata et al., 2018). The link to be-

havioral measures in decision-making tasks, however, is far

less clear (e.g., Berg et al., 2005; Frey et al., 2017). The

motivation for the current research is the possibility that

the relationship between cognitive task behavior and risk

propensity can be better assessed using cognitive models

than simple experimental measures. Our approach is to ap-

ply cognitive models of the decision-making process to infer

latent psychological parameters that represent risk propensi-

ties. In the model-based approach, risk propensity is inferred

823

https://doi.org/10.1017/S1930297500007956 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500007956


Judgment and Decision Making, Vol. 15, No. 5, September 2020 Measuring risk propensity 824

from its influence on observed task behavior. Potentially, the

model-based approach offers an opportunity to measure an

individual’s risk propensity in a way that is less open to

manipulation, and is more precisely assessed than through

simple experimental measures.

The questionnaires we consider are the Risk Propensity

Scale (RPS: Meertens & Lion, 2008), the Risk Taking Index

(RTI: Nicholson et al., 2005), and the Domain Specific Risk

Taking scale (DOSPERT: Blais & Weber, 2006). These three

questionnaires have been used in a variety of contexts and

have been found to be reliable in measuring people’s risk

propensity (Harrison et al., 2005).

The decision-making tasks we consider are the BART, the

preferential choice gambling task, the optimal stopping prob-

lem (Goldstein et al., 2020; Guan et al., 2015; Guan & Lee,

2018; Lee, 2006; Seale & Rapoport, 2000), and the bandit

problem (Lee et al., 2011; Steyvers et al., 2009; Zhang & Lee,

2010b). All four of these decision-making tasks involve risk

and uncertainty, and have corresponding cognitive models

with parameters that can be interpreted as measuring some

form of risk propensity. As mentioned earlier, the BART and

gambling tasks have previously been considered as natural

measures of risk propensity. Our inclusion of the optimal

stopping and bandit tasks is relatively novel and exploratory,

although optimal stopping tasks are sometimes considered

in the related literature on measuring cognitive styles like

impulsivity (e.g. Baron et al., 1986).

The structure of this article is as follows: In the next

section, we provide an overview of the within-participants

experiment involving all of the questionnaires and decision-

making tasks. We then present analyses of each of the

decision-making tasks separately, describing the experi-

mental procedure and conditions, providing basic empiri-

cal results, and describing and applying a cognitive model

that makes inferences about risk propensity. Once all four

decision-making tasks have been examined, we present re-

sults for the questionnaires. Finally, we bring the results

together, by presenting first a correlation analysis and then

a cognitive latent variable analysis that compare all of the

measures of risk propensity. We conclude by discussing the

implications of our findings for understanding whether and

how risk propensity varies across individuals and generalizes

across different tasks and contexts.

2 Overview of Experiment

2.1 Participants

A total of 56 participants were recruited through Amazon

Mechanical Turk. Each participant was paid USD$8.00 for

completing the experiment. There were 37 male participants

and 19 female participants, with ages ranging from 20 to 61

(" = 36.4 years, (� = 11.6 years).

2.2 Procedure

Each of the four cognitive tasks took about 20–30 minutes

to complete. The RPS and RTI took about 5 minutes each,

while the DOSPERT took about 10–15 minutes. Each par-

ticipant completed all of the questionnaires and decision-

making tasks. Because the entire experiment took about

two hours to complete, the experiment was split into two

parts of about one hour each. Each part included two

decision-making tasks and either the RPS and RTI or the

DOSPERT. The RPS and RTI were completed in the same

part because these two questionnaires are much shorter than

the DOSPERT. The order of questionnaires and decision-

making tasks was randomized across participants.

Upon completing Part 1 of the experiment, each partici-

pant was given a unique code. This code allowed them to

complete Part 2 and receive compensation. All participants

who completed Part 1 returned and completed Part 2. Partic-

ipants were also encouraged to take a break between Part 1

and Part 2, subject to the requirement that they complete

both parts within six days.

3 Balloon Analogue Risk Task

The Balloon Analogue Risk Task is a well-established

and widely-used decision-making task for measuring risk

propensity (Lejuez et al., 2003a; Lighthall et al., 2009; Rao

et al., 2008; Aklin et al., 2005). In the BART, the level of

inflation of a balloon corresponds to monetary value. Peo-

ple are repeatedly given the choice either to bank the current

value of the balloon, or to take a risk and pump the balloon to

add some small amount of air and corresponding monetary

value to the balloon. There is some probability the balloon

will burst each time it is pumped, in which case the value

of the balloon is lost. Usually, the probability of the balloon

bursting increases with each successive pump, but a simpler

version in which this probability is fixed has been used by

some authors (e.g., Cavanagh et al., 2012; Van Ravenzwaaij

et al., 2011). A BART problem involves a sequence of bank

or pump choices, and finishes when either the value is banked

or the balloon bursts.

Individual risk propensity is most often quantified by the

mean number of pumps made across problems, excluding

those problems where the balloon burst (Schmitz et al.,

2016). An individual who is risk seeking is likely to pump

the balloon more times across problems than an individual

who is risk averse. The mean number of pumps has been

shown to correlate with risk taking behaviors such as smok-

ing, alcohol and drug abuse, and financial decision making

(Hopko et al., 2006; Holmes et al., 2009; Lejuez et al., 2002,

2003a; Schonberg et al., 2011), as well as psychological traits

such as impulsivity, anxiety, and psychopathy (Hunt et al.,

2005; Lauriola et al., 2014).
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3.1 Method

Participants completed two BART conditions, differing in

the fixed probability of the balloon bursting at each trial.

These probabilities were ? = 0.1 and ? = 0.2. Participants

were told at the beginning of the task that they will be pump-

ing balloons from two different bags of balloons, and that

balloons from the same bag have the same probability of

bursting. However, they were not told the probabilities of

bursting. At the beginning of the experiment, they received a

virtual bank with $0 and a balloon that was worth $1. At the

bottom of the screen there was a “pump” button and a “bank”

button. With each pump, the balloon’s worth increased by

$1. Participants were instructed to maximize their monetary

reward. All participants completed the same 50 problems

within each of the two conditions. The order of problems

within each condition was randomized across participants.

3.2 Two-Parameter BART Model

Wallsten et al. (2005) pioneered the development of cogni-

tive models for the BART that are capable of inferring latent

parameters measuring risk propensity. Their modeling ap-

proach was further developed by Pleskac (2008) and Zhou

et al. (2019). We use the two-parameter BART model devel-

oped by Pleskac (2008, see also Van Ravenzwaaij et al. 2011)

as a simplification of one of the original Wallsten et al. (2005)

models. The two-parameter model assumes that a decision

maker believes that there is a single constant probability that

a pump will make a balloon burst ?belief that is fixed over all

problems. It also assumes that they decide on a number of

pumps prior to the first pump in a problem, and do not adjust

this number during pumping. This number of pumps that the

participant considers to be optimal, denoted by l, depends

on their propensity for risk taking, W+, and their belief about

the bursting probability of the balloon when it is pumped. It

is defined as

l =
−W+

ln
(
1 − ?belief

) ,

where W+ ∼ uniform
(
0, 10

)
.

Our implementation of the two-parameter BART model

naturally incorporates censoring by modeling the probability

of each of participant pumping or banking on each trial they

completed. Thus, the behavioral data are represented as

H8 9: = 1 if the 8th participant pumped on the :th trial of the

9 th problem, and H8 9: = 0 if they banked.

In the two-parameter BART model, the probability that

the 8th participant will pump on the :th trial of the 9 th prob-

lem, ?
pump

8 9:
depends on both l8 and a behavioral consistency

parameter V8 , in terms of a logistic function

?
pump

8 9:
=

1

1 + exp (V8 (: − l8))
,

with V8 ∼ uniform
(
0, 10

)
. Given this pumping proba-

bility, the observed data are simply modeled as H8 9: ∼

Bernoulli
(
?

pump

8 9:

)
over all observed trials, finishing on the

trial for each problem at which the participant banked or the

balloon burst.

The logistic relationship that defines the pumping proba-

bilities means that relatively higher values for V8 correspond

to more consistency in decision making. If V8 = 0 then

?
pump

8 9:
= 0.5, and the participant’s decision to pump or bank

is random. As V8 → ∞, the participant’s behavior becomes

completely determined by whether or not the number of

pumps : is greater than l8 .

The W+8 parameter provides a measure of risk propensity,

since it controls the number of pumps attempted. Larger

values of W+8 correspond to more pumps and greater risk

seeking. Smaller values of W+8 correspond to fewer pumps,

and more risk-averse behavior.

We implemented the two-parameter model model, and

all of the other cognitive models considered in this ar-

ticle, as graphical models using JAGS (Plummer, 2003).

JAGS is software that facilitates MCMC-based computa-

tional Bayesian inference (Lee & Wagenmakers, 2013). All

of our modeling results are based on four chains of 1,000

samples each, collected after 2,000 discarded burn-in sam-

ples. The chains were verified for convergence using visual

inspection and the standard '̂ statistic (Brooks & Gelman,

1997).

3.3 Modeling Results

For all of the cognitive modeling in this article, we apply the

model to the data in three steps. First, we define task-specific

contaminant models, identifying those participants who did

not understand the task, or did not complete it in a motivated

way. These contaminant participants are removed from the

subsequent analysis. Secondly, we examine the descriptive

adequacy of the model for the remaining participants, us-

ing the standard Bayesian approach of posterior-predictive

checking (Gelman et al., 2004). Finally, we report the in-

ferences for the model parameters, usually starting with a

few illustrative participants who demonstrate the range of

interpretable individual differences, before showing the in-

ferences for all non-contaminant participants.

