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Abstract

We discuss the origin, an improved definition and the key reciprocity property of the
trilinear symbol introduced by Rédei [16] in the study of 8-ranks of narrow class groups
of quadratic number fields. It can be used to show that such 8-ranks are ‘governed’ by
Frobenius conditions on the primes dividing the discriminant, a fact used in the recent work
of A. Smith [18, 19]. In addition, we explain its impact in the progress towards proving my
conjectural density for solvability of the negative Pell equation x2 − dy2 = −1.

2020 Mathematics Subject Classification: Primary 11R11, 11R37; Secondary 11R16.

1. Introduction

In a 1939 Crelle paper [16], the Hungarian mathematician László Rédei introduced a tri-
linear quadratic symbol [a, b, c] ∈ {±1} for quadratic discriminants a, b ∈ Z and positive
squarefree integers c satisfying a number of conditions. He used his symbol to describe
8-ranks of quadratic class groups, much in the way he had described the 4-ranks of these
class groups in terms of Legendre symbols in his earlier work [15]. His definition of the
symbol, as a Jacobi symbol in the quadratic field Q(

√
a), is somewhat involved, and seems

to depend on many choices. Moreover, it only allows for a limited ‘symmetry’ of the symbol
in its arguments, as infinite primes are disregarded in his definition.

An improved definition in class field theoretic terms was proposed in 2007 by Jens
Corsman [5]. He imposes fewer conditions on the arguments of the symbol, which are
most conveniently taken in the group Q∗/Q∗2 of non-zero rational numbers modulo squares,
requiring them to have relative quadratic Hilbert symbols

(a, b)p = (a, c)p = (b, c)p = 1 (1)

at all primes p, and to satisfy the coprimality condition

gcd(�(a), �(b), �(c))= 1 (2)

for the discriminants of the associated quadratic fields, with �(1)= 1. The Rédei symbol
is then defined as a product [a, b, c] = ∏

p|c[a, b, c]p of ‘local’ symbols at the primes p
dividing the squarefree integer representing c. It is essential to include the infinite prime
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p = ∞ in the product, with ∞|c having the meaning c< 0. A correct definition of [a, b, c]p

leads to a striking feature that we baptise Rédei’s reciprocity law.

THEOREM 1·1. For a, b, c ∈ Q∗/Q∗2 satisfying (1) and (2), the Rédei symbol [a, b, c] is
linear in each of its arguments, and satisfies the reciprocity law

[a, b, c] = [b, a, c] = [a, c, b].
The Rédei symbol traditionally has its values in {±1}, as it may be computed as a Jacobi
symbol in a quadratic field. Moreover, it has a definition as a product of local symbols that
in (48) turn out to be quadratic Hilbert symbols, which invariably have values in {±1}, and
satisfy a product formula on which the proof of Theorem 1·1 is based. However, the Rédei
symbol is typically used in a linear algebra setting over the field of two elements F2. It
therefore makes sense to take its value in F2, as we will do in our formal Definition 7·8.

Part of the perfect symmetry of the symbol [a, b, c] in its arguments is immediate from
the definition, as [a, b, c] is the Artin symbol depending on c in a cyclic quartic extension
K = Q(

√
ab)⊂ Fa,b that depends symmetrically on a and b. Symmetry involving c is a true

reciprocity: we may swap b and c in the symbol by a (non-obvious) application of quadratic
reciprocity over Q(

√
a).

The auxiliary field Fa,b occurring in the definition of [a, b, c], which is only unique up to
twisting by a finite group Ta,b of quadratic characters (43), is the most complicated ingredient
in the definition. Corsman failed to notice that K ⊂ Fa,b may be ramified over 2, and that one
has to require minimal ramification at 2 for K ⊂ Fa,b in order for [a, b, c] to be well-defined,
independently of the choice of Fa,b.

In the case of prime arguments a, b, c ≡ 1 mod 4, no dyadic ramification subtleties arise,
and the symbol has been interpreted by Morishita [13, section 8·2] as an arithmetic Milnor
invariant, leading to a description as a triple Massey product that is useful in the study of
pro-2-extensions of Q with given ramification locus [8].

Although Galois cohomology does play a role in Corsman’s approach to the Rédei
symbol, its relation to Massey products and the applications of Rédei reciprocity to the
average behavior of the 2-part of imaginary quadratic class groups in the recent work of
Smith [18, 19], neither the definition of the symbol nor the proof of its symmetry properties
needs it, and we do not use it in this paper. Galois cohomology may be needed to find
generalisations of the Rédei symbol. In fact, the linearity properties of the symbol make it
one of the rare trilinear maps that ‘naturally occur’ in mathematics, and it is an interesting
question whether the symbol has variants having properties of cryptographic interest in the
sense of [1].

In this paper we approach Rédei’s symbol along historical lines, showing how it arises in
the study of the 2-part of the narrow class group C of a quadratic field K of discriminant D.
Starting from old results in Section 2 on the 2-rank of C , we describe the 4-rank of C in
terms of the Rédei matrix R4 = R4(D), a matrix over the field F2 of 2 elements with entries
that are essentially F2-valued relative Legendre symbols of the primes dividing D (Theorem
3·1). Linear algebra also gives the 8-rank of C in terms of a matrix R8 = R8(D) over F2

(Theorem 4·1), but this time its entries are (F2-valued) Rédei symbols [d1, d2,m], given in
Definition 4·4 as the Artin symbol of an ambiguous ideal in K of norm m in an unramified
cyclic quartic extension K = Q(

√
d1d2)⊂ Fd1,d2 having Q(

√
d1,

√
d2) as its intermediate
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quadratic extension. In Section 5, we explicitly compute [d1, d2,m] in a field Fd1,d2 obtained
by twisting the field F(x, y, z) in (33) associated to a primitive integral point on the conic

x2 − d1 y2 − d2z2 = 0

by a quadratic character to ensure that K ⊂ Fd1,d2 is unramified at 2.
Section 6 shows how Rédei’s reciprocity law is suggested by the behaviour of small exam-

ples, and indicates how the general symbol [a, b, c] should be defined in order to obtain
reciprocity. The precise definitions are in Section 7, leading to a proof of Theorem 1·1 in
Section 8.

As an immediate application of Rédei reciprocity, Section 9 shows, following Corsman,
how it yields the existence of governing fields for the 8-rank of class groups in 1-parameter
families Q(

√
dp), with d a fixed integer and p a variable prime, a result that was origi-

nally obtained by different means in 1988 in [20], and that is at the basis of Smith’s work.
Section 10 discusses its impact on my now classical Conjecture 3·2 on the number of real
quadratic fields with fundamental unit of norm −1 or, equivalently, the asymptotic number
of squarefree d ∈ Z>1 for which the negative Pell equation

x2 − dy2 = −1 (3)

is solvable in integers x, y ∈ Z.

2. The 2-rank

Let d 	= 1 be a squarefree integer, K = Q(
√

d) the corresponding quadratic field, D ∈
{d, 4d} the discriminant of K , and C = Cl+K = Cl+(OK ) the narrow class group of K , i.e.,
the quotient C = I/P+ of the group I of fractional OK -ideals by the subgroup of princi-
pal ideals (x)= xOK with generator of positive norm N (x). The narrow class group maps
surjectively to the ordinary class group ClK of K , and we have an exact sequence

0 −→ 〈F∞〉 −→ C −→ ClK → 0 (4)

in which F∞, the Frobenius at ∞, denotes the ideal class [(√d)] ∈ C . This is the trivial
element in C if K is imaginary quadratic, and also if K is real quadratic with fundamental
unit εd of norm N (εd)= −1. If K is real quadratic with N (εd)= 1, then F∞ is of order 2,
and C has twice the size of ClK .

Describing the 2-part C[2∞] ⊂ C consisting of all 2-power torsion elements in C can be
done by specifying, for k ≥ 1, the 2k-rank

r2k = r2k (D)= dimF2 C[2k]/C[2k−1] = dimF2 2k−1C/2kC.

The sequence of non-negative integers r2, r4, r8, . . . is non-increasing, and we have r2k = 0
for k sufficiently large.

The 2-rank r2 = dimF2 C[2] = dimF2 C/2C was already determined by Gauss, who
defined C in terms of binary quadratic forms. To state his result, we factor D as a product

D =
t∏

i=1

p∗
i = tD

∏
p|D odd

p∗ (5)
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of signed odd prime discriminants p∗ = (−1)(p−1)/2 p ≡ 1 mod 4 and a discriminantal 2-part
tD ∈ {1,−4,±8} that we sloppily denote by 2∗ in case D is even. We let pi |pi be the prime
of K lying over pi . It satisfies p2

i = (pi ), so we have [pi ] ∈ C[2].
THEOREM 2·1. We have r2 = t − 1, with t the number of prime divisors of D.

Proof. There are two fundamentally different proofs of this result, describing C[2] and
C/2C , respectively. The first uses the t ambiguous ideal classes [pi ] ∈ C[2] coming from the
ramifying primes pi |pi of K , the second the t genus characters χp∗

i
∈ Ĉ[2] corresponding to

the discriminantal divisors p∗
i in (5).

In the first proof, one exploits the Galois action on C of Gal(K/Q)= 〈σ 〉, noting that
σ acts by inversion as the norm map N = 1 + σ annihilates C . A little Galois cohomology
shows that the 2-torsion subgroup C[2] = C[σ − 1] is generated by the t classes [pi ], subject
to a single relation. This yields r2 = t − 1.

For the second proof, one views C = Gal(H/K ) under the Artin isomorphism as the
Galois group over K of the narrow Hilbert class field H of K . Then H is Galois over Q
with dihedral Galois group

Gal(H/Q)∼= Gal(H/K )� Gal(K/Q)= C � 〈σ 〉,
as the surjection Gal(H/Q)→ Gal(K/Q)= 〈σ 〉 is split and σ acts by inversion. The genus
field H2 ⊂ H of K , which is defined as the maximal subfield of H that is abelian over Q,
has as its Galois group over Q the elementary abelian 2-group

Gal(H2/Q)= Gal(H/Q)ab = C/2C × 〈σ 〉. (6)

One can generate H2 explicitly over Q by t independent square roots as

H2 = Q({√p∗
i : i = 1, 2, . . . , t}), (7)

so Gal(H2/Q) is naturally an F2-vector space of dimension t , in which the subspace C/2C =
Gal(H2/K )⊂ Gal(H2/Q) has dimension r2 = t − 1.

