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telescope will open up a completely new parameter space for large extragalactic HI surveys. Here we focus on

identifying and parametrising HI absorption lines which occur in the line of sight towards strong radio

continuum sources.We have developed amethod for simultaneously finding and fitting HI absorption lines in

radio data by using multi-nested sampling, a Bayesian Monte Carlo algorithm. The method is tested on a

simulated ASKAP data cube, and is shown to be reliable at detecting absorption lines in low signal-to-noise

data without the need to smooth or alter the data. Estimation of the local Bayesian evidence statistic provides a

quantitative criterion for assigning significance to a detection and selecting between competing analytical

line-profile models.
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1 Introduction

The Australian Square Kilometre Array Pathfinder’s

(ASKAP; Deboer et al. 2009) large spectral bandwidth

and wide field of view will dramatically improve our

ability to conduct large-area galaxy surveys in the 21 cm

line of neutral hydrogen (Johnston et al. 2007).

The ASKAP HI All-Sky Survey (WALLABY Science

Survey Proposal; Koribalski & Staveley-Smith 20091)

will cover 75 of the sky (�90 deg,Dec.,þ30 deg) at a

spatial resolution of approximately 30 arcsec and velocity

resolution of approximately 4 km s�1.With an integration

time of 8 h per pointing (assuming a system temperature

of 50K) the survey will allow us to examine the HI

properties and large-scale distribution of ,500,000 gal-

axies out to a redshift of 0.26 (equivalent to a look-back

time of approximately 3Gyr).

ASKAPwill also be a powerful instrument for carrying

out blind HI absorption-line surveys using background

radio continuum sources. The advantage of absorption-

line surveys is that their sensitivity depends only on the

brightness of the background source,making it possible to

probe the neutral gas content of individual galaxies at

redshifts where the HI emission line is too weak to be

detectable.

The ASKAP First Large Absorption Survey in HI

(FLASH Science Survey Proposal; Sadler et al. 20092)

will search for HI and OH absorption features in two

redshift ranges (0, z, 0.26 and 0.5, z, 1.0) using

bright background continuum sources from the existing

SUMSS (Mauch et al. 2003) and NVSS (Condon et al.

1998) catalogues, both of which have an angular resolu-

tion of 45 arcsec. This amounts to a targeted search of over

150,000 sightlines to background continuum sources, an

increase of more than two orders of magnitude over the

total number of sightlines probed in all previous HI

absorption-line surveys with radio telescopes. In the

lower (0, z, 0.26) redshift range, the same ASKAP

data are used for the FLASH and WALLABY surveys,

making it possible to cross-compare emission- and

absorption-line measurements of local galaxies.

FLASH will search all ASKAP HI data cubes for

absorption lines at the positions of radio continuum

sources with flux densities above 50mJy in the 1.4GHz

NVSS and 843MHz SUMSS surveys. Since the positions

of these background continuum sources are already

known, the ‘source-finding problem’ for FLASH is

reduced to the need for a reliable ‘line-finding’ algorithm

which can be efficiently applied at a large number of

1
http://www.atnf.csiro.au/research/WALLABY

2
http://www.physics.usyd.edu.au/sifa/Main/FLASH
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pre-determined positions on the sky.When characterising

the detected lines, we want to obtain a reliable analytical

model of the line profile and distinguish between com-

peting models, even in the low signal-to-noise (SNR)

regime.

A robust quantitative method of selecting between

competing models, and measuring the significance of

a detection, is provided through the calculation of the

Bayesian evidence statistic. This method is already

being used for a range of other low SNR astrophysical

scenarios, including model-fitting to observations of the

Sunyaev-Zel’dovich effect (see e.g. Marshall et al. 2003;

Feroz et al. 2009a; Allison et al. 2011), where we are also

interested in comparing between competing models for

a redshift-independent observable.

In this paper we present the application of an existing

BayesianMonte Carlo algorithm to the problem of assign-

ing significance to the detection and modeling of HI

absorption lines in a simulated ASKAP data cube. Unless

otherwise stated, all errors refer to the 68.3% interval.