3.3.1 Removing Contaminants

We developed two contaminant models for BART behavior.

The first was based on a cutoff for the V consistency param-

eter. If a participant’s behavior was extremely inconsistent

across the problems they completed, they were considered

contaminants. We used a cutoff of 0.2, which removed 11

participants. The second contaminant model was developed

to capture behavior motivated by wanting to finish the exper-

iment as quickly as possible. If a participant banked on all of

the problems they were also considered contaminants. Three

participants were associated with this form of contaminant

https://doi.org/10.1017/S1930297500007956 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500007956


Judgment and Decision Making, Vol. 15, No. 5, September 2020 Measuring risk propensity 826

0 5 10 15 20 25 30 35 40 45
0

16

0 5 10 15 20 25 30 35 40 45

Participants

0

16

N
u

m
b

e
r 

o
f 

P
u

m
p

s

Figure 1: Posterior predictive distributions of the number of pumps for each participant in each condition, sorted by the

mean number of pumps per participant in the ? = 0.1 condition. The top panel corresponds to the condition with bursting

probability ? = 0.1, and the bottom panel corresponds to the condition with bursting probability ? = 0.2. The posterior

predictive distributions are shown as gray squares. The minimum and maximum, as well as the 0.25 and 0.75 quantiles, and

the median of the behavioral data are shown to the immediate left in blue for the ? = 0.1 condition and red for the ? = 0.2

condition.

behavior. Thus, overall, a total of 14 contaminant partici-

pants were removed, and a total of 42 participants were used

in the modeling analysis.

3.3.2 Descriptive Adequacy

Figure 1 summarizes a posterior predictive check of the de-

scriptive adequacy of the two-parameter BART model. The

distributions of the number of pumps are shown as gray

squares, with areas proportional to the posterior predictive

mass. The observed data are shown to the left, with dots

representing the median number of pumps, thicker solid

lines representing the 0.25 and 0.75 quantiles, and thinner

lines spanning the minimum and maximum observed number

of pumps. The posterior predictive distributions generally

match the observed data, suggesting that the model provides

a reasonable account of people’s behavior.

3.3.3 Inferred Risk Propensity and Consistency

Figure 2 shows the inferred W+ and V parameter values for

four representative participants, together with a summary of

their observed behavior. Each panel shows the distribution

of the number of pumps that the participant made, excluding

problems on which the balloon burst. The left column shows

the condition with ? = 0.1 and the right column shows the

condition with ? = 0.2.

Participant 1 can be seen to be consistently risk seeking.

They choose to pump a relatively large number of times in

both conditions. This pattern of behavior is captured by their

risk and consistency parameters, with relatively high values

of W+ and V parameter values. Participant 2 is also risk

seeking, in the sense that they generally pump a relatively

large number of times across both conditions, but they do so

less consistently. The number of times they pump in both

conditions varies widely from 3 to more than 15 pumps. This

behavior is quantified by their inferred parameter values,

with relatively high values of W+ but relatively low values

of V. Participant 3 is consistently risk averse. They pump

a relatively small number of times across both conditions

and are very consistent in doing so. This is reflected in a

relatively low W+ and high V parameter values. Participant 4

is also risk averse, but is more inconsistent than Participant 3.

This is captured with relatively low values of both W+ and V

parameter values .

Figure 3 shows the joint and marginal distributions of the

posterior expectations of W+ and V for all participants and for

both conditions. The four representative participants shown

from Figure 2 are labeled. It is evident that there is a wide

range of individual differences in both risk propensity and

consistency parameters. There appears to be a negative and

nonlinear relationship between the two parameters in both

conditions. Participants with relatively high values of W+ also

tend to have low values of V, and vice versa. Participants

near the origin have low values of both W+ and V, and are

consequently both risk averse and inconsistent. However,

as participants move from the origin closer to the lower-

right corner, they become more risk seeking but continue to

lack consistency. As participants move further away from
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Figure 2: Observed behavior and inferred parameter values for four representative participants. The left column corresponds

to the condition with bursting probability ? = 0.1 and the right column corresponds to the condition with bursting probability

? = 0.2. The distributions show the number of pumps each participant made before banking, excluding problems where the

balloon burst. The inferred values of the W+, V, and l parameters are also shown.
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Figure 3: Joint and marginal distributions of V and W+ posterior expectations across the two conditions for each participant.

The four representative participants shown from Figure 2 are labeled.
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the origin and closer to the top-left corner, they become

consistently risk averse.

4 Gambling Task

Perhaps the most common task for studying decision-making

under risk and uncertainty involves people choosing between

pairs of gambles (De Martino et al., 2006; Russo & Dosher,

1983; Rieskamp, 2008). Each gamble is defined in terms of

the probabilities of different monetary outcomes, and people

are asked to choose the gamble they prefer. For example, a

person might be asked to choose between Gamble A, which

leads to winning$50 with probability 0.6 and losing $50 with

probability 0.4, and Gamble B, which leads to winning $100

with probability 0.65 and losing $100 with probability 0.35.

4.1 Method

Participants completed two gambling tasks conditions. One

condition was framed in terms of gains and the other was

framed in terms of losses. In the gain condition, participants

were instructed to maximize their monetary reward over the

entire set of problems. In the loss condition participants

were instructed to minimize their monetary losses. All of

the participants completed the same 40 problems in each

condition, but the order of problems within each condition

was randomized across participants.

The pairs of gambles were presented as pie charts labeled

with their respective payoffs and probabilities. A screen-

shot of the experimental interface is provided in the supple-

mentary materials. Participants chose between gambles by

clicking the corresponding pie chart. The expected values

of the outcomes were not provided to the participants and no

feedback was given.

4.2 Cumulative Prospect Theory Model

Important cognitive models of how people choose between

gambles include regret theory (Loomes & Sugden, 1982),

decision-field theory (Busemeyer & Townsend, 1993), the

priority heuristic (Brandstätter et al., 2006), anticipated util-

ity theory (Quiggin, 1982), and prospect theory (Kahneman

& Tversky, 1979; Tversky & Kahneman, 1981). All of these

models extend the standard economic account of choice as

maximizing expected utility (von Neumann & Morgenstern,

1947) and attempt to provide an account in terms of cognitive

processes and parameters.

We use cumulative prospect theory (CPT), which makes

a set of assumptions about how people subjectively weigh

the value of outcomes and probabilities. CPT assumes that

the outcomes of risky alternatives are evaluated relative to

a reference point, so that outcomes can be framed in terms

of losses and gains. In particular, it assumes that the same

absolute value of a loss has a larger impact on the decision

than a gain, consistent with the phenomenon of loss aversion

(Kahneman & Tversky, 1979). In addition, prospect the-

ory assumes that people subjectively represent probabilities,

typically overestimating small probabilities and underesti-

mating large probabilities.

We use a variant of the CPT model developed and imple-

mented by Nilsson et al. (2011). In this model, the expected

utility of an alternative $ is defined as

�* ($) =
∑

8

?8D (G8) ,

where D (·) defines the subjective utility of G8 .

This subjective utility is weighted by the probability ?8
that the 8th outcome occurs. According to the CPT model, if

alternative$ has two possible outcomes, then the subjective

value + of $ is defined as

+ ($) =
∑

8

c (?8) E (G8) ,

where c (·) is a weighting function of the objective proba-

bilities and E (·) is a function defining the subjective value

of the 8th outcome. The probability weighting function and

the value function differ for gains and losses. The subjective

value of payoff G is defined as

E (G) =

{
GU if G ≥ 0

−_ (−G)U if G < 0,

where 0 < U < 1 is a parameter that controls the curvature of

the value function. Nilsson et al. (2011) used different value

functions for gains and losses. We use a simplification of the

model in which the shape of the value function, determined

by U, is the same for gains and losses. If _ > 1, losses carry

more weight than gains, corresponding to the theoretical

assumption of loss aversion. The larger the value of _,

the greater the relative emphasis given to losses. When

0 < _ < 1, in contrast, gains have more impact on the

decision than losses. Although prospect theory expects loss

aversion, we use a prior _ ∼ uniform
(
0, 10

)
that tests this

assumption.

The CPT model generates subjective probabilities by a

weighting function which, for two possible outcomes, is de-

fined as

c (?8) =
?2
8

(
?2
8
+ (1 − ?8)

2
)1/2 ,

where 2 = W for gains and 2 = X for losses. The parameter

0 < 2 < 1 determines the inverse S-shape transformation of

the weighting function.

Finally, our CPT model allows for probabilistic decision

making by assuming a choice rule in which choice probabil-

ities are a monotonic function of the differences of the sub-

jective values of the gambles. Specifically, the exponential
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Figure 4: Inferred subjective value function curves and probability weighting function curves for representative participants.

The three participants in the left panel span the range of inferred individual differences in U and _. The three participants in

the right panel span the range of inferred individual differences in W and X.

Luce choice rule, rewritten as a logistic choice rule, assumes

that the probability of choosing Gamble A over Gamble B is

\�,� =
1

1 + exp q (+ (�) −+ (�))
.