The second proof of Theorem 2·1 shows that the prime power discriminants p∗
i |D in (5)

yield an F2-basis of the quadratic characters on Gal(H2/Q), with

χp∗
i
: Gal(H2/Q)→ Gal(Q(

√
p∗

i )/Q)∼= F2 (8)

giving the Galois action on
√

p∗
i . Even though this Galois action is given by multiplication

by ±1, it is convenient for our linear algebra purposes to have additive characters with values
in Q/Z, and define the quadratic characters χp∗

i
with values in 1

2 Z/Z = F2.
The character χd1 = ∑

i∈S χpi for a subset S ⊂ {1, 2, . . . , t} corresponding to the discrim-
inantal divisor d1 = ∏

i∈S p∗
i of D gives the action on

√
d1. When restricted to C/2C =

Gal(H2/K )⊂ Gal(H2/Q), it yields a quadratic character in the character group

Ĉ = Hom(C,Q/Z) (9)

of C that coincides with the character χd2 corresponding to the complementary divisor
d2 = D/d1 = ∏

i /∈S p∗
i . Rédei calls an unordered pair (d1, d2) of quadratic discriminants

satisfying

D = d1d2 (10)
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a discriminantal decomposition of D. It ‘is’ the genus character χd1 = χd2 ∈ Ĉ[2], and the
corresponding finitely unramified quadratic extension K ⊂ E inside H is

E = K (
√

d1)= Q(
√

d1,
√

d2)= K (
√

d2). (11)

3. The 4-rank and negative Pell

The ambiguous ideal proof of Theorem 2·1 describes the subgroup C[2] ⊂ C as a quotient
of Ft

2 by a surjection

α : Ft
2 −→ C[2] (12)

that sends the j th basis vector to the class [p j ]. The generator AD ∈ Ft
2 of its 1-dimensional

kernel encodes the unique non-trivial relation that exists between the t classes of the ramify-
ing primes p j |D of K . In particular, it tells us whether the element F∞ = [(√d)] ∈ C[2]
in (4) is trivial. In the interesting case D > 0, this amounts to the fundamental unit of
K = Q(

√
D) having norm N (εd)= −1.

The genus theory proof of Theorem 2·1 describes the quotient C/2C = Gal(H2/K ) of C
as a subspace of Gal(H/Q)= Ft

2 under the inclusion map

γ : C/2C = Gal(H2/K )−→ Gal(H2/Q)= Ft
2, (13)

with the i th coordinate of γ (a) ∈ Ft
2 for [a] ∈ C describing the action of the Artin symbol

Art(a, H/K ) ∈ Gal(H/K ) on
√

p∗
i . As elements of Gal(H2/K ) fix the product

∏t
i=1

√
p∗

i =√
D, the map γ embeds C/2C as the ‘sum-zero-hyperplane’ in Ft

2. Equivalently, one can
formulate this as in (12) by saying that the subgroup Ĉ[2] ⊂ Ĉ of quadratic characters on C
is generated by the t characters χp∗

i
, subject to the relation that their sum

χD =
t∑

i=1

χp∗
i
, (14)

the Dirichlet character corresponding to K , is the character on Gal(H2/Q) in (6) that has
kernel C/2C and is trivial as an element of Ĉ . This time, the relation holds no deeper
information as it is ‘the same’ for all quadratic fields.

The 4-rank of C is the F2-dimension of the kernel C[2] ∩ 2C of the natural map

ϕ4 : C[2] −→ C/2C,

and we can find it by combining ϕ4 with the surjection α and the injection γ from (12) and
(13) into a single F2-linear Rédei map

R4 : Ft
2

α−→ C[2] ϕ4−→ C/2C
γ−→ Gal(H2/Q)= Ft

2. (15)

We have

1 + r4 = 1 + dimF2 ker ϕ4 = dimF2 ker R4 = t − rankF2 R4,

and writing r2 = t − 1 as in Theorem 3·1, we obtain the following result.

THEOREM 3·1. The 4-rank of C equals r4 = r2 − rankF2 R4.
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Explicit entries for the matrix R4 = (εi j )i, j ∈ Matt×t(F2) can easily be given. The entry εi j

describes the action of the Artin symbol Art(p j , H/K ) on
√

p∗
i ∈ H2 ⊂ H . For i 	= j , it is

an F2-valued Legendre (or for p j = 2 Kronecker) symbol:

εi j = χp∗
i
([p j ])=

(
p∗

i

p j

)
∈ F2. (16)

The diagonal entries ε j j = ∑
i 	= j εi j of R4 follow from the sum-zero-property of γ : the rows

of R4 add up to 0 ∈ Ft
2. This simple description of r4 in terms of the relative quadratic

behavior of the primes pi dividing D goes back to Rédei [15].
The somewhat hybrid notation in (16) uses an identification ‘{±1} = F2’ of multiplicative

and additive value groups of quadratic symbols and characters. The same notational ambi-
guity inevitably occurs for Rédei symbols, which are quadratic symbols in quadratic fields,
with values that are traditionally taken in {±1}, but that also occur as entries of matrices
over F2. We have mostly chosen additive values of characters and symbols in this paper, but
multiplicative values are used in the proof of Rédei’s reciprocity law in Section 8, which
relates Rédei symbols to quadratic Hilbert symbols.

For K = Q(
√

d) real quadratic of discriminant D ∈ {d, 4d}, the fundamental unit has
norm N (εd)= −1 if and only if the negative Pell equation

x2 − dy2 = −1 (17)

is solvable in integers x, y ∈ Z. If it exists, the smallest solution to (17) can be found from the
continued fraction expansion of

√
d , which then needs to have odd period length, or from

general unit finding algorithms in number rings [9]. For d = D ≡ 5 mod 8, this solution
corresponds to the cube of εd in case the fundamental unit εd ∈OK = Z[(1 + √

d)/2] does
not lie in Z[√d]. Conjecturally [22], this happens for a fraction 2/3 of squarefree D ≡
5 mod 8.

For solvability of (17) in rational numbers, which amounts to K having elements of norm
−1 or, equivalently, having quadratic Hilbert symbols

(d,−1)p = (D,−1)p = 1 for all primes p ≤ ∞, (18)

there is an easy criterion: solvability occurs if and only if d (or D) is positive and without
prime factors p ≡ 3 mod 4. By [17, Satz 3], the set D of such D is a thin set, asymptotically
containing cX/

√
log X elements D < X , for some explicit c ≈ .348 ∈ R>0. For D ∈D we

have tD ∈ {1, 8} and p∗ = p in (5), and by (7)

D ∈D ⇐⇒ H2 is totally real. (19)

The class field theoretic implication of (4) is that the set D− ⊂D of discriminants for which
the negative Pell equation (17) is solvable in integers has a similar description:

D ∈D− ⇐⇒ H is totally real. (20)

Indeed, the narrow Hilbert class field H of K = Q(
√

d) is totally real if and only if the
Frobenius at infinity F∞ ∈ C at the real primes of K = Q(

√
d) is trivial on H .

Assume D ∈D. Then the map α : Ft
2 → C[2] in (12) describes F∞ = [(√d)] as

F∞ = α[(1)ti=1] ∈ C[2] ∩ 2C,
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and V = α−1(C[2] ∩ 2C)⊂ Ft
2 is an (r4 + 1)-dimensional subspace containing (1)ti=1. The

linear map α|V : V → C[2] ∩ 2C is surjective with kernel F2 · AD , and numerical evidence
[2] suggests that AD behaves like a ‘random’ non-zero element in V . As D ∈D satisfies

D ∈D− ⇐⇒ AD = (1)ti=1,

we expect that for the discriminants D ∈D having 4-rank r4 = e, the negative Pell equation
(17) will be solvable with ‘probability’ (#V − 1)−1 = (2r4+1 − 1)−1.

To heuristically find the density for D− in D, write D = ⋃∞
e=0 D(e), with D(e) the subset

of D ∈D having 4-rank r4 = e. By Theorem 3·1, a discriminant D ∈D is in D(e) if and
only if its Rédei matrix R4 ∈ Matt(F2) has corank e + 1. Quadratic reciprocity for the entries
(16) implies that the matrix R4 is symmetric, with rows and columns adding up to 0. The
(1, 1)-minor of R4, which determines the full matrix R4, behaves as a random symmetric
(t − 1)× (t − 1)-matrix. As the average number t of primes factors of D tends to infinity
with D, albeit very slowly, as log log D, we expect the density of D(e) in D to equal P(e)=
limn→∞ Pn(e), with Pn(e) the fraction of the

(n+1
2

)
symmetric n × n-matrices over F2 having

corank e. In terms of the infinite product

α =
∏
j odd

(1 − 2− j )=
∞∏
j=1

(1 + 2− j )−1 ≈ .419422441, (21)

we have P(0)= α, and more generally P(e)= α · ∏e
j=1(2

j − 1)−1 for e ≥ 0.
By the probability argument above, we expect the natural density of D−(e) in D(e) to

be 1/(2e+1 − 1) for all e ∈ Z≥0. This leads to my 1992 conjecture for the solvability of the
negative Pell equation [21].

CONJECTURE 3·2. The set D− of discriminants of quadratic fields with fundamental unit of
norm −1 has natural density

∞∑
e=0

P(e)

2e+1 − 1
= 1 − α ≈ .580577559

inside the set D of discriminants of quadratic fields containing elements of norm −1.

Fouvry and Klüners proved in 2010 [6] that D(e) does indeed have the expected density
P(e) in D. For e = 0 we have 2e+1 − 1 = 1 and D(0)⊂D−, as in the case r4 = 0 the narrow
Hilbert class field H is totally real, being a normal number field of odd degree over the
totally real genus field H2. This immediately implies that P(0)= α is a lower bound for the
lower density of D− in D. To get better bounds, one needs control over the archimedean
character of H for e ≥ 1. We will address this in Section 10.

4. The 8-rank

The 8-rank r8 of C equals the F2-dimension of the kernel of the natural map

ϕ8 : C[2] ∩ 2C −→ 2C/4C

between r4-dimensional vector spaces over F2. Under the Artin isomorphism, the group
2C/4C is the Galois group Gal(H4/H2), with H4 ⊂ H the narrow 4-Hilbert class field of K .
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We can restrict α in (12) to the kernel of the 4-rank map R4 from (15) and compose with ϕ8

to obtain an F2-linear map

R8 : ker R4
α−→ C[2] ∩ 2C

ϕ8−→ 2C/4C = Gal(H4/H2)∼= Fr4
2 (22)

defined on the (r4 + 1)-dimensional space ker R4. Here we write Gal(H4/H2)∼= Fr4
2 , in con-

trast to the equality Gal(H2/Q)= Ft
2 in (15), as we no longer have an obvious choice for the

basis of this F2-vector space. As r8 = dimF2 ker ϕ8 is the codimension of the image of ϕ8 in
2C/4C , we obtain the following analogue of Theorem 3·1.

THEOREM 4·1. The 8-rank of C equals r8 = r4 − rankF2 R8.

In order to obtain a matrix representing R8, we want to represent Gal(H4/H2) in (22) as
explicitly as we represented Gal(H2/Q) in (15). Rédei had already achieved this in a 1934
paper with Reichardt [14], which computed r4 not as in Theorem 3·1 but by an explicit
construction of H2 ⊂ H4 in terms of r4 cyclic quartic extensions K ⊂ F inside H that are
K -linearly disjoint. For such unramified F , the group Gal(F/Q) is dihedral of order 8, and
the intersection E = F ∩ H2 equals E = Q(

√
d1,

√
d2) for a discriminantal decomposition

D = d1d2 as in (10) and (11).
Rédei calls the decompositions D = d1d2 defining those E = Q(

√
d1,

√
d2) that arise as

F ∩ H2 zweiter Art, ‘of the second kind’. For the corresponding quadratic character χ ∈ Ĉ =
Hom(C,Q/Z), it means that we have χ = 2ψ for a quartic character ψ defining K ⊂ F . By
the duality of finite abelian groups, we have χ ∈ 2Ĉ if and only if χ vanishes on the 2-torsion
subgroup C[2]. This leads to the following characterization of these quadratic characters.