2 Simulated Data

The expected properties of a full ASKAP data cube

include a 30 deg2 field of view and 300MHz of bandwidth

with 16,384 channels, corresponding to an HI velocity

resolution of 12 km s�1 at 800MHz. Present computing

limitations meant that it was only possible to simulate

1024 spectral channels over the full 30 deg2ASKAP field,

equating to 18MHz of spectral bandwidth. A simulated

ASKAP–FLASH data cube covering the redshift range

0.76, z, 0.792 was released by the ASKAP computing

group in May 2011, and details were made publically

available online.3

The FLASH simulation included both spectral-line

and continuum information, and the basic steps were:

1. Create a realistic continuum sky simulation at

850MHz, using the semi-empirical SKADS simulation

by Wilman et al. (2008) and an assumed integration

time of two hours per pointing (see Figure 1).

2. ‘Paint in’ a grid of Gaussian HI absorption-line pro-

files covering a range in velocity full width at half

maximum (FWHM) and peak optical depth t. S/N
calculations indicate that only sources stronger than

about 50mJy beam�1 are realistic targets for the

FLASH survey (with a planned observing time of

two hours per ASKAP pointing), but sources with flux

densities down to 10mJy beam�1 had HI absorption

lines added in the simulation so that our line-finding

method could be tested in the low S/N regime.

To provide a useful test of line-finding algorithms, the

number of absorption lines inserted into the simulated

data is far higher than the number that we would expect

to see in a real ASKAP data cube. In total 600 lines (each

with a single Gaussian profile) were inserted into the

simulated cube. They spanned a redshift range 0.76, z,
0.792, with optical depths 0.01, t, 0.30 and velocity

widths between 5 and 80 km s�1. Not all of these lines are

expected to be detectable in the final simulated data cube.

The continuum and spectral-line datasets were kept

separate to mimic the effects of continuum subtraction,

since the capability to do this in the ASKAP pipeline had

not yet been fully implemented.

3
http://www.atnf.csiro.au/people/Matthew.Whiting/

ASKAPsimulations.php

Figure 1 Top: A simulated 850MHz continuum ASKAP
image based on the semi-empirical SKADS simulation by
Wilman et al. (2008). The maximum pixel value has been limited
to 0.01 Jy beam�1 to prevent the brightest sources from domi-
nating the image. Bottom: An example continuum-subtracted
spectrum extracted from the ASKAP–FLASH simulated data cube,
at the position RA(J2000)¼ 12h28m26s.86 and Dec.(J2000)¼
�4780303100.50, of a source of flux density S800¼ 198.7mJy.
The red lines indicate the positions of two HI absorption-line
components present in the spectrum. Component a is clearly visible
above the noise level.
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3 Method

To search for HI absorption from neutral gas in distant

galaxies we target sightlines towards known bright con-

tinuum sources, since the detection probability for an HI

absorption line is independent of redshift but increases

with the brightness of the background continuum source.

The blind aspect of the survey arises from searching for

absorption dips in the spectral domain, sowe do not need a

3-dimensional source finder, such as DUCHAMP
4 (Whiting

2008, Whiting et al. in prep.). Instead, we need a tool that

detects any spectral lines, quantifies their properties based

on an analytical model, and provides an estimate of the

detection significance. Standard x2 minimisation and

residual inspection have previously been used to fit

parametrised Gaussian models in HI absorption surveys

(see e.g. Gupta et al. 2010; Kanekar et al. 2009), and the

analysis outlined in this work uses a generalised extension

of those methods. In the following sections we discuss a

Bayesian approach to the one-dimensional line-finding

problem.

3.1 Spectra Extraction

One-dimensional spectra are extracted from the simulated

ASKAP data cube using a scripted PYTHON routine in the

CASA
5 data reduction package. An input catalogue of

the 435 continuum sources that contain simulated HI

absorption lines is used to provide the known positions

from which the spectra are extracted. Extraction is per-

formed at the centre position of each source using the task

IMVAL in CASA. Each source is indexed based on its flux

density at 800MHz, ordered in descending value. Figure

1 shows an example of an extracted spectrum from a

continuum source, in which there are two HI absorption-

line components. One of the components is clearly visible

by eye at 794.9MHz (z¼ 0.787), while the other is buried

within the noise at 807.0MHz (z¼ 0.760). The spectral

data are stored as individual data files for each continuum

source with information on the frequency, brightness and

uncertainty. The uncertainties in the data are estimated

based on the median of the absolute deviations from the

median value (MADFM). This statistic is a more robust

estimator of the true uncertainty than the RMS when a

strong signal is present in the data. ForGaussian distributed

data, the true standard deviation is estimated by multi-

plying theMADFMstatistic by a factor of 1.4826042. The

spectra are also stored in Flexible Image Transport Sys-

tem (FITS;Wells et al. 1981) format, so that they are

compatible for use with the DUCHAMP source finder.