The parameter q can be interpreted as a measure of the

consistency of choice behavior. When q = 0, the proba-

bility of choosing Gamble A over Gamble B becomes 1
2
,

and choice behavior is random. As q increases, choice be-

havior becomes increasingly determined by the difference

in subjective value between Gamble A and Gamble B. As

q → ∞, choices become increasingly consistent in the un-

derlying preference, until in the limit the preferred gamble is

always chosen.

We use independent priors for all five parameters for

each participant. Besides the prior _ ∼ uniform
(
0, 10

)

already mentioned, the remaining parameters have priors

U ∼ uniform
(
0, 1

)
, W ∼ uniform

(
0, 1

)
, X ∼ uniform

(
0, 1

)
,

and q ∼ gamma
(
2, 1

)
. Note that the final prior on the re-

sponse consistency gives the highest density to q = 1, which

corresponds to probability matching, while also allowing for

more random or more deterministic behavior.

To measure risk propensity using the CPT model we focus

on the loss aversion parameter _. The motivation is that an

individual who exhibits strong loss aversion can be inter-

preted as being risk averse, since their preference will be for

gambles that avoid the possibility of a large loss. For the

inference about loss aversion to be meaningful, there must

be some level of behavioral consistency, and so we place

a secondary focus on the q parameter. We acknowledge

that there are other ways in which the CPT model could

be interpreted in terms of risk propensity. For example, if

the probability weighting function infers that an individual

perceives probabilities in extreme ways, significantly un-

derestimating small probabilities and overestimating large

probabilities, this could be seen as supporting a risky per-

ception of the gambles. Alternatively, a lack of consistency

in decision-making corresponds to a form of risk-seeking,

but is more in line with erratic behavior than the underlying

risk propensity trait we aim to measure.

4.3 Modeling Results

4.3.1 Removing Contaminants

We used a simple guessing model of contamination that as-

sumes the probability any participant will choose Gamble A

over Gamble B is \�,� =
1
2
. This guessing model was

applied using a latent-mixture procedure based on model-

indicator variables (Zeigenfuse & Lee, 2010). A total of

22 of the participants were inferred to be using the guessing

model, and were removed from the remainder of the analysis.

4.3.2 Descriptive Adequacy

We checked the descriptive adequacy of the CPT model us-

ing the mode of the posterior predictive distribution for each

participant on each problem. This measure of the choice de-

scribed by the model agreed with 77% of the decisions that

participants made. Given that the chance level of agreement

for choosing between two gambles is 50%, we interpret these

results as suggesting that the CPT model provides a reason-

able account of people’s behavior in the gambling task.
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Figure 5: The joint and marginal distributions of the pos-

terior expectations of the _ risk aversion and q consistency

parameters over all participants. The representative partici-

pants from the left panel of Figure 4 are labeled.

4.3.3 Inferred Subjective Value Functions

We found large individual differences in the subjective value

functions and probability weighting functions that partici-

pants use. Figure 4 shows the inferred functions for a set of

representative participants. In the left panel the first partic-

ipant, shown by the dotted line, has a relatively high value

of _ but a low value of U. Consequently, their subjective

value curve significantly undervalues the magnitude of both

gains and losses, but still shows loss aversion in the sense

that the magnitude of losses are weighed more heavily than

gains. The second participant, shown by the dashed line, has

a relatively high value of both U and _. This participant’s

subjective value curve also undervalues the magnitude of

both gains and losses, but shows strong loss aversion. The

subjective magnitude of losses are much larger than gains.

The third participant, shown by the solid line, has a relatively

high value of U but _ is close to one. Consequently, the effect

of undervaluing the magnitude of both gains and losses is

weaker.

The first participant in the right panel of Figure 4, shown

by the dotted line, has relatively lower values of both W and

X. Consequently, their weighting functions for both condi-

tions overestimate smaller probabilities and underestimate

larger probabilities. The second participant, shown by the

dashed line, has relatively high values of both W and X. Their

probability weighting functions are extremely close to the

diagonal, which corresponds to good calibration. The third

participant, shown by the solid line, has a relatively low

value of W but high value of X. This participant significantly

underestimates small probabilities and overestimates large

probabilities.

Figure 5 shows the joint and marginal distributions of the

posterior expectations of the loss aversion parameter _ as a

measure of risk propensity, and the consistency parameter

q, over all participants. The representative participants from

the left panel of Figure 4 are labeled. It is clear from that

there is a range of inferred individual differences in both loss

aversion and consistency. About one-third of the participants

exhibit the opposite of loss aversion, with _ values below 1.

About one-third of the participants exhibit relatively strong

loss aversion with values of _ values over 1.5. All of the q

consistency parameters are inferred to be well above 0, as

expected given the removal of guessing contaminants, but

many are less consistent than probability matching.

5 Optimal Stopping Problems

5.1 Theoretical Background

Optimal stopping problems are sequential decision-making

tasks in which people must choose the best option from

a sequence, under the constraint that an option can only

be chosen when it is presented (Ferguson, 1989; Gilbert

& Mosteller, 1966). These problems are sometimes called

secretary problems, based on the analogy of interviewing

a sequence of candidates for a job with the requirement

that offers must be made immediately after an interview has

finished, and before the next candidate is evaluated.

People’s behavior on optimal stopping problems has been

widely studied in a variety of contexts, using a number of dif-

ferent versions of the task (Bearden et al., 2006; Christian &

Griffiths, 2016; Kogut, 1990; Lee, 2006; Seale & Rapoport,

1997, 2000). Some studies have used the classic rank-order

version of the problem, in which only the rank of the cur-

rent option relative to the options already seen is presented

(Seale & Rapoport, 1997, 2000; Bearden et al., 2006). Other

studies have used the full-information version of the task, in

which the values of the alternatives are presented (Goldstein

et al., 2020; Lee, 2006; Guan et al., 2014, 2015; Shu, 2008).

For both of these versions there are known optimal solution

processes to which people’s performance can be compared

(Ferguson, 1989; Gilbert & Mosteller, 1966).

We use the full-information version of the problem, for

which the optimal solution is to choose the first number that

is both currently maximal and above a threshold that depends

upon the position in the sequence. The values of the optimal

thresholds also depend on two properties of the problem.

One is the number of options in the sequence, known as the

length of the problem. Intuitively, the more options a prob-

lem has, the higher thresholds should be, especially early in

the sequence. The second property is the distribution from

which values of the options are chosen, known as the envi-

ronment distribution. Intuitively, distributions that generate

many large values require setting higher thresholds, while
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distributions that generate many small values require setting

lower thresholds.

5.2 Method

Participants completed four types of optimal stopping prob-

lems, made up of combining problem lengths of four and

eight with environment distributions we call neutral and

plentiful. In the neutral environment, values were gener-

ated from the uniform
(
0, 100

)
distribution. In the plentiful

environment, values were generated by scaling values drawn

from the beta
(
4, 2

)
distribution to the range from 0 to 100.

All participants completed the same 40 problems within each

condition, and the order of problems within each condition

was randomized across participants.

To complete each problem, participants were instructed to

pick the heaviest cartoon cat out of a sequence, with each

cat’s weight ranging from 0 to 100 pounds. A screenshot of

the interface is provided in the supplementary material. Par-

ticipants were told the length of the sequence, that a value

could only be chosen when it is presented, that any value

that was not the maximum was incorrect, and that the last

value must be chosen if no values were chosen beforehand.

Participants indicated whether or not they chose each pre-

sented value by pressing either a “select” or a “pass” button.

The values that participants rejected in a sequence were not

shown once the next value in the sequence was displayed.

The values in the sequence after the one the participant chose

were never presented. After each problem, participants were

provided with feedback indicating whether or not they chose

the option with the maximum value.

5.3 Bias-From-Optimal Model

Previous work modeling decision making in optimal stop-

ping problems has found evidence that people use a series of

thresholds to make decisions, and that there are large indi-

vidual differences in thresholds (Goldstein et al., 2020; Guan

et al., 2014; Guan & Lee, 2018; Lee, 2006). A surprising but

reliable finding is that, beyond the initial few problems in an

environment (Goldstein et al., 2020), there is relatively little

learning or adjustment of thresholds (Baumann et al., 2018;

Campbell & Lee, 2006; Guan et al., 2014; Lee, 2006). This

justifies modeling an individual’s decisions in terms of the

same set of thresholds being applied to all of the problems.

We use the previously-developed Bias-From-Optimal

(BFO) model to characterize the thresholds people use.

(Guan et al., 2015). The BFO model represents the thresh-

olds an individual uses in terms of how strongly they devi-

ate from the optimal thresholds for the problem length and

environmental distribution. We denote the optimal thresh-

olds as g̃1, . . . , g̃< for a problem of length < (Gilbert &

Mosteller, 1966, Table 2). Naturally, the last threshold in
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Figure 6: The thresholds produced by the bias-from-optimal

threshold model under different parameterizations of V and

W. The optimal threshold, corresponding to V = W = 0, is

also shown.

the sequence must be 0 since the last value must be cho-

sen. The 8th participant’s thresholds depend on a param-

eter V<
8

∼ Gaussian
(
0, 1

)
that determines how far above

or below their threshold is from optimal, and a parameter

W<
8

∼ Gaussian
(
0, 1

)
that determines how much their bias

increases or decreases as the sequence progresses. Formally,

under the BFO model, the 8th participant’s :th threshold in

a problem of length < is

g<8: = 100 ×Φ

(
Φ

−1

(
g̃<
:

100

)
+ V<8 +

:

<
W<8

)

for the first < − 1 positions, and g<
8<

= 0 for the last. The

link functions Φ (·) and Φ
−1 (·) are the Gaussian cumulative

distribution and inverse cumulative distribution functions,

respectively.