LEMMA 4·2. For a quadratic character χ ∈ Ĉ[2] defining E = Q(
√

d1,
√

d2) as in (10)
and (11), having χ ∈ 2Ĉ is equivalent to each of the following:

(i) there exists a cyclic quartic extension K ⊂ F inside H containing E ;
(ii) χd1 ◦ R4 = χd2 ◦ R4 is the zero map;

(iii) all ramified primes of K split completely in K ⊂ E ;
(iv) for i = 1, 2 and p|di prime we have

( D/di

p

) = 1.

Proof. Having χ = 2ψ for a quartic character ψ ∈ Ĉ defining F as in (i) is equivalent to χ
vanishing on the subgroup C[2] of ambiguous ideal classes generated by the classes of the
ramifying primes p|D = d1d2 of K as in (12). One can phrase this using the map R4 from
(15) as in (ii), or in terms of the splitting of the ramifying primes in K ⊂ E as in (iii). A
ramifying prime of K divides exactly one of d1, d2. A prime p|p in K dividing, say, d1 splits
completely in K ⊂ E = K (

√
d2) if and only if the Legendre (or Kronecker) symbol

(
d2

p

)
equals 1, as in (iv).

Remark 4·3. The identity χ = 2ψ determines ψ ∈ Ĉ up to a quadratic character, as an ele-
ment of Ĉ[4]/Ĉ[2], and this means that the quadratic extension E ⊂ F it gives rise to in
(i) is determined by χ only up to ‘twisting’ by an unramified quadratic character. In other
words: not E ⊂ F , but the quadratic extension H2 ⊂ H2 F it generates over the genus field
H2 is unique.
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In order to compute the 8-rank in Theorem 4·1 from the rank of an explicit matrix describing
the map R8 in (22), we choose an F2-basis for the (r4 + 1)-dimensional subspace ker R4 ⊂
Ft

2, and write

[m j ] ∈ C[2] ∩ 2C ( j = 1, 2, . . . , r4 + 1)

for the images of these basis vectors under the map α from (12). The classes [m j ]
span C[2] ∩ 2C , subject to a single relation encoded in AD , and their Artin symbols
Art(m j , H/K ) are the identity on the genus field H2.

Similarly, we choose quartic characters ψi for i = 1, 2, . . . , r4 spanning Ĉ[4]/Ĉ[2], and
let K ⊂ F4,i be the corresponding unramified quartic extensions. By condition (ii) of Lemma
4·2, the quadratic characters χi = 2ψi ∈ Ĉ[2] come from vectors in Ft

2 that, together with
(1)ti=1, span the kernel of the transpose RT

4 of the Rédei matrix in (15). The r4 quadratic
extensions H2 ⊂ H2 F4,i span H2 ⊂ H4, and the map R8 is represented by a matrix R8 =
(ηi j )i, j ∈ Matr4×(r4+1)(F2) with entries

ηi j =ψi [m j ] = Art(m j , H2 F4,i/K ) ∈ Gal(H2 F4,i/H2)= F2 . (23)

In cases where we know the kernel of α in (12), i.e., the non-trivial relation AD between the
ramified primes of K in C , we can use it to leave out a column of R8 corresponding to a
‘superfluous’ generator [m j ] of C[2] ∩ 2C , and work with an (r4 × r4)-matrix to describe ϕ8

in (22).
A product m of distinct ramified primes of K is characterized by the squarefree divisor

m|D arising as its norm, and the residue class of a quartic character ψ in Ĉ[4]/Ĉ[2] by the
invariant field E = Q(

√
d1,

√
d2) of the quadratic character 2ψ corresponding to a decom-

position D = d1d2 ‘of the second kind’. This leads to a classical notation for the entries
ψ([m]) in (23) as Rédei symbols.

Definition 4·4. Let D = d1d2 be a decomposition of the second kind, K ⊂ F a corre-
sponding extension as in condition (i) of Lemma 4·2, and m|D the squarefree norm of an
integral ideal m in K with [m] ∈ C[2] ∩ 2C . Then the Rédei symbol associated to d1, d2, and
m is the Artin symbol

[d1, d2,m] = Art(m, H2 F/K ) ∈ Gal(H2 F/H2)= F2 .

It is convenient to take the value of Rédei symbols in F2, as we do in Definition 4·4. After all,
they arise as entries ηi j of an F2-matrix R8 in (23). However, they describe the Galois action
on certain square roots, just like the entries εi j of R4 in (16), so their values are traditionally
taken in {±1}. We have been unable to completely avoid this notational ambiguity, which
already occurs in (16). Despite our additive definition, our proof of Rédei reciprocity in
Section 8 views Rédei symbols in (46) as ‘products’ of local symbols [a, b, c]p, which are
recognised in our key Lemma 8·1 as quadratic Hilbert symbols satisfying a well-known
global product formula that we did not rename into a sum formula. On the other hand, our
quadratic characters in (8) and biquadratic characters in (38) do take values in F2.

5. Computing Redei-symbols

Definition 4·4 of the Rédei symbol [d1, d2,m] does not immediately show how to com-
pute it from d1, d2 and m, as it involves a quadratic extension F of Q(

√
d1,

√
d2) that is
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dihedral over Q. Galois theory tells us that such F come from rational points on the conic
x2 − d1 y2 − d2z2 = 0, and that they are unique up to twisting by quadratic characters. This
statement does not depend on the base field Q, and we formulate it for any field Q of
characteristic different from 2.

LEMMA 5·1. Let Q be of characteristic different from 2, and Q ⊂ Q(
√

a) a quadratic
extension. For β ∈ Q(

√
a)∗ non-square of norm Nβ = b ∈ Q∗, let F be the normal closure

of the quartic extension Q(
√

a,
√
β) of Q. Then:

(i) for b /∈ {1, a} ⊂ Q∗/Q∗2, the field F is quadratic over Q(
√

a,
√

b), cyclic of degree
4 over Q(

√
ab), and dihedral of degree 8 over Q;

(ii) for b = a ∈ Q∗/Q∗2, the field F is quadratic over Q(
√

a) and cyclic of degree 4
over Q;

(iii) for b = 1 ∈ Q∗/Q∗2, the field F is quadratic over Q(
√

a) and non-cyclic abelian of
degree 4 over Q.

Conversely, every field F having the properties in (i), (ii) or (iii) is obtained in this way for
some β ∈ Q(

√
a) of norm b.

Proof. Basic Galois theory.

COROLLARY 5·2. Let a, b ∈ Q∗ and E = Q(
√

a,
√

b) be as in (i) of Lemma 5·1. Then a
quadratic extension E ⊂ F is cyclic over Q(

√
ab) and dihedral of degree 8 over Q if and

only if there exists a non-zero solution (x, y, z) ∈ Q3 to the equation

x2 − ay2 − bz2 = 0

such that for β = x + y
√

a ∈ Q(
√

a) and α = 2(x + z
√

b) ∈ Q(
√

b) of norm ββ ′ ∈ b · Q∗2

and αα′ ∈ a · Q∗2, we have

F = E(
√
β)= E(

√
α).

Given F = E(
√
β), any other quadratic extension of E that is dihedral over Q is of the form

Ft = E(
√

tβ) for some unique t ∈ Q∗/〈a, b, Q∗2〉.
Proof. The first statement follows if we write β = x + y

√
a ∈ Q(

√
a) in the dihedral case

(i) of Lemma 5·1, and observe that F = Q(
√

a,
√
β,

√
β ′)= E(

√
β) is the normal closure

over Q of Q(
√

a,
√
β), but also of Q(

√
b,

√
α): it contains a square root of the non-square

element

(
√
β + √

β ′)2 =
(√

x + y
√

a +
√

x − y
√

a

)2

= 2(x + z
√

b)= α ∈ Q(
√

b)∗. (24)

The dihedral group D4 of order 8 has center Z(D4)= F2 with quotient D4/Z(D4)=
F2 × F2, and extending Q ⊂ Q(

√
a,

√
b) to a D4-extension amounts to lifting the sur-

jection G Q → F2 × F2 = D4/Z(D4) on the absolute Galois group of Q corresponding to
Q(

√
a,

√
b) to a homomorphism f : G Q → D4. Given f corresponding to F = E(

√
β),

any other lift is of the form ft = χt f for some quadratic character χt : G Q → Z(D4)= F2

corresponding to Q ⊂ Q(
√

t). The extension Ft corresponding to ft is the quadratic twist
Ft = E(

√
tβ) of F , and t ∈ Q∗ yielding Ft is unique up to multiplication by elements of

E∗2 ∩ Q∗ = 〈a, b, Q∗2〉.
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COROLLARY 5·3. For E = Q(
√

a) as in Lemma 5·1, a quadratic extension E ⊂ F is
cyclic over Q if and only if there exists a non-zero solution (x, y, z) ∈ Q3 to

x2 − ay2 − az2 = 0

such that we have F = E(
√
α) for α = x + y

√
a ∈ Q(

√
a) of norm αα′ ∈ a · Q∗2. Given

one F = E(
√
α), any other such extension is of the form Ft = E(

√
tα) for some unique

t ∈ Q∗/〈a, Q∗2〉.
Proof. Analogous to the dihedral case.

Remark 5·4. The dihedral group D4 of order 8 can be viewed as the Heisenberg group
U3(F2) of upper triangular 3 × 3-matrices with coefficients in F2, and extending an extension
Q ⊂ Q(

√
a,

√
b) to a D4-extension amounts to an embedding problem that can be treated

in terms of Massey symbols [12]. For our purposes, the basic Galois theory of Lemma 5·1
and its corollaries are already sufficient.

In order to construct an unramified extension K ⊂ F containing E = Q(
√

d1,
√

d2) for D =
d1d2 satisfying the conditions of Lemma 4·2, we apply Corollary 5·2 for Q = Q and (a, b)=
(d1, d2). It shows that F can be explicitly generated as

F = F(x, y, z)= E(
√
δ2)= E(

√
δ1), (25)

for elements δ2 = x + y
√

d1 ∈ Q(
√

d1)
∗ and δ1 = 2(x + y

√
d1) ∈ Q(

√
d1)

∗ coming from a
solution (x, y, z) to the equation

x2 − d1 y2 − d2z2 = 0. (26)

By Corollary 5·2, scaling any non-zero solution (x, y, z) with an appropriate element t ∈
Q∗, which amounts to replacing F(x, y, z) by the quadratic twist F(t x, t y, t z), will make
K ⊂ F unramified. As we will show in a slightly more general setting in Corollary 7·4,
every primitive integral solution (x, y, z) to (26) yields an extension K ⊂ F(x, y, z) that is
unramified at all odd primes. Ramification over 2 can be avoided by twisting the extension
with a suitable choice of t ∈ {±1,±2}.
Example 5·5. Take K = Q(

√−205) of discriminant D = −4 · 5 · 41 = −820, which has
t = 3 and r2 = 2. The columns of the Rédei matrix

R4 =
⎛⎝1 0 0

1 0 0
0 0 0

⎞⎠
describe the action of the Artin symbols of the three ramified primes p2, p5, and p41 dividing
D on the square roots of −4, 5 and 41 generating H2 = Q(i,

√
5,

√
41) as in (16). From the

matrix R4 we read off that r4 equals r2 − rank(R4)= 1, that [p5] and [p41] span C[2] ∩ 2C ,
and that D = −20 · 41 is the unique decomposition of the second kind. The equation

x2 + 20y2 − 41z2 = 0

has a primitive solution (12,1,2) for which the element δ = 12 + 2
√−5 of norm 22 · 41 is

‘primitive outside 2’ and satisfies δ ≡ (1 + √−5)2 mod 4. This shows that δ = 2(6 + √−5)
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has an unramified square root over E = Q(
√−5,

√
41), whereas the primitive elements

±6 + √−5 yield extensions E ⊂ E(
√±δ/2) that are ramified over 2.