3.2 Bayesian Inference

We fit analytical models to the extracted spectral data

using Bayesian inference. The posterior (or joint) proba-

bility for a set of model parameters (y), given the data (d)

and the model hypothesis ðMÞ, can be calculated from

Bayes’ theorem,

Prðyjd;MÞ ¼ Prðdjy;MÞPrðyjMÞ
PrðdjMÞ : ð1Þ

The probability of the data given the model parameters,

known as the likelihood, can be calculated based on

assumptions about the distribution of the uncertainty in the

data. If the data set is large and therefore quasi-continuous

(such as the thermal noise generated in radio instrumen-

tation), one can approximate the likelihood by the form

given for Gaussian multivariate data (see e.g. Sivia 2006)

L � Prðdjy;MÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN jCj

q exp �ðd �mÞtC�1ðd �mÞ
2

� �
; ð2Þ

where N is equal to the size of d, C is the covariance

matrix of the data, 9C9 is the determinant of the covari-

ance matrix and m is the vector of model data. In the

special case where the variance in the data is a constant

(s2) and uncorrelated, the above expression for the like-

lihood reduces to

L ¼ 1

sN
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN

q exp �
P

i ðdi � miÞ2
2s2

" #
: ð3Þ

The probability of the parameter values given the model

hypothesis, PrðyjMÞ, is often known as the prior proba-

bility and encodes information about the parameter values

a priori. For example, consider the situation where the

frequency position of an intervening HI absorber has been

relatively well constrained from previous observations.

If we trust these observations we might then choose to

apply a normal prior to the spectral-line position based on

the known level of uncertainty. We would otherwise

apply uninformative priors to the parameters if we were

previously unaware of their value. Uninformative priors

are typically uniform in either linear space (for location

parameters) or logarithmic space (for scale parameters,

known as Jeffery’s prior).

The normalisation of the posterior probability in Equa-

tion 1 is equal to the probability of the data given the

model hypothesis and is referred to throughout this work

as the evidence. The evidence is calculated by margin-

alising the product of the likelihood and prior distribu-

tions over the model parameters. This is given by

E � PrðdjMÞ
¼ Prðdjy;MÞPrðyjMÞdy; ð4Þ

which follows from the relation given by Equation 1 and

that the integrated posterior is normalised to unity. When

the model hypothesis provides a good fit to the data the

4
http://www.atnf.csiro.au/people/Matthew.Whiting/

Duchamp/
5
http://casa.nrao.edu/
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likelihood peak will have a large value, and hence the

model hypothesis will have a large associated evidence

value. However, if the model is over-complex there will

be large regions of low likelihoodwithin the prior volume,

thus reducing the evidence value for this model, in

agreement with Occam’s razor. Estimation of the

evidence is often key in providing a tool for selecting

between competing models.

3.3 Application to Spectral-Line Finding

In the approach presented in this work we wish to ask a

question: Do the data warrant a model hypothesis that

includes the presence of a spectral line of a given form, in

preference to a model with no spectral lines at all? In the

case of the simulated ASKAP–FLASH data the underly-

ing signal is known to be a single Gaussian component,

with all the continuum signal perfectly subtracted. Hence

we use a spectral-line model hypothesis that is given by a

single Gaussian of the form

In ¼ In;peak exp �4 lnð2Þ ðn� npeakÞ2
ðDnÞ2

" #
; ð5Þ

where the set of model parameters q consists of the

characteristic peak value In;peak, the spectral position npeak,
and the FWHM of the spectral line Dn. We test this single

Gaussian spectral-line model against the null hypothesis

of a model containing no spectral line at all. In the case of

perfectly continuum subtracted data we expect there to be

no signal (i.e. mi,null¼ 0 for all i) and so the likelihood of

the data for the null model reduces to

Lnull ¼ 1

sN
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN

q exp �
P

i ðdiÞ2
2s2

" #
: ð6Þ

We are simulating a blind absorption survey and so use

uninformative priors for all of the parameters in our

spectral-line model (see Table 1). The line-depth prior is

set by the physical limit of the brightness of each source.