According to the BFO model, the probability that the 8th

participant will choose the value they are presented in the

:th position on their 9 th problem is

\<8 9: =




U<
8

if E<
8 9:
>g<

8:
and E<

8 9:
=max

{
E<
8 91
, . . . , E<

8 9:

}

1−U<

8

<
otherwise

for the first < positions and

\<8 9< = 1 −

<−1∑

:=1

\<8 9:

for the last position. The parameter U<
8

∼ uniform
(
0, 1

)
is

the individual-level accuracy of execution that corresponds

to how often the deterministic threshold model is followed

(Guan et al., 2014; Rieskamp & Otto, 2006).

Figure 6 shows how the shape of threshold functions

changes with different values of V and W, as compared to
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the optimal decision threshold for a problem of length eight

in the neutral environment. The optimal threshold corre-

sponds to the case with V = 0 and W = 0, and is shown in

bold. The V parameter represents a shifting bias from this op-

timal curve, with positive values resulting in thresholds that

are above optimal and negative values resulting in thresh-

olds that are below optimal. The W parameter represents

how quickly thresholds are reduced throughout the problem

sequence, relative to the optimal rate of reduction. Positive

values of W produce thresholds that drop too slowly, while

negative values of W produce thresholds that drop too quickly.

Priors are placed on the two risk parameters and consistency

parameter for each participant so that W, V ∼ Gaussian
(
0, 1

)

and U ∼ uniform
(
0, 1

)
.

Our decision to use the BFO model was based on the direct

interpretability of its parameters in terms of risk propensity.

It is an unrealistic model of the cognitive processes involved

in optimal stopping problem decisions, because it assumes

perfect knowledge of the optimal thresholds, which are dif-

ficult to derive and compute. Alternative models based on

fixed and linearly decreasing thresholds provide more re-

alistic cognitive processing accounts (Baumann et al., in

press; Goldstein et al., 2020; Lee, 2006; Lee & Courey, in

press). The BFO model is better interpreted as a measure-

ment model, with the V and W parameters quantifying how a

set of thresholds are more or less risky than optimal.

One interpretation is that higher thresholds that require

higher values represent risk seeking and lower thresholds

represent risk aversion. Larger values V increase thresholds,

and larger values of W maintain higher thresholds for longer.

Under this interpretation larger values of V and W correspond

to greater risk propensity. In contrast, smaller values of V

and W both lead to lower thresholds over the course of the

sequence and correspond to lower risk propensity.

5.4 Modeling Results

Before applying the BFO model, we checked that there was

no clear evidence of learning or adaptation. As discussed

above, this is a basic empirical pre-condition for the appli-

cation of threshold models. Figure 7 shows the performance

of participants, measured by the proportion of problems for

which they correctly chose the maximum. The problems

were split into four blocks of 10 problems each. In the two

length-four conditions mean performance is between about

0.5 and 0.6. In the two length-eight conditions mean perfor-

mance is between about 0.3 and 0.5. Participant performance

is better in the shorter problems, but there do not appear to

be large differences in performance between the neutral and

plentiful environments. These results do not suggest there is

any significant learning or adaptation.
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Figure 7: Mean proportion correct over all participants on

successive blocks of 10 problems for the four different optimal

stopping conditions.

5.4.1 Removing Contaminants

We developed two contaminant models for the optimal stop-

ping task. The first assumes that people simply picked the

first option in the sequence repeatedly across all problems,

regardless of its value. The second assumes that people

choose randomly, so that each option in the sequence is

equally likely to be chosen. A latent-mixture analysis identi-

fied three participants as using the first contaminant model,

and these were removed from subsequent analysis.

5.4.2 Descriptive Adequacy

As a posterior predictive check, we took the mode of the

posterior predictive distribution for each participant on each

problem as the decision the model expects. By this mea-

sure, the BFO model successfully described about 77% of

the decisions that participants made. Given that the base

rate or chance level of agreement is 25% for length-four

problems and 12.5% for length-eight problems, we interpret

these results as evidence that the model provides a reasonable

account of people’s behavior.

5.4.3 Inferred Thresholds

Figure 8 shows the marginal posterior expectations for all the

inferred thresholds under all four conditions for all of the par-

ticipants. The optimal decision threshold in each condition

is also shown as a solid black line. It is clear that partici-

pants are generally sensitive to both length of the problem

and the environmental distribution from which values are

drawn. The thresholds in the plentiful environment condi-

tions are relatively higher than the thresholds in the neutral

environment conditions. The thresholds in the length-eight
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Figure 8: The inferred thresholds for all participants in the optimal stopping conditions corresponding to the length-four

neutral environment (top-left), the length-four plentiful environment (top-right), the length-eight neutral environment (bottom-

left), and the length-eight plentiful environment (bottom-right). Two representative participants are shown by the dashed and

dotted lines.

conditions remain higher longer into the sequence than the

thresholds in the length-four conditions. Interestingly, it ap-

pears that participants in the length-eight conditions tend to

use thresholds that are lower than optimal in both environ-

ments, and especially so in the plentiful environment.

It is also clear that there are individual differences in

thresholds in all four conditions. Two participants are high-

lighted by dotted and dashed lines in Figure 8, showing their

inferred thresholds in all four conditions. These participants

were chosen because they show very different patterns of

risk propensity in terms of their thresholds. The participant

represented by the dotted lines can be seen to be risk seek-

ing, because their thresholds for all four conditions are much

higher than optimal. The participant starts their threshold

high and maintains it at a high level as the sequence pro-

gresses. This risk-seeking behavior is quantified by their V

and W parameter values, which are both positive and rela-

tively large. Conversely, the participant represented by the

dashed lines can be seen to be risk averse, because their

thresholds are much lower than optimal in all four condi-

tions. The participant starts their threshold low and lowers it

quickly as the sequence progresses. This risk-averse behav-

ior is also quantified by their large negative V and W parameter

values.

Figure 9 summarizes the individual differences across all

participants for all four conditions. The posterior expecta-

tions of the V and W risk parameters are shown jointly in

the scatter-plot in the center panel, and their marginal dis-

tributions are shown as histograms on the bottom and left

margins. The two participants highlighted in Figure 8 are

labeled in the joint distribution. The dotted lines represent

where V and W are equal to 0. Where the dotted lines meet

in the center represents the optimal threshold. It is clear

that there is a wide range of both quantitative and qualitative

individual differences in risk propensity, because all four

quadrants around optimality are populated.

6 Bandit Problems

6.1 Theoretical Background

Bandit problems are widely used to study human decision

making under risk and uncertainty (Banks et al., 1997; Daw

et al., 2006; Meyer & Shi, 1995; Lee et al., 2011). In bandit
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Figure 9: The joint and marginal distributions of the posterior expectations of the V and W parameters, across the four

conditions for all of the participants. The risk-seeking and risk-averse participants from Figure 8 are labeled.

problems, people must choose repeatedly between a set of

alternatives. Each alternative has a fixed reward rate that is

unknown to the decision maker, and each time it is chosen

this probability is used to generate either a reward or a failure.

The goal is to maximize the total number of rewards over

the sequence of decisions. Bandit problems are psychologi-

cally interesting because they require that the exploration of

new good alternatives be balanced with the exploitation of

good existing alternatives (Mehlhorn et al., 2015). People

generally start by exploring the different available alterna-

tives before shifting to exploit the alternative with the highest

reward rate.

Bandit problems can differ in terms of how many alterna-

tives are available and in terms of how many decisions are

made within a problem. In infinite-horizon bandit problems

the total number of decisions to be made is not known in

advance, but there is some probability that the problem stops

after any decision. In finite-horizon bandit problems the to-

tal number of decisions to be made within a problem is fixed

and known in advance. This corresponds to the length of a

problem. Bandit problems can also differ in terms of the dis-

tributions of reward rates that underlie each alternative. This

distribution corresponds to the environment for the problem.

6.2 Method

Participants completed four types of finite-horizon bandit

problems, all involving two alternatives. The four condi-

tions combined problem lengths of eight and 16 with neutral

and plentiful environmental distributions. In the neutral

environment, reward probabilities were generated from the

uniform
(
0, 1

)
distribution. In the plentiful environment, re-

ward probabilities were generated from the beta
(
4, 2

)
distri-

bution. Consequently, the plentiful environments contained

alternatives that had relatively higher reward rates. All par-

ticipants completed 40 problems within each condition and

the order of problems within each condition was randomized

across participants.

Participants were instructed to maximize the number of

rewards by pulling the arms of two cartoon slot machines. A
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screenshot of the interface is provided in the supplementary

material. Before beginning each condition, participants were

informed that the reward probabilities for each machine were

different for each problem in the block, but the same for

all choices within a problem. They were also told how

many choices were required for each problem. They were

not, however, told the underlying distribution of the reward

probabilities.

Participants made their choice selection by clicking a

“pull” button under one or the other of the two slot ma-

chines. The reward or failure outcome was then provided,

in the form of a green or red bar. If a choice resulted in a

reward, a green bar was added to the left side of the chosen

slot machine. If a choice resulted in a failure, a red bar was

added to the left side of the chosen slot machine. Thus, the

bars showed the cumulative pattern of reward and failure

over the course of the problem, and the total reward points

earned on the current problem was also shown at the top of

the screen. A problem was completed once the participant

completed all of the choices.

