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Abstract. An older remnant will be defined as one in which 

radiative cooling occurs somewhere and has swept up enough 

mass for the details of the explosion to be less important 

than the state of the interstellar medium in which the 

explosion occurred. Without discussing any particular 

remnant in detail, I will consider how large and small scale 

density variations in the ambient medium affect the 

appearance and energetics of such remnants. Finally I will 

show that radiative instabilities can modify the emission 

spectrum of radiative shocks in such a way that a naive 

interpretation of these spectra can be very misleading. 

Introduction. In the days when supernova remnants, or at least the 

theoretical ones, were spherical and expanded into a uniform medium, it 

was easy to decide what was meant by an older remnant. Remnants had 

three phases, free expansion, Sedov and radiative (Woltjer 1972) and a 

remnant was regarded as old if it had entered the radiative phase. 

Unfortunately, such a simple picture is no longer adequate even as 

an idealisation of what happens. We know that the interstellar medium is 

inhomogeneous on many scales, some of which correspond to the sizes of 

supernova remnants and we also know that Type II supernovae can 

significantly modify the interstellar medium in their neighbourhood. All 

this means that there may not be a simple division of supernova remnant 

evolution into three phases. 

For the purposes of this article, I will call a remnant old if 

radiative cooling is important somewhere, but will not insist that a 
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420 Supernova Remnants and the Interstellar Medium 

significant part of the explosion energy has been radiated away. 

Observationally this means that a remnant is old if it has a filamentary 

structure whose emission is characteristic of radiative shocks. Examples 

are the Cygnus Loop, Shan 147 and Vela. As far as theory is concerned 

we have to look at the effects of radiative cooling on the dynamics and 

appearance of the remnant. 

107 108 
Temperature (K) 

Figure 1. The radiative cooling rate per unit volume for an optically 

thin plasma. The straight line is the approximation (1) (Kahn 1976). 

The radiative cooling rate for an optically thin gas in the 

relevant temperature range is shown in figure 1. Although this is not 

the most recent calculation, it has a maximum at about 10 K , which is 

what is important as far as the dynamics is concerned. Note that it does 

not include the effect of dust cooling which might well dominate above 

10 K, depending upon the dust to gas ratio (Dwek these proceedings). 

One of the nice things about this cooling law is that in the range 

5x10 K < T < 5x10 K it is very well approximated by T power law, 

A = Ap2(p/p)"1/2 32 (A = 3.9x10 c.g.s). (1) 
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Kahn (1976) showed that this assumption makes it possible to calculate 

the effect of radiative cooling on the overall energetics independently 

of the details of the dynamics. I will first describe how this works for 

spherical remnants, and then show how it can be extended to supernovae 

in plane stratified media. 

Spherical Remnant. Suppose that a supernova explosion has energy E , 

ejects mass M and occurs in a uniform medium with density p . Then 
e 0 

there will be a Sedov phase provided 

10 
51 

-0.74 

M 

5/6 

10 -24 

0.2 

< 4 (2) 

This is simply the condition that the remnant enters the Sedov phase 

before radiative cooling becomes important. It is based on Gull's (1973) 

calculations, which show that it looks like a Sedov solution once it has 

swept up about 50 M, combined with Cox's (1972) estimate of when 
e 

radiative cooling becomes important. 

One would prefer a Sedov phase to exist, because then all the 

details of the original explosion can be ignored and only the energy E 

matters. Condition (2) is satisfied for all plausible values of E , M 
0 e 

and p , but unfortunately it ignores the fact that a Type II supernova 

can modify its surroundings, either because of its ionizing radiation 

(Shull, Dyson, Kahn & West 1985), or its stellar wind (Charles, Kahn & 

McKee 1985). There is also a good deal of observational evidence that 

this occurs (Braun these proceedings). 

I am going to ignore these complications and assume that the 

original state of the ambient medium is more important than the details 

of the explosion. Then in a uniform medium radiative cooling becomes 

important when the post shock temperature is 

0.1 , -»0.2 T = T 
sg 

= 1.2x10 
10 

51 
10 -24 

(3) 

Cox (1972). For almost all supernova remnants this is in the range for 

which the approximation (1) is valid. 