The solution (17, 2, 3) defining the primitive element δ0 = 17 + 4
√−5 of norm 32 · 41

satisfying δ0 ≡ 1 mod 4 also has an unramified square root over E . We have

δδ0 = 164 + 82
√−5 = −[√41(1 − √−5)]2 ∈ −1 · E∗2

,

and E(
√
δ0)= E(

√
tδ) for t = −1. Over H2, both

√
δ0 and

√
δ generate

H4 = H2(
√
δ0)= H2(

√
δ).

As we know that (
√−5 · 41)= p5p41 is trivial in C , the class of either p5 or p41 generates

C[2] ∩ 2C . The matrix R8 consists of a single Rédei symbol

[−20, 41, 5] = [−20, 41, 41]
describing whether the prime p5 (or, equivalently, p41) of K splits completely in H4. It does
not, as δ = 12 + 2

√−5 (like δ0 = 17 + 4
√−5)) is congruent to the quadratic non-residue 2

modulo every prime over 5 in H2. We conclude that we have r8 = 0, and that the 2-part of C
is isomorphic to Z/2Z × Z/4Z.

In this case, the decomposition D = d1d2 = −4 · 205 is not of the second kind, but the
conic

x2 + 4y2 − 205z2 = 0

defined by (26) does have infinitely many rational points (x, y, z), such as (3, 7, 1). None
of them defines an unramified quartic extension K ⊂ F(x, y, z).

Example 5·5 shows that non-trivial solvability of (26) over Q may not guarantee the exis-
tence of unramified extensions K ⊂ F(x, y, z), whereas the slightly stronger conditions of
Lemma 4·2 do. More precisely, by the classical local-global principle for conics, assuming
solvability of (26) amounts to having quadratic Hilbert symbols (d1, d2)p = 1 for all finite
primes p, with (d1, d2)∞ = 1 then being implied by the product formula. At p � D = d1d2,
including p = 2, we have (d1, d2)p = 1. For an odd prime p dividing D = d1d2, say d1, the
Hilbert symbol condition at p is

(d1, d2)p =
(

d2

p

)
= 1,

exactly as in condition (iv) of Lemma 4·2. For p = 2 dividing d1 however, we have d2 ≡
1 mod 4 and obtain

(d1, d2)2 =
(

d2

2

)ord2(d1)

= 1. (27)

If D has 2-part tD = −4 in (5) and we have d2 ≡ 5 mod 8, such as for D = −820 and d2 =
205 above, condition (27) does not imply condition (iv) of Lemma 4·2 for p = 2, as we
have (d1, d2)2 = 1 but (d2/2)= −1. This discrepancy will lead us to the notion of 2-minimal
ramification in Definition 7·5.
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6. Discovering Redei reciprocity

Explicit computations of Rédei symbols exhibit a ‘reciprocity law’ that we can discover
already by looking at the most classical example

K = Q(
√−p),

with p an odd prime. Having r2 = t − 1 = 1 for K amounts to having p ≡ 1 mod 4 and
D = −4p by Theorem 2·1; otherwise C has odd order. Assuming this, R4 in Theorem 3·1
has rank 0 if and only if we have ( p

2 )= ( 2
p )= 1, so r4 = 1 happens for p ≡ 1 mod 8. We

further assume p ≡ 1 mod 8.
As (

√−p)|p is principal, the class of the non-principal prime p2|2 generates C[2] =
C[2] ∩ 2C , and R8 consists of a single Rédei symbol [−4, p, 2]. The case r8 = 1 in which
the symbol vanishes occurs when the prime p2 of K splits completely in the 4-Hilbert class
field H4(−p) of K . Solving

x2 + 4y2 − pz2 = 0

with z = 1, we can generate H4(−p) over E = Q(i,
√

p) by adjoining a square root of
π = x + 2iy. Now p2 splits into 4 primes in the extension K ⊂ H4(−p) if and only if the
prime (1 + i) over 2 in Q(i) splits into 4 primes in the extension

Q(i)⊂ H4(−p)= Q(
√−p, i,

√
π)= Q(i,

√
π,

√
π).

This shows that [−4, p, 2] can be viewed as a ‘Kronecker symbol’ ( π

1+i ) in Q(i). By class
field theory (or quadratic reciprocity) over Q(i), this symbol is simply the Legendre symbol
( 1+i

p ), which is well defined for p ≡ 1 mod 8, and we have

r8 = 1 ⇐⇒ p splits completely in Q(ζ8,
√

1 + i). (28)

We deduce that the prime p2 over 2 splits completely in the unramified extension
K ⊂ H4(−p) if and only if p splits completely in Q(ζ8,

√
1 + i). By the case (a, b)=

(−1, 2) of Lemma 5·1, the field Q(ζ8,
√

1 + i)= Q(i,
√

2,
√

1 + i) is dihedral over Q, just
like H4(−p). In fact, both fields are abelian of exponent 2 over Q(i), quadratic over respec-
tively Q(i,

√
2) and Q(i,

√
p), and cyclic over respectively Q(

√−2) and Q(
√−p). We

have proved a special case of Rédei reciprocity, and in terms of Rédei symbols it can be
suggestively formulated as

[−4, p, 2] = [−4, 2, p]. (29)

The symbol on the left is defined by Definition 4·4 for symbols [d1, d2,m], but the symbol
on the right is not. It is natural to take d1 and d2 up to squares, yielding the formulation
[−1, p, 2] = [−1, 2, p], but the symbol [−1, 2, p] refers to the splitting of the primes over
p in

Q(
√−2)⊂ E = Q(i,

√
2)⊂ F = E(

√
1 + i),

a cyclic quartic extension that is totally ramified over 2. Primes p ≡ 1 mod 8 are totally split
in E , and split or inert in E ⊂ F depending on the value of [−1, 2, p].

As we can swap the arguments −1 and p in the symbol [−1, p, 2] by its very defini-
tion, and 2 and p by what we just proved, one naturally wonders whether it also equals a
symbol [2, p,−1] that describes the splitting of “−1” in the narrow 4-Hilbert class field
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H4(2p) of Q(
√

2p). By Theorem 3·1, the field H4(2p) is quadratic over the totally real field
Q(

√
2,

√
p) for p ≡ 1 mod 8. Now Frobenius symbols at “−1”, which over Q raise roots of

unity to the power −1, arise in class field theory as complex conjugations, and act trivially
on totally real fields. The dihedral field H4(2p) is abelian of exponent 2 over Q(

√
2), and

it is totally real if and only if its conductor over Q(
√

2) is p, not p · ∞. Looking at the ray
class group

(Z[√2]/pZ[√2])∗/〈−1, 1 + √
2〉

modulo p of Q(
√

2), we see that H4(2p) is real exactly when the fundamental unit
1 + √

2 ∈ Q(
√

2) is a square modulo p, and this happens for the primes that split com-

pletely in the dihedral field Q(ζ8,
√

1 + √
2). By equation (24) for (a, b)= (−1, 2) and

(x, y, z)= (1, 1, 1), this is the same field as Q(ζ8,
√

1 + i), so the Rédei symbol

[−1, p, 2] = [−1, 2, p] = [2, p,−1], (30)

when properly defined, is invariant under all permutations of its arguments.
In Rédei’s own definition, [−1, 2, p] does not exist, and [p, 2,−1] is trivial for all p.

Our definition in the next section introduces a notion of minimal ramification for extensions
K ⊂ F as in (25), correcting the definition found in [5].

7. Redei symbols

In order to obtain Rédei reciprocity, we generalize the symbol [d1, d2,m] in Definition 4·4
beyond the setting of dihedral fields F containing Q(

√
d1,

√
d2) that are cyclic and unrami-

fied over K = Q(
√

d1d2) and norms m of ambiguous ideals m of K with trivial Artin symbol
in the genus field of K . As d1 and d2 encode quadratic fields, and m is the norm of an
ideal with ideal class in a subgroup of C of exponent 2, the general Rédei symbol [a, b, c]
naturally takes its arguments in the group Q∗/Q∗2. It will be linear in each of its arguments.

Every a ∈ Q∗/Q∗2 is uniquely represented by a squarefree integer a, and corresponds to
a number field Q(

√
a) that is quadratic for a 	= 1. Given non-trivial elements in Q∗/Q∗2

represented by squarefree integers a, b, the extension

Q(
√

ab)= K ⊂ E = Q(
√

a,
√

b) (31)

is quadratic, and Q ⊂ E is unramified at primes outside the discriminants �(a) and �(b) of
the quadratic fields corresponding to a and b.

We now assume that a and b have relative quadratic Hilbert symbols (a, b)p = 1 for all
primes p. As we observed at the end of Section 5, this amounts to saying that the equation

x2 − ay2 − bz2 = 0 (32)

admits non-zero rational solutions. By Corollaries 5·2 and 5·3, such a solution (x, y, z)
generates a cyclic quartic extension

Q(
√

ab)= K ⊂ F = F(x, y, z)= E(
√
β)= E(

√
α) (33)

in which we take β = x + y
√

a and α = 2(x + z
√

b). The field F is dihedral over Q for
a 	= b, and cyclic over Q(

√
ab)= Q for a = b. It is uniquely determined by a and b up to

twisting by rational quadratic characters χt , with t ∈ Q∗/Q∗2. In fact, the asymmetry in (33)
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in the definition of α and β coming out of (32) can be seen as making a somewhat arbitrary
choice between F and F2. Here we use the twisting notation

Ft = F(t x, t y, t z)= E(
√

tβ)= E(
√

tα) (34)

for F = F(x, y, z) from Section 5.
Before defining the general symbol [a, b, c], we start with the special case of a squarefree

integer a = b 	= 1. Then K ⊂ E in (31) is the extension Q ⊂ Q(
√

a). As Hilbert symbols
satisfy (a,−a)p = 1 for all a ∈ Q∗, our assumption on a is (a,−1)p = 1 for all p. By (18),
this means that the discriminant�(a) ∈ {a, 4a} is positive and without prime divisors 3 mod
4, i.e., in the set D of Conjecture 3·2. For such a, we can write the associated Dirichlet
character χa : GQ → F2 in the notation of (14) as

χa =
∑
p|a
χp,

with χ2 = χ8 the quadratic character associated to Q(
√

2). Let ψp be a character of order 4
modulo p ≡ 1 mod 4, and ψ2 a character of order 4 on (Z/16Z)∗. Then

ψa =
∑
p|a
ψp (35)

is a quartic Dirichlet character of conductor a (or 8a when a is even) that satisfies
2ψa = χa . It corresponds to a cyclic quartic field Fa,a containing E = Q(

√
a). Cyclic quartic

Q ⊂ F containing E are unique up to quadratic twists, as 2ψF = χa only defines ψF up to a
quadratic character. Clearly E ⊂ F will be ramified at all primes dividing a, but not at other
primes if we take ψF =ψa as in (35). Such an extension Q ⊂ Fa,a of minimal ramification
is not unique, as we can add χp to each ψp of odd conductor p in (35), and χ2 and χ−1 to
ψ2. This makes ψa unique up to twisting by sums of characters χp with p|a, and in addition
the character χ−1 in case a is even. For a = 1 we define ψa to be the trivial character.