6.3 Extended Win-Stay Lose-Shift Model

There are many different models of human decision making

on bandit problems, including the n-greedy, n-decreasing and

the g-first model (Sutton & Barto, 1998). We use a variant of

perhaps the simplest and most widely used model, known as

win-stay lose-shift (WSLS: Robbins, 1952; Sutton & Barto,

1998). In its deterministic form, this model assumes that

people stay with the most recently-chosen alternative if it

provides a reward, but shift to another alternative if it does

not. In the standard stochastic version of the WSLS strat-

egy, there is a probability W of following this rule for every

decision.

In our extended WSLS model there is a probability WF of

staying after a reward and a potentially different probability

W; of shifting after a failure. This WSLS model allows there

to be a psychological difference between reacting to reward

and failure in the decision-making process. This model has

been found to account well for people’s behavior (Lee et al.,

2011; Zhang & Lee, 2010a).

The extended WSLS model does not require memory of

previous actions and outcomes beyond the immediately pre-

ceding trial. It is also insensitive to whether the horizon is

an infinite or finite. Despite this simplicity, it provides a

measure of risk propensity. A person who is risk seeking is

likely to shift to another alternative with a high probability

following a failure, in order to explore the other available

options. In contrast, a person who is risk averse is likely to

shift to another alternative with a relatively lower probability

following a failure.

We represent the behavioral data as H8 9: = 1 if the 8th

participant chose the left alternative on the :th trial of their

9 th problem, and H8 9: = 0 if they chose the right option. The

extended WSLS model assumes the probability of choosing

the left alternative is

\8 9: =




1/2 if : = 1

WF if chose left and A8 9 (:−1) = 1

1 − W; if chose left and A8 9 (:−1) = 0

1 − WF if chose right and A8 9 (:−1) = 1

W; if chose right and A8 9 (:−1) = 0,

where A8 9 (:−1) = 1 if the previously selected alternative

resulted in a reward, and A8 9 (:−1) = 0 if the previously

selected alternative resulted in a failure. The observed

rewards and failures on each trial A8 9: are generated by

A8 9: ∼ Bernoulli
(
?G

)
, where ?left and ?right are the reward

rates for the two alternatives. These reward rates are gener-

ated from either the neutral or plentiful environment. The

behavioral data are modeled as H8 9: ∼ Bernoulli
(
\8 9:

)
. Fi-

nally, our model uses the priors WF , W; ∼ uniform
(
0, 1

)
.

6.4 Modeling Results

6.4.1 Removing Contaminants

We used a guessing contaminant model in which, for ev-

ery trial of a problem, the participant chooses at random.

Using the latent-mixture approach, there was overwhelm-

ing evidence in favor of the extended WSLS model over the

guessing model for all of the participants. Consequently,

no contaminant participants were removed and the modeling

analysis used all 56 participants.

6.4.2 Descriptive Adequacy

As a posterior predictive check, the mode of the posterior

predictive distribution for each participant on each problem

was used as the decision that the model expected to have

been made. The extended WSLS model was able to describe

84% of the decisions that the participants made. Given

that the chance level of agreement for selecting either of the

two alternatives is 50% on each trial within all problems,

we interpret this result as showing that the extended WSLS

model provides a good account of people’s behavior.

6.4.3 Inferred Win-Stay Lose-Shift Probabilities

Figure 10 shows the numbers of shifts following rewards

and failures across positions for four representative partic-

ipants. These participants were chosen because they span

the range of inferred individual differences. The left pan-

els show the length-eight conditions while the right panels

show the length-16 conditions. The numbers of shifts fol-

lowing failure are shown in blue for the neutral condition,

and in green for the plentiful condition, while the numbers

of shifts following reward are shown in gray. In all four

conditions, Participant 1 shifts relatively often after a failure
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Figure 10: The number of shifts following reward versus failure for four representative participants in each of the four

conditions. The left panels show the length-eight conditions while the right panels show the length-16 conditions. The numbers

of shifts following failure are shown in blue for the neutral condition, and in green for the plentiful condition. The numbers

of shifts following reward are shown in gray. The inferred WF and W; parameters for each participant in the the neutral and

plentiful conditions are also shown.

but rarely after a reward. Participant 2 almost never shifts,

either following a reward or a failure. Participant 3 shifts

relatively more often following failure than Participant 2,

but also shifts sometimes following a reward. Participant 4

shifts moderately often following both reward and failure for

early decisions in the sequence, but shifts less often as the

sequence progresses. The inferred WF and W; parameters for

each participant in the the neutral and plentiful conditions

are also shown, and correspond to the observed staying and

shifting behavior.

Figure 11 shows the joint and marginal distributions of

the posterior means of the WF and W; for each participant,

for all four conditions. The four representative participants

from Figure 10 are labeled. It is clear that the WF and W;

parameters capture the consistent differences in their behav-

ior observed in Figure 10. For example, Participant 1, who

almost always stays after a reward and shifts after a failure, is

consistently in the top right of the scatter plot, corresponding

to high values of both the WF and W; parameters. In contrast,

Participant 2, who rarely switches, is consistently located

in the bottom right of the scatter plot, corresponding to a

high value of the WF parameter and a small value of the W;

parameter.

Overall, it is clear that there is a range of individual dif-

ferences in both win-stay and lose-shift probabilities, and

that there is a negative relationship between the two param-

eters. Participants who tend to stay following a reward also

tend to stay following a failure. Participants who shift rela-

tively more even after a reward also tend to explore the other

alternative after a failure.

7 Questionnaires

Participants completed three questionnaires: the Risk

Propensity Scale (Meertens & Lion, 2008), the Risk Tak-

ing Index (Nicholson et al., 2005), and the Domain Specific

Risk Taking scale Blais & Weber (2006). The questions

involved in these instruments are provided in the supple-

mentary materials.
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Figure 11: Joint and marginal distributions of the means of the WF and W; posterior expectations across the four conditions

for each participant. The four representative participants shown from Figure 10 are labeled.

7.1 Risk Propensity Scale

The Risk Propensity Scale (RPS) was designed to be a short

and easily administered test for measuring general risk-taking

tendencies. The RPS originally consisted of only nine items,

from which two items were later removed. The version of

the RPS we use consists of the seven remaining items. All

of the items involve statements that are rated on a nine-

point scale ranging from “totally disagree” to “totally agree,”

except for the last item, which involves a nine-point rating

from “risk avoider” to “risk seeker.” Items 1, 2, 3, and 5

were reverse-scored so that high scores represented high risk

propensity. Meertens & Lion (2008) reported an internal

reliability coefficient measured by Cronbach’s U of 0.77.

Participants indicated their selection by checking the ap-

propriate box under each number. To obtain an overall RPS

score for each participant, the mean of the seven items was

taken. The left panel of Figure 12 shows the distribution of

RPS scores across all 56 participants. The RPS scores are

right-skewed ranging from 1 to 8.14, with " = 3.61 and

(� = 1.86. These results are different from Meertens &

Lion (2008), who reported a mean score of 4.63 and stan-

dard deviation of 1.23. The Cronbach’s U observed in this

sample of 56 participants was 0.90.

7.1.1 Risk Taking Index

The Risk Taking Index (RTI) assesses overall risk propensity

in six domains: recreation, health, career, finance, safety, and

social. There is only one item for each of the six domains,

but each item is answered twice: once for current attitudes,

and once for past attitudes. All of the answers are given using

a five-point Likert scale ranging from “strongly disagree” to

“strongly agree.”

Participants indicated their selection by checking the ap-

propriate box under each number. To obtain an overall RTI

score for each participant, the sum of each domain’s re-

sponse was taken across the current and past contexts. Then,

the sum of each domain was taken as the overall RTI score.

Therefore, RTI scores can potentially range from 12 to 60,

where higher scores indicate higher risk propensity. Nichol-

son et al. (2005) reported high internal consistency for the
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general risk propensity scale with a Cronbach’s U of 0.80.

The left panel of Figure 12 shows the distribution of RTI

scores across all 56 participants. The RTI scores are possi-

bly bi-modal and range from 12 to 42. There is a large group

of participants with a peak around 20 and a smaller group of

participants with a peak around 35. These results are sim-

ilar to Nicholson et al. (2005); the original study reported

a mean score of 27.54 and standard deviation of 7.65. The

Cronbach’s U observed in this sample of 56 participants was

0.84.

7.2 Domain Specific Risk Taking Scale

The Domain Specific Risk Taking scale (DOSPERT) was

originally developed by Weber et al. (2002) and later revised

by Blais & Weber (2006) to be shorter and more broadly

applicable. The original version was revised from 40 items

down to 30 items, evaluating risky behavioral intentions orig-

inating from five domains: ethical, financial, health/safety,

social, and recreational risks. Each domain involves six

items.

The DOSPERT differs from the RPS and RTI in that it

attempts to distinguish people’s tendency to be risk seeking

from people’s perception of risk. Blais & Weber (2006)

found a negative relationship between the two; people who

tend to engage in more risk seeking behavior also tend to

perceive situations as less risky, and vice versa. Therefore,

the DOSPERT is split into two assessments, separating risk

taking from risk perception. Participants rated each of the 30

statements in terms of self-reported likelihood of engaging

in risky behaviors to measure risk taking, and in terms of

their gut-level assessment of the riskiness of these behaviors

to measure risk perception. In the risk-taking assessment, a

seven-point rating scale was used, ranging from “extremely

unlikely” to “extremely likely.” In the risk-perception as-

sessment, a seven-point rating scale was used ranging from

“not at all risky” to “extremely risky”.