If we now ignore magnetic fields and assume that all shocks are 
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strong, then as long as T £ 5x10 K everywhere, things only depend on 

E , p and A. From these we can form a characteristic mass, length and 

time given by 

m = 
C 

1 = 
c 

t = 
c 

(2.02E Q)
o / ' 

P A 

(2.02E ) 2 / 7 

0 

„ 3 / 7 A 1 / 7 

P A 
(2.02E ) V U 

0 
4/7.5/H 

P A 

= 7. 

= 1. 

= 1 

3X1036 

9xl020 

.2xl013 

Eo 

. io51 

' Eo 

. io51 

[ E° 
[io51 

6/7 

2/7 

10 -24 

•2/7 

gm, 

•v-3/7 

10 24 

3/14 

10 -24 

cm, 

-4/7 

s. 

(4) 

We expect radiative cooling to become important when the swept up 

mass is about m and the radius and age will then be approximately 1 and 
c c 

t respectively. Notice that these numbers are about right for the 

Cygnus Loop and IC443. 

If y = 5/3 and the cooling rate is given by (1), then the energy 

equation becomes 

dK 
dr 

2 „-1/2 
"3 K ' 

(5) 

where T = t/t is a dimensionless time and 
c 

K = 

.2 2/3 
pt m 

c c 

7± 
is the dimensionless adiabatic constant. 

From (5) we can see that the rate of change of K of a fluid element 

is independent of its dynamics as long as the approximate cooling law 

holds. The time at which an element of gas cools is then 

[«T )] 3/2 (6) 

Here x is the time at which the element passed through the shock and 
s 

the second term is the time it takes for K to decrease to zero according 

to equation (5). 

In the Sedov phase we have 

https://doi.org/10.1017/S0252921100102787 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100102787


Supernova Remnants and the Interstellar Medium 423 

M = ^ x 6 / 5 , 
3 s 

K(T ) = _ i "(y) 
25 T 

6/5 

(7) 

v(i) = ̂  - = 0.07 for y = 5/3. 

(y + Dr + 1 

Here M is the mass interior to the fluid element in units of m 

(8) 

Inserting (7) in (6) gives. 

f3Ml5 / 6
+ f 4v l3/2f An } V Z 

Tcool [ 4n J [ 25 J [ 3M J 

Hence at time T all the gas for which T > T will have cooled. From 
cool 

figure 2a one can see that cooling first occurs at T = 0.18 and that its 

onset is sudden in the sense that most of the mass of the remnant cools 

at times only slightly later than T . At later times only a small 
cool 

fraction of the mass near the centre remains hot. 

Plane Stratified Density Distribution. It is obviously important to see 

how the ideas of the previous section are modified if the supernova 

explodes in a non-uniform environment. To get a feel for what happens, 

let us consider a plane stratified exponential density distribution 

-z/h 
p(z) = pQ(0)e (9) 

and assume that the scale height h is large enough for there to be an 

initial spherical Sedov phase. 

Laumbach and Probstein (1969) derived approximate equations for the 

motion of the shock by assuming that all the energy and mass in each 

solid angle is conserved and concentrated near the shock. These 

equations are 

Z = — cos 9 
dZ 

dx' 
= U , 

dU _ 

dT' 

T ' 

i - G(Z,0)U2 

¥{<t>)<t> 

= t 

t 

d0 _ 

dT' 

" E |cos 6 | 5 ' 

4TTPO(0 )hJ j 

1/2 

P„ ( Z ) , 
0 Thi , 

P0(0) 

i = 1 

i = -1 

o s e < it/2 

w/2 s e < it . 

(10) 
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Here r is the radius of the shock and 8 is the angle between the shock 
s 

and the z axis. Notice that these equations need only be integrated 

twice, once for each value of i, to get the shock position for all e and 

t. 

Integration of these equations shows that the velocity of the 

upward moving shock (0 s 6 < n/2) initially decreases, reaches a minimum 

at T ' = 2 . 4 and then increases again. Garlick (1983) and Falle, Garlick 

and Pidsley (1984) have shown that the acceleration of the rising shock 

calculated from the approximate solution agrees remarkably well with the 

results of full numerical calculations. We can therefore use the 

approximate solution to estimate the effects of cooling. 