In terms of Corollary 5·3, a minimally ramified cyclic quartic extension Q ⊂ Fa,a

containing E = Q(
√

a) is unique up to twisting by t in the finite twisting subgroup

Ta,a ⊂ Q∗/Q∗2 (36)

generated by the residue classes of the odd primes p = p∗ dividing a and, for a even, of −1
and 2. It follows that for squarefree integers a and c satisfying

gcd(�(a), �(c))= 1 and (a, a)p = (a, c)p = 1 for all p, (37)

we have χt(c)= 0 for t ∈ Ta,a , and a well defined biquadratic character

ψa(c)=
( c

a

)
4
∈ F2. (38)

In terms of Artin symbols in the cyclotomic field Q(ζa) (or Q(ζ8a)) containing Fa,a , we have

ψa(c)= Art(c, Fa,a/Q) ∈ Gal(Fa,a/E)= F2. (39)

Note that a and �(a) ∈D have the same prime factors by the hypothesis (a, a)p = 1 for
all p. Thus (37) implies that for a even, with −1, 2 ∈ Ta,a , we have c ≡ 1 mod 4 by the
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gcd-condition, and then c ≡ 1 mod 8 by the condition (a, c)2 = 1, yielding χ2(c)=
χ−1(c)= 0. For odd primes p dividing a, with p ∈ Ta,a , the conditions (a, c)p = 1 and
χp(c)= 0 coincide.

Viewing ψa in (38) as defined on the subgroup of Q∗/Q∗2 generated by the integers c
satisfying (37), we obtain the following special Rédei symbol.

Definition 7·1. For a, c ∈ Q∗/Q∗2 satisfying (37), we take (38) to define

[a, a, c] =ψa(c)=
( c

a

)
4
∈ F2.

For the general case, we take a, b ∈ Z	=1 to be different squarefree integers, assuming

(a, b)p = 1 for all primes p (40)

in order to have non-trivial solvability of (32). Then the quadratic extension

Q(
√

ab)= K ⊂ E = Q(
√

a,
√

b)

from (31) is only ramified at primes p| gcd(�(a), �(b)), and such p will be totally ramified
in every cyclic quartic extension K ⊂ F in (33). Generalizing (39), we are to define the
Rédei symbol in Definition 7·8 as

[a, b, c] = Artc(Fa,b/K ) ∈ Gal(Fa,b/E)= F2,

the Artin symbol of an ideal c in K corresponding to c in a cyclic quartic extension K ⊂ Fa,b

constructed from a solution to (32) that is minimally ramified over E .
For odd primes p � gcd(�(a), �(b)), one can avoid ramification over p in E ⊂ F by

passing, if needed, to the quadratic twist Fp∗ from (34), with p∗ = ±p as in (5).

PROPOSITION 7·2. Let a, b ∈ Z 	=1 be distinct and squarefree, p ��(b) an odd prime, and
K = Q(

√
ab)⊂ F = E(

√
β) as in (33).

(i) If p divides �(a), then K ⊂ F is unramified over p.
(ii) If p does not divide �(a), then exactly one of K ⊂ F and K ⊂ Fp∗ is unramified

over p.

Proof. Consider F as a quartic extension of Ka = Q(
√

a). The intermediate field
E = K (

√
b)= Ka(

√
b) is a quadratic extension of both K and Ka that is unramified at

primes dividing p, as we have p ��(b). It follows that K ⊂ F is unramified over p if and
only if Ka ⊂ F is.

Write F = Ka(
√
β,

√
β ′), with β ∈ Ka of norm ββ ′ = x2 − ay2 = bz2. As p is odd,

Ka ⊂ F is unramified over p if and only if β and β ′ have even valuation at the primes
p|p in Ka . For a prime p|p of ramification index ep/p in Ka , we have

ordp(ββ
′)= ep/p ordp(bz2)= 2ep/p ordp(z).

In the ramified case p|�(a), we have ep/p = 2 and ordp(ββ
′)= 2 ordp(β)≡ 0 mod 4, prov-

ing (i). In the unramified case p ��(a), we have ep/p = 1 and ordp(β)≡ ordp(β
′) mod 2.

Moreover, we have ordp(p∗β)= ordp(β)+ 1, so p is unramified in exactly one of F and
Fp∗ , proving (ii).

https://doi.org/10.1017/S0305004121000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000335


Redei reciprocity, governing fields and negative Pell 643

As twisting by p∗ does not change ramification outside p, Proposition 7·2 shows that K ⊂ F
in (33) can be chosen to be unramified at all odd p � gcd(�(a), �(b)). For p = 2 we can twist
by −1 and 2, with the following outcome.

PROPOSITION 7·3. Let a, b ∈ Z 	=1 be distinct and squarefree, b =�(b)≡ 1 mod 4, and
K = Q(

√
ab)⊂ F = E(

√
β) as in (33).

(i) If �(a) is odd, then Q ⊂ Ft is unramified at 2 for a unique t ∈ {±1,±2}.
(ii) If �(a) is even and �(b) is 1 mod 8, then K ⊂ Ft is unramified over 2 for exactly

two values of t ∈ {±1,±2}.
(iii) If �(a) is even and �(b) is 5 mod 8, then K ⊂ Ft is ramified over 2 for all t ∈ Q∗,

and �(a) is 4 mod 8.

Proof. Just as for odd p, we consider the extension Ka ⊂ F = Ka(
√
β,

√
β ′). As before, up

to squares, β is a 2-unit in Ka if �(a) is even, and exactly one of β and 2β is a 2-unit Ka if
�(a) is odd. However, for a 2-unit to have a square root that is unramified at 2, we need the
stronger condition that it is a square modulo 4.

We can assume, possibly after twisting F by t = 2, that β is a 2-unit in the ring of integers
O of Ka . For 2 ��(a), the group (O/4O)∗ has order 4 or 12, depending on whether 2 is split
or inert in O, and the squares form a subgroup of index 4. Together with −1, they generate
the kernel of the surjective norm map

N : (O/4O)∗ −→ (Z/4Z)∗.

By assumption, we have ββ ′ ≡ b ≡ 1 mod 4O, so the residue classes β, β ′ ∈ ker N are
squares in (O/4O)∗ for a unique ‘sign choice’ of β, and Q ⊂ Ft is unramified at 2 for a
unique value t ∈ {±1,±2}. This proves (i).

For 2|�(a), the group (O/4O)∗ = (O/p4O)∗ has order 8, and its subgroup of squares, of
index 4, is of order 2. The norm O = Z[√a] → Z induces a map

N : (O/4O)∗ −→ (Z/8Z)∗

for which the image, of order 2, is generated by 1 − a mod 8 when a ≡ ±2 mod 8 is even,
and by 5 mod 8 when a ≡ −1 mod 4 is odd.

In the case where a is even, ker N is non-cyclic of order 4, generated by −1 and the
squares in (O/4O)∗, and it contains β mod 4O as ββ ′ ≡ b mod 8 is not 5 mod 8 /∈ im N .
In this case, we have �(b)= b ≡ 1 mod 8, and we conclude just as before that exactly one
of F and F−1 is unramified over K at 2. By the same argument applied to F2, one of F2

and F−2 is unramified over K at 2, so K ⊂ Ft is unramified over 2 for exactly two values
t ∈ {±1,±2}, as stated in (ii).

In the remaining case a ≡ −1 mod 4, or �(a)≡ 4 mod 8, the residue class of

τ = (1 + √
a)2/2 = (1 + a)/2 + √

a (41)

in (O/4O)∗, which equals
√

a mod 4O for a ≡ −1 mod 8 and 2 + √
a mod 4O for a ≡

3 mod 8, has square −1 mod 4O, so it is of order 4 and generates ker N .
We now have 2 cases. For�(b)= b ≡ 1 mod 8 we have β mod 4O ∈ ker N , and twisting

by t = 2, which replaces β by β/τ , may be used to move β into the subgroup ±1 mod 4O
of squares in (O/4O)∗. In this case either F and F−1 or F2 and F−2 are unramified over K
at 2, proving (ii).

https://doi.org/10.1017/S0305004121000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000335


644 PETER STEVENHAGEN

The final case a ≡ −1 mod 4 and �(b)= b ≡ 5 mod 8 is the case occurring in (iii).
Here twisting by −1 or 2 cannot move β or β ′ into ker N , and the extension Ka ⊂ F =
Ka(

√
β,

√
β ′) is ramified at the prime p|2 of Ka . This implies that K ⊂ Ft is ramified over

2 for all t ∈ Q∗, proving (iii).
Alternatively, one can argue for (iii) that if the ramified prime over 2 in K , which is inert

in K ⊂ E , were unramified in the cyclic quartic extension K ⊂ Ft , the primes over 2 in Ft

would have ramification index 2 and residue class degree 4 over Q; but the dihedral group
of order 8 has no cyclic quotient of order 4.

The ramified case (iii) of Proposition 7·3 does not occur when D =�(a)�(b) is a decom-
position satisfying the conditions of Lemma 4·2, as for even D, the prime 2 splits in either
Q(

√
a) or Q(

√
b), by condition (iv) of Lemma 4·2.

COROLLARY 7·4. Let (x, y, z) be a primitive integral solution to (26) for D = d1d2

satisfying the conditions of Lemma 4·2. Then there exists t ∈ {±1,±2} such that Ft =
Q(

√
d1,

√
d2,

√
t x + t y

√
d1) is unramified and cyclic of degree 4 over Q(

√
D).

Proof. For (x, y, z) primitive and p odd, β = x + y
√

d1 and α = 2(x + z
√

d2) are not divis-
ible by p, hence units at a prime over p in Q(β) and Q(α), making Q(

√
D)⊂ F1 unramified

outside 2. Twisting by t ∈ {±1,±2} as in (i) and (ii) of Proposition 7·3 makes it unramified
at 2 as well.