Participants indicated their selection by checking the ap-

propriate box under each number. Ratings were summed

across all items of each domain to obtain five subscale scores

for risk taking and five subscale scores for risk perception.

The overall DOSPERT risk taking score is the mean of each

subscale score for the risk taking assessment. Similarly, the

overall DOSPERT risk perception score is the mean of each

subscale score for the risk perception assessment. Therefore,

each of the scores can potentially range from 6 to 42, where

higher scores indicate higher risk propensity. Blais & Weber

(2006) reported Cronbach’s U’s ranging from 0.71 to 0.86

for the risk-taking scores, and Cronbach’s U values ranging

from 0.74 to 0.83 for the risk-perception scores.

The right panel of Figure 12 shows the relationship be-

tween the risking taking and risk perception scores from the

DOSPERT across all 56 participants, along with the marginal

distributions of each. The risk taking scores also appear to

be slightly bi-modal, with a large group of participants cen-

tered around about 16–18 and then a smaller group near 30.

Risk perception scores are unimodal and centered around

27. These results are consistent with the findings from Blais

& Weber (2006), in the sense that there is a negative re-

lationship between risk taking and risk perception scores

(A = −0.22). The Cronbach’s U observed in this sample of

56 participants was 0.92 for the overall risk-taking score, and

0.92 for the overall risk-perception score.

8 Correlation Analysis

Our main goal is to examine the relationship between the

risk propensity and consistency parameters within and across

tasks, and their relationship to the questionnaire measures.

Before doing this, however, we compared the behavioral per-

formance of participants within and across each cognitive

task. Performance in the BART was computed as the aver-

age dollar amount collected on each problem. Performance

in the gambling task was computed as the proportion of

problems for which the participant chose the gamble with

the maximum expected utility. Performance on the optimal

stopping problem was computed as the proportion of prob-

lems where the participant correctly chose the maximum.

Performance in the bandit task was computed as the average

proportion of trials that resulted in reward.

Figure 13 shows the correlations of participant perfor-

mance across each condition for all of the decision-making

tasks. The area of the circles represent the magnitude of

Pearson’s correlation A , with blue circles representing pos-

itive correlations and red circles representing negative cor-

relations. These empirical results suggest that participant

performance is highly correlated within tasks, but that it is

less strongly correlated across tasks.

8.1 Cognitive Task Overview

Table 1 provides an overview of the four decision-making

tasks, models, and relevant parameters. The BART has

two risk parameters, W+
1:2

, and two consistency parameters,

V1:2. The gambling task has one risk parameter, _, and one

consistency parameter, q. The optimal stopping task has

eight risk parameters, V1:4 and W1:4, and four consistency

parameters, U1:4. The bandit task has four risk parameters,

W;
1:4

, and four consistency parameters, WF
1:4

. In total, there

are 26 relevant parameters from the decision-making tasks

to be compared within and across tasks for each individual.

8.2 Estimating Correlations with Uncertainty

The correlations between each risk and consistency parame-

ter from all four decision-making tasks were estimated, using

a Bayesian approach, based on Lee & Wagenmakers (2013,
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Figure 12: The distributions of questionnaire-based measures of risk. The left panel shows the joint and marginal distributions

of RPS and RTI scores. The right panel shows the joint and marginal distributions of the DOSPERT risk taking and risk

perception scores.

Task Conditions Model Risk parameter(s) Consistency parameter

Optimal Stopping 4 BFO V1, . . . , V4, W1, . . . , W4 U1, . . . , U4

BART 2 2-parameter W+
1
, W+

2
V1, V2

Bandit 4 e-WSLS W;
1
, . . . , W;

4
WF

1
, . . . , WF

4

Gambling 2 CPT _ q

Table 1: Overview of tasks and parameters.

Chap. 5). A key feature of this approach is that it incorporates

uncertainty in the inferences of the parameters themselves

(Matzke et al., 2017). That is, we do not use point estimates

of the various risk and consistency parameters, but instead

acknowledge that participant’s behavior is consistent with a

range of possible values, given the limited behavioral data.

Our inferences about the correlations between parameters

are thus sensitive to the precision with which their values are

determined from the cognitive models and decision-making

tasks we used.

Formally, for each pair of parameters, we correlate a set of

samples for the 8th participant, rather than just a single best

estimate for each participant. These samples are generated

by assuming Gaussian marginal posterior distributions

G8 9 ∼ Gaussian
(
H8 9 , _

4
9

)
,

where y8 = (H81, H82) represents the latent true value of the

parameters, and ,
4
=

(
_4

1
, _4

2

)
denotes the precision of the

inference about them. The precisions are estimated as the

standard deviations of the marginal posterior distributions

from the inferences of the decision-making models. The

correlation focuses on the latent true values of the cognitive

measures, by modeling them as a draw from a multivariate

Gaussian distribution

y8 ∼ Gaussian

(
(`1, `2) ,

[
f2

1
Af1f2

Af1f2 f2
2

]−1)
.

Our hierarchical correlation model uses the following priors

on A , f1, f2, `1, and `2:

A ∼ uniform
(
−1, 1

)

f2
1 , f

2
2 ∼ invGamma

(
0.001, 0.001

)

`1, `2 ∼




uniform
(
0, 1

)
for OS U, Bandit WF , W;

uniform
(
0, 10

)
for BART V, W+

Gaussian
(
0, 0.001

)
for OS V, W

uniform
(
1, 9

)
for RPS

uniform
(
10, 50

)
for RTI, DOSPERT.

The correlation analysis was implemented as a Bayesian

graphical model in JAGS. It was applied independently to

all possible parameter combinations, inferring the posterior

distribution of the correlation coefficient in each case. We

generally use the posterior mean as a summary of the infer-

ence, but also use the Savage-Dickey method (Wetzels et al.,

2010) to estimate Bayes factors to compare the hypotheses

of correlation and no correlation.
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Figure 13: Pearson’s correlations of performance across

each condition in all of the decision-making tasks. Blue cir-

cles represent positive correlation, while red circles represent

negative correlations. The areas of the circles correspond to

the magnitudes of the correlations.

An advantage of Bayesian analysis is that it can find ev-

idence in favor of a null hypothesis such as no correlation.

Whereas null hypothesis significance testing can either find

evidence for a correlation, or fail to find evidence for a cor-

relation, the Bayesian analysis can produce three outcomes.

These possible outcomes are evidence for a correlation, evi-

dence for the absence or a correlation, or no strong evidence

for either possibility. This is important in evaluating whether

the data contain enough information to make meaningful

claims about the correlations. To the extent that the Bayes

factors provide evidence in favor of either the presence or ab-

sence or correlations, the data can be considered sufficiently

powerful to have answered the research question. Evidence

for the data being insufficient would be provided by Bayes

factors that provide no strong evidence in either direction.

8.3 Correlation Results

Combining the scores from the three questionnaires to the

parameters from the four decision-making tasks gives a total

of 30 risk and consistency measures to be compared, which

leads to 435 pairwise correlations. Figure 14 shows the re-

sults for all of these correlations. The dashed lines divide the

grid into the three questionnaires and four decision-making

tasks. The circles indicate parameter pairs for which the

Bayes factor provides evidence of a correlation. We used

a cutoff of 3 for the Bayes factor, because it is a standard

boundary corresponding what is variously labeled “substan-

tial” (Jeffreys, 1961), “positive" (Kass & Raftery, 1995), and

“moderate” (Lee & Wagenmakers, 2013) evidence.1 The ar-

eas of the circles correspond to the magnitudes of the corre-

lations, given by the posterior expectation of A . Blue circles

indicate that a correlation is positive while red circles in-

dicate that a correlation is negative. Meanwhile, the cross

markers correspond to those comparisons where Bayes factor

was at least 3 in favor of the null hypothesis of no correlation.

It is clear that there are positive correlations between the

same parameters within tasks. For example, all of the con-

sistency parameters across conditions from optimal stopping

are highly correlated, as are the risk parameters within the

BART. This is clear from the patterns of blue circles along

the diagonal. The positive correlations across conditions

within the same task are expected, given the stability we ob-

served in representative participants across conditions in the

decision-making task analyses. Furthermore, the RTI, RPS,

and DOSPERT RT are also positively correlated with each

other, replicating previous findings.

There also appear to be some negative correlations be-

tween different parameters within tasks. For example, the

WF and W; parameters in the bandit task are negatively corre-

lated with each other, and the risk and consistency parameters

in the BART are also negatively correlated. As we noted in

the task-specific analyses, there is some trade-off between

parameters for some of these tasks.

There appears, however, to be less evidence for systematic

correlations across tasks. Indeed, there is generally evidence

for a lack of correlation between parameters from different

tasks, and between cognitive parameters and the question-

naire measures. The one exception relates to the gambling

tasks parameters, for which there is no evidence for or against

correlations with other cognitive parameters and question-

naire measures. This result likely reflects a failure of the

experimental design to measure the risk aversion and con-

sistency parameters with enough precision. In contrast, the

results in Figure 14 show that there is enough information

to make inferences, either in favor or against the presence of

a correlation, for all of the other cognitive parameters and

questionnaire measures. This finding speaks directly to the

adequacy of the data to address the main research question

about correlations between model parameters and question-

naire measures.