We can also search for emission by reversing the sign of

the line-depth prior and instead consider positive

values. The spectral position is limited to the range of

frequencies recorded by the data. The prior range for the

FWHM of the spectral line correspond to a velocity range

of, 0.65 – 650 km s�1 at 800MHz, which are considered

to be physically reasonable limits.

We use the ratio of the probabilities for model hypoth-

eses given the data,

PrðM1jdÞ
PrðM2jdÞ ¼

PrðdjM1Þ
PrðdjM2Þ

PrðM1Þ
PrðM2Þ ¼

E1

E2

PrðM1Þ
PrðM2Þ ; ð7Þ

to quantify the relative significance of theGaussian spectral-

line versus no-line model. The ratio PrðM1Þ=PrðM2Þ
encodes our prior belief that one hypothesis is favoured

over another. Sincewe assume no prior information on the

presence of spectral lines, this ratio is equal to unity and so

the above selection criterion is then given by the ratio of

the evidences. We define the quantity

R � ln
EGauss

Enull

� �
; ð8Þ

with values greater than zero indicating the the level of

significance for the Gaussian spectral-line detection.

Values of R less than zero indicate that the data do not

warrant the inclusion of the Gaussian spectral-line model

over the null hypthothesis and so the detection is rejected.

It should be noted that we have only chosen to use

single Gaussians to parametrize the absorption lines,

which for the case of the simulated ASKAP–FLASH data

is equal to the underlying model. However, the technique

can be used for anymodel parametrization of the spectral-

line profile. The validity of using more complex models

for a given data set can be inferred by comparing the

successive evidence values. Indeed we can follow up a

detection using the single Gaussian profile by incremen-

tally increasing the number of components and comparing

the evidence for each model hypothesis until a best fit is

obtained. The evidence statistic will penalise overly

complex models and so will likely reach an optimised

value after a fixed number of components. The quality of

the best-fit model can also be inferred qualitatively by

inspection of the residual spectrum. In addition to more

complex spectral-line models we may also wish to simul-

taneously fit to the continuum spectrum, rather than

subtracting a best-fit continuum model prior to analysis.

In this case we can compare a continuum and spectral line

to a continuum-only model and therefore again infer the

presence of spectral lines in our data. This has the benefit

of correctly propagating the uncertainties in the continu-

ummodel parameters through to the derivedmarginalised

probability distributions of our spectral-line model

parameters.

3.4 Implementation

Bayesian model fitting is implemented using the existing

MULTINEST
6 package developed by Feroz&Hobson (2008)

and Feroz et al. (2009b). This software uses nested sam-

pling (Skilling 2004) to explore parameter space and

robustly calculate both the posterior probability distri-

bution and the evidence for a given likelihood function

and prior (provided by the user).

Table 1. Model parameter priors

Parameter Prior type Prior range

In;peak log–uniform � (0.001mJy – I800)

npeak linear–uniform 790 – 810MHz

Dn log–uniform 0.001 – 1MHz
6
http://ccpforge.cse.rl.ac.uk/gf/project/

multinest/
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We run MULTINEST with multi-modal switched on,

whereby samples are taken of multiple likelihood peaks

within parameter space, thus allowing for multiple

absorption lines. For each peak in likelihood we calculate

a local evidence value for the single Gaussian model, and

then compare it with the evidence of a model with no line.

The significance of the Gaussian-line profile for a given

data set is inferred by the relative value of the local

evidence compared with Enull. If the local evidence for

the single Gaussian model is less than or equal to Enull

then this ‘‘detection’’ is rejected. Following the successful

completion of the nested sampling algorithm, both the

multi-modal local evidence values and the model param-

eter posterior probability are recorded. In this work we

use simple Message Passing Interface (MPI) to split

the spectral data across multiple processors, however

MULTINEST has intrinsic MPI capability and the use of this

for ASKAP–FLASH will be investigated in future work.

The method described in this work, whereby we infer

the probability of the spectral model given the data, is a

forward approach to the problem and hence we do not

apply a smoothing kernel to the spectral data. To do so

would introduce assumptions about the underlying signal

in the data and therefore introduce false detections into the

results, which would be indistinguishable from true

detections.