In the ramified case (iii) of Proposition 7·3, with a ≡ −1 mod 4 and b ≡ 5 mod 8, which is
essential for Rédei reciprocity, the extension K ⊂ F in (33) gives rise to a local field F ⊗ Q2

that is dihedral of degree 8 over Q2, and quadratic over

E ⊗ Q2 = Q2(
√

a,
√

b)= Q2(i,
√

5). (42)

It is cyclic over Q2(
√−5) for a ≡ −1 mod 8, and cyclic over Q2(i) for a ≡ −5 mod 8.

Ramification in E ⊗ Q2 ⊂ F ⊗ Q2 cannot be avoided, but one can obtain 2-minimal
ramification after twisting, if necessary, by the generator t = 2 of

Q∗
2/〈a, b,Q∗

2
2〉 = Q∗

2/〈−1, 5,Q∗
2

2〉 ∼= Z/2Z.

In view of (41), this amounts to replacing β by τβ. In this way we can make β trivial in
the group (O/2O)∗ = 〈τ 〉 = 〈√a mod 2O〉 of order 2, and we can even change the sign of
β – this does not change F ⊗ Q2 – to achieve β ≡ 1 mod p3, with p|2 in Ka . This is not quite
the congruence β ≡ 1 mod p4 that would make Ka = Q(

√
a)⊂ F unramified over 2, but it

does ensure that the local extension Q2(
√

a)⊂ F ⊗ Q2 is of conductor 2, the minimum
for a ramified biquadratic extension of Q2(

√
a). One has F ⊗ Q2 = Q2(i,

√
5,

√
x) with

x = 1 + 2i for a ≡ −1 mod 8 and x = 3 + 2
√−5 for a ≡ −5 mod 8.

Definition 7·5. In the ramified case (3) of Proposition 7·3, with a ≡ −1 mod 4 and
b ≡ 5 mod 8, the extension K ⊂ F is 2-minimally ramified if the local biquadratic extension
Q2(

√
a)⊂ F ⊗ Q2 is of conductor 2.

The requirement in Definition 7·5 means that we have F = E(
√
β) for an element β ∈ 1 +

2O ⊂ K ∗
a . Any F in case (iii) of Proposition 7·3 has a twist Ft with t ∈ {±1,±2}, unique up

to sign, that is 2-minimally ramified.
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For arbitrary non-trivial elements a, b ∈ Q∗/Q∗2 for which (32) admits non-zero solu-
tions, we are led to the following global notion of minimal ramification.

Definition 7·6. For a, b ∈ Q∗/Q∗2 \ {1}, the extension K ⊂ F in (33) defined by a non-
zero rational solution to (32) is said to be minimally ramified over E if it is

(i) unramified over all odd primes p � gcd(�(a), �(b));
(ii) unramified over 2 when �(a)�(b) is odd, or one of �(a), �(b) is 1 mod 8;

(iii) 2-minimally ramified if (�(a), �(b)) is (5, 4) or (4, 5) modulo 8.

In the special case a = b, we recover our earlier definition of a minimally ramified extension
Q ⊂ Fa,a , as being unramified at the primes p � a.

Every extension K ⊂ F in (33) can be twisted by some t ∈ Q∗/Q∗2 to obtain a minimally
ramified extension K ⊂ Fa,b, but Fa,b is not uniquely determined by a, b ∈ Q∗/Q∗2. More
precisely, we have a finite twisting subgroup

Ta,b ⊂ Q∗/Q∗2 (43)

just as for a = b in (36). It is generated by the residue classes of the odd signed primes p∗

occurring in the discriminantal factorisations (5) of �(a) and �(b), together with −1 and 2
if both �(a) and �(b) are even, and with the unique non-trivial discriminantal 2-part t�(a)
or t�(b) in {−4,±8} if only one of them is even. For a = b, this definition coincides with
(36). It is tailored to obtain the following.

LEMMA 7·7. For a, b ∈ Q∗/Q∗2 \ {1} satisfying (40), there exists F = F(x, y, z) in (33)
that is minimally ramified over E. For such F and t ∈ Q∗/Q∗2, we have

K ⊂ Ft is minimally ramified ⇐⇒ t ∈ Ta,b.

Proof. We already showed existence. If �(a) and �(b) are not both even, it follows from
(8) that the elements t ∈ Ta,b are exactly the Dirichlet characters of the quadratic extensions
Q ⊂ Q(

√
t) that become unramified over E = Q(

√
a,

√
b), and preserve the minimal rami-

fication of F under twisting. If both �(a) and �(b) are even, inclusion of both generators
−1 and 2 ‘at 2’ ensures that for ta = tb 	= 1, when Definition 7·6 imposes no restriction
on ramification at 2 on K ⊂ F , we do allow all possible quadratic twists of 2-power
conductor.

We are now ready to define the Rédei symbol [a, b, c] for a, b, c ∈ Q∗/Q∗2 satisfying (1)
and (2) from the Introduction, i.e., with relative quadratic Hilbert symbols

(a, b)p = (a, c)p = (b, c)p = 1

at all primes p, and associated discriminants satisfying the coprimality condition

gcd(�(a), �(b), �(c))= 1.

Definition 7·8. For non-trivial a, b, c ∈ Q∗/Q∗2 satisfying (1) and (2), let K = Q(
√

ab)⊂
Fa,b be minimally ramified over E = Q(

√
a,

√
b), as in Definition 7·6. Then the Rédei

symbol

[a, b, c] ∈ Gal(Fa,b/E)= F2
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is defined as

[a, b, c] = Artc(Fa,b/K )=
{

Art(c, Fa,b/K ) if c> 0;
Art(c∞, Fa,b/K ) if c< 0.

(44)

Here c is an integral OK -ideal of norm |c0|, with c0 the squarefree integer in the class of c,
and ∞ denotes an infinite prime of K .

If one of a, b, or c is trivial in Q∗/Q∗2, we take [a, b, c] = 0.

With this definition, which we show in Corollary 8·2 to be independent of the choice of the
minimally ramified extension K ⊂ Fa,b, the Rédei symbol becomes perfectly symmetric in
its 3 arguments. Rédei’s reciprocity law is the following precise version of Theorem 1·1.

THEOREM 7·9. For a, b, c ∈ Q∗/Q∗2 satisfying (1) and (2), the symbol (44) is well-
defined, linear in each of its arguments, and satisfies

[a, b, c] = [b, a, c] = [a, c, b] ∈ F2.

We say that the Rédei symbol [a, b, c] is defined if its arguments a, b, c ∈ Q∗/Q∗2 satisfy
the conditions (1) and (2).

The inclusion of the infinite prime in the definition (44) almost by tautology leads to the
following useful property.

PROPOSITION 7·10. Let D = d1d2 be a decomposition of the second kind as in Definition
4·4. Then the Rédei symbol [d1, d2,−d1d2] ∈ F2 is defined and equals 0.

Proof. Multiplying (d1, d2)p = 1 in (44) by the trivial symbols (d1,−d1)p and (−d2, d2)p,
we obtain (d1,−d1d2)p = (−d1d2, d2)= 1, so [d1, d2,−d1d2] satisfies (1), and obviously
also (2).

Suppose D = d1d2 < 0. Then the principal ideal (
√

D) in the ring of integers of
K = Q(

√
D) of norm c = −D = −d1d2 > 0 is trivial in C(D), so its Artin symbol acts

trivially on any unramified abelian extension K ⊂ F . In case D is odd, c is square-
free, and definition (44) with a = d1, b = d2, and c= (

√
D) yields the desired equality

[a, b, c] = [d1, d2,−d1d2] = 0. For D < 0 even, c= (
√

D/2) of squarefree norm −d1d2/4
does the same.

In the case D = d1d2 > 0, the class of the ideal c= (
√

D) of norm D = d1d2 in C(D) is
the Frobenius at infinity F∞ from (4), which acts as Art(∞, F/K ) on the finitely unramified
abelian extension K ⊂ F . For D odd and c = −D < 0 squarefree, [a, b, c] = [d1, d2,−d1d2]
now corresponds to the action of the square of Art(∞, F/K ) on F , which is also the identity,
yielding [d1, d2,−d1d2] = 0. For D > 0 even, c= (

√
D/2) does the job.

8. Proving Redei reciprocity

We already mentioned that Rédei’s original definition is different from (44). Not only does
he omit a contribution of the infinite prime, putting [a, b,−c] = [a, b, c], he also requires
at least one of �(a) and �(b) to be odd, making a symbol like [−1, 2, p] in (30) unde-
fined. The resulting reciprocity law [16, Satz 4] has superfluous 2-adic restrictions on the
entries, and for bc< 0 the symbols [a, b, c] and [a, c, b], which are only both defined for
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�(a) without prime factors congruent to 3 mod 4, differ by a product of four quadratic and
biquadratic symbols.

In his 2007 thesis, Corsman found that including an Artin symbol at infinity for c< 0 leads
to a perfectly symmetric version of the reciprocity law. Both his definition of the symbol
and his proof of the law rely heavily on an incorrect lemma [5, lemma 5·1·2] claiming that
the assumptions (1) and (2) guarantee the existence of an extension K ⊂ F in (44) that is
unramified at all primes p � gcd(�(a), �(b)). Smith’s paper on the average 8-rank behavior
of imaginary quadratic class groups also has an incorrect version of the reciprocity law [18,
proposition 2·1] that disregards the subtleties at both infinite and dyadic primes.

We now let a, b, and c be squarefree integers different from 1 satisfying (1) and (2). To see
that [a, b, c] is well-defined, and independent of the many choices that go into the definition
of the symbol, we first note, using Lemma 7·7, that an extension K ⊂ Fa,b in (44) that is
minimally ramified over E does exist, and that it is unique up to twisting by t ∈ Ta,b.

Let K ⊂ F be minimally ramified over E = Q(
√

a,
√

b), and p a prime dividing c. Then p
is split or ramified in Q(

√
a) and in Q(

√
b) by (1), and unramified in at least one of these

fields by (2). For a prime pK |p in K , this implies that pK is of degree 1, and split in the
extension K ⊂ E . Moreover, pK is unramified in K ⊂ F for primes p|c. Indeed, for odd p
we are in case (i) of Definition 7·6 by (2). For 2|c at least one of�(a), �(b) is odd, say�(b),
and then the condition (b, c)2 = (�(b), 2)2 = 1 in (1) shows that we have �(b)≡ 1 mod 8,
putting us in case (ii) of Definition 7·6. Thus Art(pK , F/K ) ∈ Gal(F/E) is a well-defined
element of Gal(F/Q). As Gal(F/E) is contained in the center of Gal(F/Q), and equal to it
if Q ⊂ F is dihedral,

[a, b, c]F,p = Art(pK , F/K ) ∈ Gal(F/E) (45)

only depends on F and p, not on pK |p in K . For p � c we put [a, b, c]F,p = idF .
For c< 0, we have a, b> 0 by condition (1) for p = ∞, so E = Q(

√
a,

√
b) is totally

real, and the decomposition group at every infinite prime of F is generated by the Frobenius
at infinity

[a, b, c]F,∞ = Art(∞, F/K ) ∈ Gal(F/E).

For c> 0 we put [a, b, c]F,∞ = idF .
With this notation, the Rédei symbol in (44) becomes a product

[a, b, c] =
∏
p≤∞

[a, b, c]F,p ∈ Gal(F/E) (46)

of its p-parts. The infinite product (46) is well-defined in Gal(F/E), as we can only have
[a, b, c]F,p 	= idF for primes p|c, with ∞|c having the meaning c< 0.