Figure 15 provides a different presentation of the corre-

lation analysis that focuses on the comparisons for which

there is evidence for correlations. Only pairs of parameters

or measures with Bayes factors greater than 10 in favor of

the alternative model are considered in this analysis, to fo-

cus on those pairs for which the evidence of correlation is

strongest. The left panel shows the 95% Bayesian credible

intervals of A for each comparison. The right panel shows

1See https://www.nicebread.de/grades-of-evidence-a-cheat-sheet/.
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Figure 14: Correlation matrix of the risk and consistency parameters. Blue circles represent positive correlations for which the

Bayes factor provided at least moderate evidence, while red circles represent negative correlations for which the Bayes factor

provided at least moderate evidence. The areas of the circles correspond to the absolute values of the posterior expectation

of the correlation A . Cross markers indicate that the Bayes factor provided at least moderate evidence for the absence of a

correlation. The parameters within tasks are identified by the dashed gray lines. OS U represents consistency in the optimal

stopping problem and OS V and W represent risk in the optimal stopping problem. Bandit WF represents consistency in the

bandit task and Bandit W; represents risk. Bart W+ represents risk in the BART task and Bart V represents consistency. Gamble

q represents consistency and Gamble _ represents risk.

the log Bayes factors for the corresponding comparisons.

The strong positive positive correlations between the same

cognitive parameters across different conditions within tasks

are clear, as are the trade-offs between different parameters

within tasks, shown by the strong negative correlations.

9 Cognitive Latent Variable Analysis

The correlation analysis is one way to test the idea that there

is a general risk factor underlying the cognitive parameters

that control people’s risk propensity on the cognitive tasks,

and is also measured by the questionnaires. As a second com-

plementary approach to testing the same idea, we explored

the factorial structure of the tasks using a cognitive latent

variable model analysis (CLVM: Vandekerckhove, 2014; Pe

et al., 2013). CLVMs are a broad category of models that

involves a latent variable structure built on top of cognitive

process models and other measures of behavior, to allow in-

ference of latent variables that have higher-order cognitive

interpretations.

A CLVM is defined by a factor matrix Φ, which contains a

score q 5 8 for each participant 8 = 1, . . . , � on each of � latent

factors 5 = 1, . . . , � , and a loadings matrix Ψ, which has �

columns corresponding to latent dimensions or factors, and

� rows 4 = 1, . . . , � corresponding to cognitive parameters

or other behavioral measures. The values k4 5 in the load-

ings matrices, corresponding to factor-parameter pairings,

may be set to assume there is no association (k4 5 = 0),
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Figure 15: 95% Bayesian credible intervals (left panel) and Bayes factors (right panel) for Pearson’s correlation coefficient

A for parameter pairs with strong evidence of a correlation. Positive correlations are shown in blue and negative correlations

are shown in red.
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assume there is an association (k4 5 = 1), or allow for the

possibility there is some level of association to be inferred.

These assumptions formalize different models of the factor

structure underlying the relationships between the cognitive

model parameters and questionnaire measures. Each cog-

nitive model parameter and questionnaire measure 4 has an

expected value given by the weighted average of all factors:

� (48 9 ) =
∑�
5 k4 5 q 5 8 . The likelihood of the model is

48 9 ∼ Gaussian
( �∑

5

k4 5 q 5 8 , _
4
)
,

where the uncertainty _4 is estimated as the standard de-

viation of the marginal posterior distribution of parameter

4 as obtained from the preceding analyses. In all cases,

the latent factor scores have multivariate Gaussians priors

with mean zero and precision matrix the identity matrix:

q ·,8 ∼ multivariateGaussian (0�×1, 1�×� ). Similarly, the

free loadings (i.e., those  loadings not constrained to be

0 or 1) were given the same multivariate Gaussian prior

k ·, · ∼ multivariateGaussian (0 ×1, 1 × ).

We consider eight CLVMs. Three of these models capture

what we believe are sensible theoretical positions, and three

are based on the data and are exploratory in nature. The

remaining two models are “bookend” models, which serve

as reference points for assessing the merit of the substantive

models based on theory and data (Lee et al., 2019).

9.1 Theory-based models

The first theoretical model is the “general risk” model. It

has one latent factor for each cognitive model parameter,

and combines their independent replication across experi-

mental conditions. For example, with respect to the opti-

mal stopping model, there is one factor for all four of the

U error-of-execution parameters applied to the four experi-

mental conditions, one factor for all of the V bias parameters,

and one factor for all of the W decrease parameter. The same

separation and grouping of parameters applies to the other

cognitive models. In addition, the general risk model has a

general factor that all parameters share and is assumed to cor-

relate with the risk surveys. The theoretical motivation for

this model is based on the possibility that there is a general

factor, which can be conceived as a risk propensity equiv-

alent to the general intelligence factor “g” from cognitive

abilities and psychometric testing. The general risk model

emphasizes this general factor, while also allowing for the

uniqueness of the cognitive tasks.

The left panel of Figure 16 details the structure of the

general risk model. Rows represent the cognitive model pa-

rameters and questionnaire measures and columns represent

the assumed factors. Dark blue squares indicate that a pa-

rameter or measure is assumed to load on a factor. Light

yellow squares indicate that some level of association is pos-

sible. Empty squares assume a lack of association. Thus,

the first factor has dark blue squares for the questionnaire

measures, since these are assumed to index general risk, and

light yellow squares for the cognitive parameters, allowing

for the possibility they may also index risk. The remainder of

the model structure loads each cognitive parameter in each

task on a separate factor.

The second theoretical model is the “two-factor” model. It

is a simpler model, with only two latent factors. The middle

panel of Figure 16 details the structure of this model. One

factor corresponds to risk propensity and the other corre-

sponds to behavioral consistency. The risk propensity factor

loads on the specific cognitive model parameters we inter-

pret as controlling risk propensity in the tasks. These are

the V bias and W decrease parameters in the optimal stopping

model, the W; lose-shift parameters in the extended-WSLS

model, the W risk propensity parameter in the BART model,

and the _ loss aversion parameter in the cumulative prospect

theory model. It also loads on the risk measures produced by

the four questionnaires. The behavioral consistency factor

loads on the other cognitive model parameters, which con-

trol the error of execution and response determinism within

the models.

The third theoretical model is the “three-factor” model. It

is detailed in the right panel of Figure 16. The three-factor

model is an extension of two-factor model that loads the four

questionnaire measures on a separate third factor, rather than

on the risk propensity factor. This model was included to

test the possibility of a difference between behavioral risk

taking, as potentially expressed in the cognitive tasks, and

self-reported risk taking, as measured by the questionnaires.

9.2 Exploratory models

The exploratory models were constructed based on inspec-

tion of the correlation analyses presented in Figure 14. We

measure the performance of these models relative to two

bookend models. The first bookend is the “unitary” model,

which has a single latent factor for all cognitive model pa-

rameters and questionnaire measures. It is a very simple

CLVM account of the data that provides a lower bound on

the goodness-of-fit that can be achieved. The other book-

end is the “saturated model”, which has one latent factor

for each of the 30 cognitive model parameters and question-

naire measures. It is the most complicated CVLM account

of the data. It provides an upper bound on the goodness-of-

fit. The role of bookend models is to provide comparison

points for substantively interesting models. A useful sub-

stantive model should outperform both bookends in terms

of a model evaluation measure that balances goodness-of-fit

and complexity. In addition, requiring substantive mod-
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Figure 16: The factor loadings structure for the general risk (left panel), two-factor (middle panel), and three-factor (right

panel) theory-based CLVMs. In each panel, rows correspond to cognitive model parameters and questionnaire measures, and

columns correspond to model factors. Dark blue squares indicate an assumed association between a factor and a parameter

or measure. Light yellow squares indicate a possible association, to be estimated. Empty squares indicate an assumed lack

of association.

els to outperform the saturated model provides confidence

that they are descriptively adequate, because their balance

between goodness-of-fit and complexity is better than an

account that has high descriptive adequacy. We use the

Deviance Information Criterion (DIC: Spiegelhalter et al.,

2002, 2014), which has theoretical limitations, but provides

a useful practical measurement for a coarse-grained assess-

ment of competing models.

The first exploratory model we found is the “question-

naires only” model. It simplifies the saturated model by

assuming that a single latent factor underlies all four ques-

tionnaire measures, but that the cognitive model parameters

continue to have their own factors. The second exploratory

model is the “BART V” model. It simplifies the saturated

model by assuming that a single latent factor underlies the

two Bart V parameters. Finally, the “questionnaires and

BART V” model combines the constraints of the first two

exploratory models, so that a single factor underlies all of

the four questionnaires and the BART V parameters.

9.3 CVLM results

Table 2 summarizes the results of the CLVM analysis. Ac-

cording to the DIC measure, none of the theory-based mod-

els performed well. The exploratory models lead to slight

improvements. We could not find any other CLVM that im-

proved on the unitary and saturated bookend models. These

results are largely consistent with the results of the corre-

lational analysis above: There is not much evidence for a

jointly explanatory underlying structure between the cogni-

tive tasks. Even within tasks, the CLVM analysis provides

evidence for models with multiple underlying dimensions

per task. Perhaps the most interesting exploratory finding

from the CLVM analysis is that it is the BART task, and its

associated cognitive model parameter measuring behavioral

consistency, that most closely aligns with the measure of risk

produced by the questionnaires.
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Model Factors DIC Δ DIC

General Risk 10 62, 221 62, 859

Two-factor 2 170, 725 171, 363

Three-factor 3 170, 737 171, 375

One-factor 1 220, 896 221, 534

Saturated 30 −588 50

Surveys only 27 −600 38

BART V 29 −611 27

Surveys, BART V 26 −618 0

Table 2: Results of the CLVM analysis. DIC = deviance

information criterion. ΔDIC measures difference in DIC to

the best-performed “Surveys, BART V” model.