4 Results and Discussion

4.1 Output from the Line-Finder

Figure 2 shows an example of the output from line

detection in a simulated ASKAP spectrum. In this

example one of the two absorption-line components

known to be present in the spectrum has been detected

above the noise and the posterior probability for the

Gaussian parameters estimated. The second absorption-

line component at 807.0MHz (z¼ 0.760), while having a

relatively wide FWHM of Dv¼ 80 km s�1, has a low

optical depth of t¼ 0.02 and so was not detected above

the noise. It is clear from the residual spectrum that no

other lines are present above the noise level.

For this example spectrumwecalculate thatR¼ 60.53�
0.07, indicating that the Gaussian-line model is signifi-

cantly favoured. The marginalised posterior probability

distributions for each parameter are shown in the lower

plot in Figure 2 and are reasonablyGaussian in shape. The

2-dimensional contours indicate the correlation between

parameters. There is no apparent correlation between the

peak optical depth and redshift, or between the FWHM

and redshift. There is some anti-correlation between the

peak optical depth and FWHM of the line, indicating

conservation of the integrated optical depth.

It has been noted that the simulated absorption cata-

logue was constructed based on a single Gaussian-line

model. However, when analysing real ASKAP–FLASH

data we will have to make an assumption about the

analytical form of the line profile. Calculation of the

Bayesian evidence statistic provides us with a global

likelihood for selecting between competing models.

If, for example, we choose to parametrise the data using

a Lorentizian-line model (including the same uniform

priors used for the Gaussian-line model) then we obtain a

value of R¼ 56.88� 0.07. In this case the evidence again

rejects the no-line model, but favours the Gaussian-line

over the Lorentizan-line model.

4.2 Comparison with Input Catalogue

Of the 600 absorption-line components painted onto the

435 brightest sources in the continuum simulation, 60 are

found to be at locations off the edge of the main field of

the image and are therefore discounted from the sample.

Of the components located within the image, there are

3 detections with R less than unity. These detections have

comparable significance to the ten false-positive detec-

tions and are therefore counted as non-detections. Note

that the 10 false-positive detections (which include 4 in

absorption and 6 in emission) have very low significance

and unphysical velocity widths and hence can be distin-

guished from the correct detections.

Of the remaining absorption-line components, 76 are

detected above the noise with R greater than unity,

yielding a detection rate of 14% from a realistic 2-h

integration on an ASKAP field.

Figure 3 plots the peak and integrated HI optical depth

versus the 800MHz flux density of the background

continuum source for both detected and undetected lines

from the ASKAP–FLASH simulation. The dashed line in

the first plot shows the detection limit in peak optical

depth t originally assumed by the FLASH team, based on

the 5-sigma detection of a line peak in a single 18 kHz

spectral channel in a 2-h ASKAP observation. We detect

almost all of the sources expected to be found in the real

ASKAP data, as well as some additional weaker lines.

The simulation results therefore imply that the assumed

FLASH detection limit is reasonable, and may even be

slightly conservative.

The plot of integrated optical depth tint in Figure 3

also shows the existing observational data points for HI

absorption lines at z, 1 from Table 1 of Curran et al.

(2008). This plot shows that the FLASH survey should

be able to detect similar HI absorption lines against

continuum sources which are 10–100 times fainter than

those typically probed in targeted HI absorption-line

searches with existing radio telescopes.

Figure 4 compares the estimated and input catalogue

values for each of the absorption-line model parameters,

plotted as a function of the continuum source flux density.

The redshift position of each line is the most precisely

determined parameter from model fitting, with differ-

ences compared to the input catologue,0.01%. The peak

optical depth and FWHM parameters are less precisely

determined by model fitting to the simulated data, with

differences ,10%. The large majority of parameters are

within 1–3s of their expected catalogue values. The few

significant outliers are likely due to the imaging proce-

dure still in development by the ASKAP computing

Absorption Spectral-Line Finding in ASKAP Data 225

https://doi.org/10.1071/AS11040 Published online by Cambridge University Press

https://doi.org/10.1071/AS11040


group. We extract the spectral data from a pixel at the

position of the source, and so either pixelisation of the

input model or imaging artefacts may produce an offset in

the estimated parameters.

4.3 Comparison with DUCHAMP

We searched for absorption-line components in the same

set of 435 simulated ASKAP spectra using the DUCHAMP

3-dimensional source finder (for technical details please

refer to Whiting 2008).