As the prime pK in the Artin symbol Art(pK , F/K )= [a, b, c]F,p for p|c in (45) splits in
K ⊂ E , we can view it as the Artin symbol of a prime pE |p of E in the quadratic extension
E ⊂ F = E(

√
β)= E(

√
β ′). As pE is unramified in E ⊂ F , its norm to Ka is a prime p of

degree 1 over p in Ka that is unramified in at least one of the quadratic extensions Ka(
√
β)

and Ka(
√
β ′) of Ka . Replacing p by a conjugate prime in Ka if necessary, we can take it to

be unramified in Ka ⊂ Ka(
√
β). We can then compute the p-part of [a, b, c] as

[a, b, c]F,p = Art(p, Ka(
√
β)/Ka) ∈ {±1}. (47)

https://doi.org/10.1017/S0305004121000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000335


648 PETER STEVENHAGEN

This shows that [a, b, c]F,p is essentially a Legendre symbol ( β
p
) in the field Ka . The reason

that we choose its value to lie in {±1} rather than in F2, which is of course ‘only’ a mat-
ter of notation, is not just a Legendre symbol tradition, or the fact that Galois groups like
Gal(F/E) tend to be written as multiplicative groups. The point is that, for p|p unramified
in Ka ⊂ Ka(

√
β), the p-part of [a, b, c] is the quadratic Hilbert symbol

[a, b, c]F,p = (β, π)p ∈ {±1} (48)

of β and a uniformizer π in the completion of Ka at p. For c< 0 and p = ∞, we have
[a, b, c]F,∞ = (β,−1)p, as the archimedean nature of F = E(

√
β) is determined by the sign

of β at a real prime p of Ka . Respecting tradition, we have refrained from using Hilbert
symbols with values in F2.

It is clear from the symmetry in a and b of the definition of the Rédei symbol [a, b, c]
that we have [a, b, c] = [b, a, c] whenever the symbol is defined. In order to prove the non-
trivial reciprocity law [a, b, c] = [a, c, b] in Theorem 1·1, we choose a minimally ramified
extension F = E(

√
β) of K = Q(

√
ab) as in (33) in order to express [a, b, c] as a product of

p-parts [a, b, c]F,p as in (46), and similarly a minimally ramified extension F ′ = E ′(
√
γ ) of

K ′ = Q(
√

ac) in order to express [a, c, b] as a product of [a, c, b]F ′,p. Here β, γ ∈ Q(
√

a)∗

are elements of norm b, c ∈ Q∗/Q∗2, and the fields F and F ′ are the normal closures of
Q(

√
a,

√
β) and Q(

√
a,

√
γ ), respectively. In the spirit of (48), we then have the following

key lemma.

LEMMA 8·1. Let a, b, c ∈ Q∗/Q∗2 be non-trivial elements satisfying (1) and (2), and
F = E(

√
β) and F ′ = E ′(

√
γ ) minimally ramified extensions of K = Q(

√
ab) and K ′ =

Q(
√

ac) defined as above. For all rational primes p ≤ ∞, we then have

[a, b, c]F,p · [a, c, b]F ′,p =
∏

p|p in Q(
√

a)

(β, γ )p. (49)

Proof. We denote the left-and right-hand side of (49) by L p and Rp, respectively, and note
that L p and Rp are symmetric in b and c. Moreover, we can replace β (or γ ) in Rp by its
conjugate without changing the value of Rp, as the expression R′

p obtained by replacing β
by β ′ satisfies Rp R′

p = ∏
p|p(b, γ )p = (b, c)p = 1.

For p = ∞, condition (1) implies that at most one of a, b, c is negative. If they are all
positive, we have L∞ = 1, and both β and γ are totally positive or negative in the real
quadratic field Ka = Q(

√
a). The symbols (β, γ )p at the two infinite primes of Ka then

have the same value, so we also have R∞ = 1. If only a is negative, we have L∞ = 1 = R∞,
as the unique infinite prime of Ka is complex.

If a is positive and exactly one of b and c, say c, is negative, L∞ is the Frobenius at
infinity in E ⊂ F = E(

√
β), which equals 1 if β ∈ K ∗

a is totally positive, and −1 if β is
totally negative. As γ has a positive and a negative embedding in R, the same value is taken
by the product R∞ = (β, γ )∞1(β, γ )∞2 of the Hilbert symbols at the infinite primes of Ka .
This settles the case p = ∞.

For p a finite prime, take a, b, c to be squarefree integers. Condition (2) implies that p
divides at most two of a, b, c. If p divides b, it is split or ramified in Ka , and β is, up to
squares in K ∗

a , a uniformiser at a prime p1|p and, in the split case (p)= p1p2, a unit at the
other prime p2|p in Ka . If p does not divide b, then the minimal ramification of K ⊂ F
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implies that β is a p-unit, up to squares in K ∗
a . For odd p this means that

√
β ∈ F generates

an extension of Ka that is unramified over p. Analogous statements apply to c and γ .
Suppose first that p is odd. If p does not divide bc, we have L p = 1 = Rp, as the Hilbert

symbols (β, γ )p at p|p are equal to 1 for p-units β and γ . If p divides exactly one of b, c,
say c, we can take β to be a p-unit, with square root in F that is unramified over p, and γ a
uniformiser at a prime p1|p. By (48), we then have

L p = [a, b, c]F,p = (β, γ )p1 . (50)

In the split case (p)= p1p2, we further have (β, γ )p2 = 1, as both β and γ are units at p2.
This yields L p = Rp both in the ramified and in the split case.

If p divides both b and c, it does not divide a, so we are in the split case (p)= p1p2 in
Ka . After replacing β by its conjugate, if necessary, β is a unit at p1 and a uniformizer at p2,
whereas γ is a uniformizer at p1 and a unit at p2. Again by (48),

L p = [a, b, c]F,p · [a, c, b]F ′,p = (β, γ )p1(β, γ )p2 = Rp, (51)

so we have proved our lemma for odd p.
For p = 2, we need a finer distinction as 2 � b, and even 2 ��(b), does not imply that

the minimally ramified extension K ⊂ F is unramified over 2, and that
√
β generates a

subextension of Ka ⊂ F that is unramified over 2. For 2 ��(b), or b ≡ 1 mod 4, Definition
7·6 shows that it does in all cases except in the case a ≡ −1(4) and b ≡ 5 mod 8. For b ≡
−1 mod 4, when 2 divides �(b) but not b, we do know that β is, up to squares in K ∗

a ,
a 2-adic unit. Moreover, for �(b) even and 2 split in Ka , the extension Ka ⊂ Ka(

√
β) is

unramified at one prime over 2, and ramified at the other. Same for c and γ .
Suppose first that bc is odd. Then we have L2 = 1, and we take β and γ to be 2-units.

By the condition (b, c)2 = 1 at least one of b, c, say b, is 1 mod 4. For c ≡ −1 mod 4, the
condition (a, c)2 = 1 implies a 	≡ −1 mod 4, so the minimally ramified extension K ⊂ F
is unramified over 2, and all Hilbert symbols (β, γ )p at primes p|2 in Ka occurring in R2

equal 1, as γ is a unit at p and Ka ⊂ Ka(
√
β) is unramified at p. For c ≡ 1 mod 4, Definition

7·6 tells us that we are in the same situation, with R2 = 1 because one of β, γ is a p-unit
and the other has a p-unramified square root, provided that either we have a 	≡ −1 mod 4
or one of b, c is 1 mod 8. The remaining special case a ≡ −1 mod 4 and b ≡ c ≡ 5 mod
8 is when both Ka ⊂ F and Ka ⊂ F ′ are ramified at the prime p|2 of Ka . This is where
the minimal ramification at 2 of the extensions K ⊂ F and K ⊂ F ′ from Definition 7·5 is
essential: once more we have R2 = (β, γ )p = 1, as

√
β generates an extension of conductor

2 of the completion Q2(
√

a) of Ka at p, and γ is 1 modulo p2 = (2) in Ka . This proves
L2 = 1 = R2 for bc odd.

If exactly one of b, c is even, say c, the condition (a, c)2 = (b, c)2 = 1 implies a, b 	≡
5 mod 8. For b ≡ 1 mod 8, the minimally ramified extension K ⊂ F , and therefore Ka ⊂
Ka(

√
β), is unramified over 2. In this case, we have

L2 = [a, b, c]F,2 = (β, γ )p1 = R2

just as in the case of odd p, as we can take γ to be a uniformizer at p1|2 and, in the split case,
a unit at the other prime p2. In the other case b ≡ −1 mod 4 both �(b) and �(c) are even,
so we have a ≡ 1 mod 8 and (2)= p1p2 in Ka . In this case,

√
β and

√
γ generate extensions

of Ka that are ramified at one prime over 2, and unramified at the other. Replacing β or γ
by their conjugate if necessary, we can assume that Ka ⊂ Ka(

√
β) is unramified at p1 and
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Ka ⊂ Ka(
√
γ ) unramified at p2. Up to squares, γ is a then a uniformiser at p1 and β a unit

at p2, so we have

L2 = [a, b, c]F,2 = (β, γ )p1 = (β, γ )p1(β, γ )p2 = R2.

Finally, for b and c both even, we are also in the split case, as �(a) is odd and (a, b)2 =
(a, 2)2 = 1 implies a ≡ 1 mod 8. As above, we can choose Ka ⊂ Ka(

√
β) unramified at p1

and Ka ⊂ Ka(
√
γ ) unramified at p2. Up to squares, this makes β a uniformizer at p2 and γ

a uniformizer at p1. We obtain

L2 = [a, b, c]F,2[a, c, b]F ′,2 = (β, γ )p1(β, γ )p2 = R2,

and we have finished the proof of Lemma 8·1.

Proof of Theorem 1·1. By Lemma 8·1, the sum in F2 of the Rédei symbols [a, b, c] and
[a, c, b], when defined as in (44) with the help of F = E(

√
β) and F ′ = E ′(

√
γ ), respec-

tively, is the additive analogue of
∏

p≤∞(β, γ )p ∈ {±1}, where the product ranges over all
primes p≤ ∞ of Q(

√
a). By the product formula for Hilbert symbols, this product is equal

to 1, so we have [a, b, c] = [a, c, b], as desired. As we can trivially swap a and b in [a, b, c],
this shows that the Rédei symbol is perfectly symmetric in its 3 arguments.

The linearity of [a, b, c] in c is clear from its description as a product of Artin symbols
[a, b, c]p of order 2 at the primes p|c. It must therefore be linear in all arguments.

COROLLARY 8·2. The value of the symbol [a, b, c] in (44) is the same for all K ⊂ Fa,b

that are minimally ramified over Q(
√

a,
√

b).

Proof. By Theorem 1·1, the symbol is equal to [a, c, b], which is defined independently of
a choice K ⊂ Fa,b.