There is now a dimensionless parameter which we can define to be 

1 1.9x10 
c 

20 

(3 = — = 
h 

">2/7 

10 51 

po(0) 

10 -24 

-3/7 

(11) 

Clearly for (3 « 1 cooling occurs while the remnant is still spherical, 

while for (3 » 1 there will be no cooling in the top part of the remnant 

since the rising shock will have begun to accelerate long before cooling 

sets in. 

The energy equation is as before except that the entropy behind the 

shock is now a function of 6 as well as time. In fact 

K ( T \ 9 ) = 
(p|cos 9 | ) 3 v(*)U2 

8.08TC [pJ2)/pA0)] y-1 
(12) 

where U(T') and Z(T') are determined from the approximate equations 

(10). Using our previous approximation for T , we get 
cool 

(8.08nr) 1/2 (0|cos 9|) 9/2 

cool 
T' + 

, 5 / 2 s (0 | cos Q\)J"- * (8.08?r) 

As before we r e a l l y want x 

3/2 

vlr)V 

[ p ( Z ) / p ( 0 ) ] r - i 

3/2 

( 1 3 ) 

0 "0 

as a funct ion of the mass i n t e r i o r 

t o the f l u i d element. From (10) we have 
cool 

M = 
4rc 

(0|cos e | r p (o) 
p (x)x dx = 

4TT 

0 
(p|cos e | r 

0(Z) , ( 1 4 ) 
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where M/4TT is the mass per unit solid angle interior to the shock. 

Tcool 

" • 

1 -

5 -

(a) 

/ 
0 + 1 1 1 1 1 — U -C 1 1 1 . p r — 

0 1 2 M O 1 2 3 M 

Figure 2. Cooling time (solid line) as a function of the Lagrangean 

coordinate M. Mass interior to the shock (dashed line), a) Spherical 

remnant, b) /3|cos e| = 2. (Falle, Garlick & Pidsley 1984). 

Figure 2b shows the result for the upwards moving shock (9 < rc/2) 

for (3|cos 81 = 2. In contrast to the spherical case, there is now hot 

gas immediately behind the shock as well as in the interior of the 

remnant. The amount of hot gas behind the shock depends very sensitively 

on 0|cos e| since it is determined by the ratio of the two terms on the 

right hand side of equation (13). This means that for /3|cos 0| greater 

than a certain value the gas does not cool behind the upward moving 

shock, while for smaller values it does. 

In fact for 0|cos e| > 2.8, cooling occurs after the rising shock 

has begun to accelerate and so it is reasonable to suppose that the gas 

does not cool in a cone with semi-angle 6 given by 

/3|cos ej = 2.8 . (15) 

The amount of hot gas in this cone can be considerably greater than that 

produced by a spherical remnant in the same mean density, so these 

xcool 
I 

(b) 
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effects ought really to be taken into account when making estimates of 

the rate at which supernovae inject energy into the interstellar medium. 

Although I have only discussed an exponential density distribution, 

similar results are obtained provided the density decreases sufficiently 

rapidly with z for the rising shock to accelerate. Furthermore in all 

such cases the top part of the remnant disconnects from the bottom part 

so that for many purposes they can be considered separately. Falle & 

Garlick (1982) have exploited this fact to construct a model of the 

Cygnus Loop in which the explosion occurs on the dense side of a plane 

density discontinuity. 

Many authors have carried out full numerical calculations of single 

or multiple explosions in plane stratified media (e.g. Chevalier & 

Gardner 1974; Tenorio-Tagle, Rozyczka & Yorke 1985; Tomisaka & Ikeuchi 

1986; McCray these proceedings). In theory such calculations should give 

us much more information than the kind of analysis I have just 

described. Unfortunately there is a major snag, namely that in none of 

them is the cooling region adequately resolved. The result is that not 

only is the radiative energy loss incorrect, but the various 

instabilities are not correctly modelled. This does not mean that these 

calculations are useless, but it does mean that they must be treated 

with some caution. 