This source finder uses an intensity-thresholding algo-

rithm without assuming any underlying analytical model

for the source shape or line profile. DUCHAMP is therefore

optimized for detecting complex sources in 3 dimensions

rather than simultaneous detection and parametric model

fitting of spectral-line profiles.

Figure 2 Top: Example of spectral-line fitting to a simulated ASKAP source (RA¼ 12h28m26s.86, Dec.¼�4780303100.50, S800¼ 198.7mJy).
One of the absorption-line components is detected, while the other is hidden in the simulated noise. The residual has been plotted with an offset
from the frequency axis for clarity. Bottom: Estimate of the marginialised posterior probabilities for absorption-line parameters from the example
detected source. The parameters displayed are the peak optical depth (t), redshift (z) and velocity FWHM (Dv). The grey scale represents the 68.3,
95.4, and 99.7% intervals. The dashed lines represent the input catalogue values.
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For this work we are considering the spectral domain

and sowe ran DUCHAMP in amode such that it was optimized

for spectral searches (for example, we set the parameters

SEARCHTYPE and SMOOTHTYPE to ‘spectral’). The source-

finding parameters are optimised so that we minimise the

number of false positive detections, while maximising

the number of detected absorption-line components. The

data are smoothed using a Hanning filter width of 3 and

the detections are accepted if they are brighter than a

threshold of 3s above the mean and contain more than

3 contiguous channels. In order to correctly determine the

total number of false-positive detections we run the pro-

gram in both emission and absorption-line mode.

Figure 4 Comparison between the estimated and true values for
each absorption-line parameter, as a function of the 800MHz source
flux density. Sources located outside the image edge or with R less
than unity are not included in the sample. The error bars represent the
1s uncertainty.

Figure 3 The results of running our Bayesian line finder on the
simulated ASKAP data cube. Red circles and blue crosses represent
detected and undetected lines respectively. Top: Lines of different
peak optical depth t as a function of the flux density of the background
continuum source. The dashed line represents the cut-off for detect-
ability in a 2-hour ASKAP observation as originally estimated by the
FLASH team (see text). Bottom: The velocity-integrated HI optical
depth over the line. The black open stars showpublished observational
data points for radio detections of intervening HI absorption lines at
redshift z, 1, taken from Table 1 of Curran et al. (2008).
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Of the 540 absorption-line components located

within the edge of the image, 63 are correctly detected with

the DUCHAMP source finder. We obtain 7 false-positive

detections with 3 in absorption and 4 in emission. One of

these false positive detections has an unphysical peak

optical depth, while the other 6 have relatively low SNR

and are indistinguishable from the other correctly detected

low-SNR absorption components.

Figure 5 shows the velocity-integrated optical depth

versus the 800MHz source flux density for detected

absorption-line components using both the Bayesian

line-finder and DUCHAMP. There are 18 absorption-line

components that are correctly detected with the Bayesian

line-finder and not with DUCHAMP, including 3 which have

R less than unity and are hence rejected due to low

significance. Both of the absorption-line components that

are correctly detected with DUCHAMP and not with the

Bayesian line-finder have low SNRs (less than 3) and are

therefore difficult to distinguish from the false positives.

Qualitatively, DUCHAMP requires significantly lower

computation time for the 1-dimensional spectral-line

finding problem, because calculation of the evidence

statistic requires Monte Carlo integration over a multi-

dimensional parameter space (see Equation 4). However,

the Bayesian line-finder provides a more robust method

for detecting low-significance spectral-lines, estimating

the probability distribution of model parameters, and

selecting between competing analytical models.

5 Conclusions

We have applied the multi-nested sampling algorithm to

simulated ASKAP–FLASH data in order to test its

usefulness in both finding and fitting absorption-line

components. This Bayesian technique provides us with a

robust tool for selecting spectral-line detections in low-SNR

data, along the line of sight to known continuum sources.

The sampling algorithm is necessarily slower than the

DUCHAMP source finder because it calculates an estimate of

theBayesian evidence statistic, andhenceprovides uswith a

method of both assigning significance to our detections and

selecting between competing models. Our analysis of a

simulated ASKAP data cube also shows that the line-

finding techniques presented in this paper can robustly

detect HI absorption lines at (and even slightly below) the

levels originally estimated by the FLASH team for a two-

hour integration with ASKAP.
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