10 Discussion

The goal of this article was to explore the psychological con-

struct of risk propensity in the context of cognitive tasks and

the inferred latent parameters of cognitive models that can

be interpreted as the psychological variables that control risk

seeking and risk avoiding behavior. We compared these mea-

sures of risk across four sequential decision-making tasks

and measures obtained from more traditional questionnaires

based on self-report. In each of the independent analyses of

the four decision-making tasks we used a cognitive model

that provided an adequate account of people’s behavior. The

inferred parameters of the cognitive models have natural

interpretations as measures of risk propensity and decision-

making consistency, and appear to capture stable individual

differences across conditions within each task. The mea-

sures found using the questionnaires were generally consis-

tent with previous studies, with similar means and standard

deviations.

If risk propensity is a stable psychological construct that

can be measured by these decision-making tasks, then the

risk parameters and questionnaires are expected to correlate

across tasks. We found strong within-task correlations and

interpretable consistency in the key parameters for repre-

sentative participants across task conditions. We did not,

however, find evidence for any systematic between-task re-

lationships consistent with stable underlying risk propensity

or consistency traits in individuals. A complementary anal-

ysis based on cognitive latent variable modeling reached the

same conclusion. The data provided no evidence for any

model that incorporated an interpretable general risk factor

that spanned the four cognitive tasks. There was some ev-

idence for a relationship between cognitive models of risk

propensity in the BART and the RPS, RTI, and DOSPERT

scale measures. Of the four cognitive tasks we considered,

the BART has been the most widely used as a psychome-

tric instrument for measuring risk propensity (e.g. Taşkın

& Gökçay, 2015; White et al., 2008), including examining

its correlation with questionnaire measures (e.g. Asher &

Meyer, 2019; Courtney et al., 2012), and as a predictor of

real-world risk-taking behavior Lejuez et al. (2003b, 2007).

Overall, however, our results do not find evidence for a

common underlying risk trait. This lack of evidence arose

despite the use of cognitive models to make inferences about

latent parameters, rather than relying on simple behavioral

measures. Similar findings of weak relationships between

measures from behavioral tasks and questionnaires has been

found in psychological research on individual differences in

other domains such as the description-experience gap (Rad-

ulescu et al., 2020), self-regulation (Eisenberg et al., 2018),

intelligence (Friedman et al., 2006), and theory of mind

(Warnell & Redcay, 2019),

10.1 Limitations and Future Directions

An obvious potential limitation of this study is the relatively

small sample size. Generally, studies focusing on individ-

ual differences use larger sample sizes, typically over 100

participants, with some studies recruiting many more than

that (Eisenberg et al., 2018; Frey et al., 2017). A common

reaction to our use of 56 participants is to question whether

our experimental design was sufficiently “powerful” to ad-

dress the research questions it aimed to answer. We think

this question reflects a (widely-held) conceptual misunder-

standing, sometimes called the power fallacy (Wagenmakers

et al., 2015). Power is a pre-experimental concept and is

not relevant once data have been collected. Power analyses

consider, before data have been collected, the results an ex-

perimental design could produce, and whether those results

would be informative. Once the data have been collected,

the uncertainty is resolved, and it is not logical to continue

considering what are now counterfactual possibilities. From

a Bayesian perspective, scientific inferences should be con-

ditioned on only the observed data.

This means that whether our data are sufficiently infor-

mative can be answered by the direct examination of the

inferences they produce. The key results are presented in

Figure 14, where it is shown that for the large majority of

parameter pairs, the Bayes factor provides clear evidence in

favor of either the presence or the absence of a correlation.

The one exception, as we noted, is for the gambling task.

Here, we believe the lack of evidence is caused by our use

of relatively few conditions and trials compared to previ-

ous literature (Nilsson et al., 2011). All of the other tasks

and measures, however, have sufficient information about

the cognitive parameters and behavioral measures to answer

our research questions. Thus, overall, we believe our results

demonstrate that the experiment was well enough designed,

had enough participants, and was completed by sufficiently
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motivated participants, to address the research question of

whether behavior on the task is controlled by a common

underlying risk trait.

A different limitation of our study involves the specific

cognitive models we used, and the details of how they were

applied to the behavioral data. There are many other possible

accounts of the BART, gambling behavior, optimal stopping,

and bandit problem decision making. We referenced a num-

ber of alternative models for each task before we presented

the model we used. While our models provide reasonable

starting points, there are clearly many alternative models

that could be explored. Similarly, we made practical choices

about contaminant behavior that could be extended or im-

proved. Different modeling possibilities are not limited to

just different assumptions about cognitive processes. Alter-

native cognitive models could also be explored by consider-

ing more informative priors, which corresponds to making

different assumptions about the psychological variables con-

trolling the processes (Lee & Vanpaemel, 2018). As one

concrete example, it could be reasonable to in the extended

WSLS model of bandit problem behavior to assume that the

probability of winning and staying is greater than the prob-

ability of losing and shifting. This order constraint would

lead to more informative priors. As another example, it is

probably possible to develop better priors for the BART task

than the uniform priors we used, by seeking choices that lead

to empirically reasonable prior predictive distributions (Lee,

2018).

We did not attempt to use common-cause models that cap-

ture the consistency of individuals across conditions for the

same decision-making task (Lee, 2018). This has previously

been done successfully for the specific BFO model of opti-

mal stopping (Guan et al., 2015), and could likely be done for

the other models we used. Indeed, the consistency of within-

participant parameters across conditions for the same tasks

makes this an obvious extension. Common-cause modeling

could easily be implemented hierarchically in the graphical

modeling framework we used, and would have the advantage

of reducing the number of risk and consistency parameters to

one per task, rather than one per condition. The parameters

should also be more precisely measured, because they would

be based on the entirety of each participant’s behavior in a

task. On the other hand, we would expect this commonality

to emerge from the cognitive latent variable modeling we

conducted, and so we think it is likely that there simply is no

evidence for the common construct in our data and modeling

analysis.

While all of the decision-making tasks we used were

sequential decision-making tasks involving risk and un-

certainty, there are fundamental differences between them.

There is debate about exactly whether and how the tasks

and questionnaires measures risk propensity (e.g. De Groot

& Thurik, 2018), and even more scope for debate about

whether and how the cognitive model parameters relate to

the relevant psychological concepts. As such, there is no

clear consensus that either the tasks or the cognitive mod-

els we used capture risk propensity and consistency in the

same way, or capture it at all. What we did is choose tasks

that depend on risk seeking and avoidance in some way, and

provide a rationale for the interpretations of the cognitive

modeling parameters in terms of risk propensity.

A finer-grained version of this general issue is that the

different cognitive tasks provide information about risk and

uncertainty in different ways, and these differences could af-

fect the way any latent risk construct is able to be inferred.

The optimal stopping problem involves holding out until a

desirable option comes along, but the value of each option

is presented to the decision maker explicitly. The preferen-

tial choice gambling task requires people to make judgments

based on both the value of each option and probabilities as-

sociated with those values, without explicitly stating the ex-

pected reward from each gamble. The bandit problem gives

feedback after each decision is made, explicitly showing the

number of rewards and failures. Meanwhile, the BART only

provides feedback when a balloon bursts, and by keeping

track of the total banked amount over problems. These nu-

ances suggest that each of the decision-making tasks require

related but different cognitive processes. It is thus entirely

plausible that risk seeking or avoidance in the optimal stop-

ping problem does not translate directly to loss aversion in

the gambling task. Similarly, the tendency to pump a bal-

loon more with the risk of losing it all in the BART might

not be psychologically equivalent to balancing exploration

and exploitation in a bandit task.

Collectively, these sorts of considerations raise the issue

of whether risk propensity can usefully be salvaged as a

multi-dimensional construct. While we sought a single la-

tent trait to explain individual differences across the tasks, it

is possible that how people manage risk is better conceived

in terms of a few inter-related but distinct traits. Theoreti-

cally, of course, this is a slippery slope. As the number of

traits expands to match the number of tasks, the usefulness

of the notion of an underlying risk propensity controlling be-

havior is lost. It becomes better understood as a temporary

psychological state than a permanent psychological trait.

10.2 Conclusion

We used cognitive models to analyze four sequential

decision-making tasks that are sensitive to people’s propen-

sity for risk. We found stable individual differences within

tasks for model parameters corresponding to the psychologi-

cal variables of risk and consistency. However, we found lit-

tle evidence for commonality or stability when we compared

conceptually similar parameters across the tasks. In addition,

we found little evidence for any meaningful relationships be-

tween the model-based measures of risk and standard widely-

used questionnaires for measuring risk propensity based on
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self-report. Our results contribute to the discussion about

how cognitive process models of sequential decision-making

tasks can be used to measure risk, and whether risk propen-

sity is a stable psychological construct that can be measured

by cognitive behavioral tasks.
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