One can of course also prove this directly: by Lemma 7·7, two F’s that are minimally
ramified over Q(

√
a,

√
b) differ by a twist t ∈ Ta,b, and twisting F = Fa,b in (44) changes

the value of [a, b, c] by χt(c), which equals 0 for t ∈ Ta,b by the conditions (1) and (2).

Even though the symbol [a, b, c] itself is independent of the choice of F in (7·8), its p-parts
[a, b, c]F,p in (46) do depend on the minimally ramified extension K ⊂ F .

It is also possible to define [a, b, c] as an Artin symbol in an abelian extension K ⊂Fa,b

that is uniquely defined in terms of a and b. For any minimally ramified extension K ⊂ F as
in (33), we can take the compositum

Fa,b = FGa,b,

of F with the multiquadratic extension Ga,b obtained by adjoining the square roots
√

t of the
elements t ∈ Ta,b from (43). By Lemma 7·7, the number field Fa,b is the compositum of all
minimally ramified extensions K ⊂ F , so it is uniquely defined in terms of a and b. We now
replace Fa,b by Fa,b in (44) and define the Rédei symbol [a, b, c] ∈ Gal(Fa,b/Ga,b)= F2 as

[a, b, c] = Artc(Fa,b/K )=
{

Art(c,Fa,b/K ) if c> 0;
Art(c∞,Fa,b/K ) if c< 0.

(52)

Although Definition (52) is in many ways the ‘correct’ definition of [a, b, c], it has the
psychological disadvantage of being defined using a field Fa,b that is potentially very large.
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For the proof of the reciprocity of the symbol, and for actual computations of Rédei symbols,
the p-parts of [a, b, c], which are simply Legendre symbols in quadratic fields such as Ka =
Q(

√
a) by (47), are handled more easily.

9. Governing fields

An immediate application of Rédei’s reciprocity law in the form we have stated it is the
existence of governing fields for the 8-rank of the narrow class group C(dp) of the quadratic
field Q(

√
dp), with d a fixed squarefree integer and p a variable prime. By this, we mean

that there exists a normal number field�8,d with the property that for primes p, p′ � d that are
coprime to its discriminant and have the same Frobenius conjugacy class in Gal(�8,d/Q),
the groups C(dp)/C(dp)8 and C(dp′)/C(dp′)8 are isomorphic.

Theorem 2·1 trivially implies that �2,d = Q(i) is a governing field for the 2-rank of
C(dp). By the explicit form (16) of Theorem 3·1, we can take the multi-quadratic field

�4,d = Q(i, {√p : p|d prime})
as a governing field for the 4-rank of C(dp).

Now suppose p and p′ are primes that are unramified in �4,d and have the same Artin
symbol in Gal(�4,d/Q). Then the Rédei matrices R4 and R′

4 for C(dp) and C(dp′) as given
in (16) coincide if the primes in dp and dp′ are numbered in the obvious compatible way.
This implies that the 8-rank maps in (22) can be described by matrices R8 and R′

8 for C(dp)
and C(dp′) with entries given by (23) that may be compared ‘entry-wise’. In other words,
every entry [d1, d2,m] from Definition 4·4 in the matrix R8 for D = d1d2 ∈ {dp, 4dp} cor-
responds to a Rédei symbol [d ′

1, d ′
2,m ′] for R′

8 in which the arguments are obtained by
replacing every prime factor p in the entries of [d1, d2,m] by the factor p′.

Possibly switching the role of d1 and d2, we may assume that all symbols [d1, d2,m] in R8

have p � d1. Moreover, if we have p|m in a symbol [d1, d2,m], we can add the trivial symbol
[d1, d2,−d1d2] from Proposition 7·10 to it to rewrite it as a symbol

[d1, d2,m] = [d1, d2,−d1d2/m] = [d1, d2, dp/m] (1)

with p � (dp/m). Thus, we may write the entries of R8 as [d1, d2,m] with p � d1m. Then the
entries of R′

8 become [d ′
1, d ′

2,m ′] = [d1, d ′
2,m].

In order to show that the value of [d1, d2,m] for p � d1m is governed by the splitting
behavior of p in some finite extension of �4,d , it suffices to rewrite it using Theorem 1·1 as

[d1, d2,m] = [d1,m, d2],
and observe that we now have [d1,m, d2] = [d1,m, d ′

2] for d ′
2 = p′d2/p whenever p and p′

have the same splitting behaviour in �4,d(
√
μ), with μ ∈ Q(

√
d1) an element with norm

in m · Q∗2 that generates a minimally ramified extension of K = Q(
√

md1) as in (33) for
(a, b)= (d1,m). Note that �4,d ⊂�4,d(

√
μ) is unramified outside 2d.

Taking �8,d to be the compositum of the fields �4,d(
√
μ) arising for each of the entries

[d1, d2,m] of R8, we see that R8 and R′
8 coincide for primes p, p′ having the same Frobenius

conjugacy class in Gal(�8,d/Q). We arrive at the following theorem, which was proved in a
more involved way in 1988 in [20]. The short proof we gave above already occurs in [5].

THEOREM 9·1. A governing field �8,d for the 8-rank of C(dp) exists, and one can take
for it the maximal exponent 2 extension of �4,d unramified outside 2d.
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The existence of �8,d implies, by the Chebotarev density theorem, that we can compute
the density of the set of primes p for which C(dp) has prescribed 2-, 4- and 8-rank. Cohn
and Lagarias [4] conjectured in 1983 that such governing fields �2k should exist for the
2k-rank of C(dp) for all k ≥ 1. Recent work of Milovic and Koymans [10, 11] establishes
density results for 16-ranks of class groups C(dp) with cyclic 2-part, such as C(−2p), with
error terms that are “too good” to come from a governing field, making it unlikely that the
conjecture holds for 2k-ranks with k ≥ 4. Smith [19] nevertheless arrives at proving average
distributions for higher 2k-ranks by ‘governing less’, focusing not on individual quadratic
fields K but on their related behavior in well-chosen families.

10. The negative Pell equation

By (20), proving Conjecture 3·2 entails controlling the archimedean character of the full
narrow Hilbert class field H of K = Q(

√
D) for the discriminants D in the thin set D of

discriminants for which the genus field H2 is totally real. The 4-Hilbert class field H4 of
K can be given explicitly, in the sense of Corollary 7·4, as a compositum of cyclic quartic
extensions K ⊂ Fd1,d2 that are unramified over the fields E = Q(

√
d1,

√
d2), with D = d1d2

ranging over (a basis of) the decompositions of D of the second kind, as characterized in
Lemma 4·2. By Definition 7·8, the archimedean character of the dihedral field Fd1,d2 is given
by the Rédei symbol [d1, d2,−1] = Art(∞, Fd1,d2/K ), which is defined since d1, d2 ∈D
satisfy (d1,−1)p = (d2,−1)p = 1 for all p.

THEOREM 10·1. Let D = d1d2 be a decomposition of the second kind for D ∈D, and
K ⊂ Fd1,d2 a corresponding unramified extension as in (1) of Lemma 4·2. Then Fd1,d2 is
totally real if and only if we have

[d1, d2,−1] =
(

d1

d2

)
4

+
(

d2

d1

)
4

= 0 ∈ F2.

Proof. Add to [d1, d2,−1] the symbol [d1, d2,−d1d2] = 0 from Proposition 7·10, and use
the linearity and reciprocity properties of the Rédei symbol together with the special case in
Definition 7·1 to obtain the desired equality

[d1, d2,−1] = [d1, d2, d1d2] = [d1, d2, d1] + [d1, d2, d2]
= [d1, d1, d2] + [d2, d2, d1] =

(
d2

d1

)
4

+
(

d1

d2

)
4

.

Theorem 10·1 was already known to Rédei, but his symbol ‘without infinite primes’ cannot
be used to give the short proof above. A long proof can be found in [6, pp. 2061–2064].

Theorem 10·1 implies that H4 is totally real if and only if all Rédei symbols [d1, d2,−1]
corresponding to r4 decompositions D = d1d2 of the second kind spanning Ĉ[2] ∩ 2Ĉ van-
ish. The explicit form of the symbol as a sum of two biquadratic symbols was used by Fouvry
and Klüners [6] to show that these r4 different Rédei symbols vanish for the expected frac-
tion 2−e of all discriminants in the subset D(e)⊂D of D having r4 = e. As D(e) has density
P(e) in D, a short calculation [21, corollary 4·4] involving the explicit values following
equation (21) shows that the density of D ∈D with H4 totally real equals

∞∑
e=0

2−e P(e)=
∞∑

e=0

2−e · α ·
e∏

j=1

(2 j − 1)−1 = 2

3
.

https://doi.org/10.1017/S0305004121000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000335


Redei reciprocity, governing fields and negative Pell 653

In the direction of Conjecture 3·2, this yields an upper density P ≤ 2
3 ≈ .667 for the subset

D− of D.
For discriminants D ∈D having r8 = 0, the necessary condition for D ∈D− that H4 be

totally real is also sufficient, and this gives rise to lower bounds. Discriminants in D(0)
trivially have r8 = r4 = 0, and the inclusion D(0)⊂D− yields the lower bound P(0)=
α ≈ .419 from (21) for the lower density P of D− in D that we already mentioned at the end
of Section 3.

Discriminants D ∈D(1) have a unique non-trivial decomposition D = d1d2 of the second
kind, and the kernel of the symmetric matrix R4 is spanned by the discriminantal divisors d1

and d2. In this case Rédei reciprocity for the special symbols in Definition 7·1 shows that R8

has a matrix representation

R8 = ([d1, d2, d1] [d1, d2, d2]
) =

((
d2

d1

)
4

(
d1

d2

)
4

)
in terms of biquadratic symbols. In view of Theorems 4·1 and 10·1, having r8 = 0 and H4

totally real now amounts to (
d2

d1

)
4

=
(

d1

d2

)
4

= 1 ∈ F2, (1)

and, again, for the expected fraction 1/4 of discriminants in D(1), both biquadratic symbols
are non-trivial [7]. This yields P(0)+ (P(1))/4 = 5/4α ≈ .524 as a lower bound for the
lower density P .

For discriminants D ∈D(e) with e ≥ 2, the Rédei symbols in the matrix R8 are not
restricted to biquadratic symbols, but Chan, Koymans, Milovic and Pagano [3] show that
they can still be ‘governed’ by an adaptation of the methods in Smith’s recent work [18, 19].
They prove that the density of discriminants D ∈D of 4-rank r4 = e for which r8 = 0 and
H4 is totally real equals 2−e(e+3)/2 · α, extending the trivial case e = 0 and the special case
e = 1 above. This improves the lower bound α + α/4 above to

∑∞
e=0 2−e(e+3)/2 · α. Thus,

the published state of affairs towards Conjecture 3·2, which claims P = P = 1 − α = .581,
becomes

.538 ≈ ∑∞
e=0 2−e(e+3)/2 · α ≤ P ≤ P ≤ 2/3 ≈ .667.

Improving these bounds involves dealing with the remaining 12.8% of discriminants
D ∈D having r8 > 0. As this article goes to press (March 2021), Koymans and Pagano
have announced that they have been able to extend Smith’s techniques [19] to also control
these discriminants, and to prove my full Conjecture 3·2 after almost 30 years.
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