Small Scale Inhomogeneities. In the previous section I looked at the 

effect of density variations whose scale was of the same order as the 

size at which the remnant becomes radiative. However, the appearance of 

remnants like the Cygnus Loop suggests that there are also 

irregularities on much smaller scales. Indeed McKee & Cowie (1975) have 

argued that in the Cygnus Loop we only see optical filaments when shocks 

propagate into small clouds. 

The interaction of a plane shock with density inhomogeneities has 

been looked at by many authors (e.g. Sgro 1975; Chevalier & Theys 1975; 

Woodward 1976; Nittmann, Falle & Gaskell 1982; Hamilton 1985; Heathcote 

& Brand 1983). Although we have a rough idea of what happens, at least 

in the adiabatic case, there are a number of important details which are 
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not clear. Since the propagation of shocks in non-uniform media is 

discussed by McKee (these proceedings), I will concentrate on some 

laboratory experiments on adiabatic flow past rigid bodies and suggest 

how these might help us to understand the much more complicated 

astrophysical problem. 

Figure 3. Shadowgraphs of shock diffraction on a rigid wedge (van Dyke 

1982, p. 146). 

Figure 3 shows a series of shadowgraphs of a shock incident on a 

rigid wedge. Although this is adiabatic flow and a wedge is perhaps not 

the most relevant shape, it does show a number of features of interest. 

Firstly there is a reflected shock which becomes the bow shock at large 

times provided the flow is supersonic behind the incident shock. There 

is also a diffracted shock which reflects off the symmetry axis at the 

rear of the wedge. Initially this is a regular reflection, but as the 

angle of incidence increases it becomes a Mach reflection with a post 

shock pressure which is substantially higher than that behind the 

incident shock. Finally intense vortices are formed at the corners and 

then move downstream at the local fluid velocity. 

What we have to decide is how much of this is relevant to the 
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astrophysical problem. First consider the geometry of the object. 

Provided the object is not streamlined for supersonic flow, all the 

features that I have described will be present whatever the shape of the 

object. For example the flow past a cylinder or sphere is very similar 

except that two sets of vortices are formed (Bryson & Gross 1961). 

Of course supernova remnants do not encounter rigid objects, at 

least not of significant size. However, from pressure balance we have 

1/2 

V = V 
c e 

(16) 

where V is a shock velocity and the subscripts e and c refer to the 

exterior and cloud respectively. So if the cloud is much denser than its 

surroundings, it deforms slowly compared to the timescale of the 

exterior flow. The cloud therefore behaves like a rigid body, at least 

as far as the transient stage of the exterior flow is concerned. 

Once the transients in the exterior flow have died away, we get a 

quasi-steady flow past a slowly deforming body. In principle one could 

calculate this flow, find the pressure distribution on the cloud and 

so determine how it deforms. In practice this is very difficult, but we 

can nevertheless draw some qualitative conclusions. 

For almost any shape, the minimum pressure will be at the widest 

part of the body and the difference between this pressure and the 

maximum pressure will be of the order of the ram pressure. So, provided 

the exterior flow is not very subsonic, the cloud will expand sideways 

at something like its sound speed and will therefore disrupt in about a 

sound crossing time. That such a sideways expansion occurs can be seen 

in van Dyke (1982 p.86) which shows a water drop suddenly immersed in an 

air stream whose ram pressure is considerably higher than that due to 

surface tension. One consequence of this disruption is that clouds 

cannot be coherently accelerated to anything like the exterior flow 

speed (Nittmann, Falle & Gaskell 1982). 

From this we can see that laboratory experiments are really very 

useful as long as the exterior flow is adiabatic and the density 

contrast is large. In particular we can use them to check the 

reliability of numerical simulations such as those in Woodward (1976) 
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and Nittmann, Falle & Gaskell (1982). Unfortunately none of the 

calculations in the astrophysical literature are for cases for which the 

experiments are relevant. It would be interesting to do a high density 

contrast adiabatic calculation with a modern numerical scheme just to 

see how good the results are. 

Finally let us consider the influence of cooling on shock-cloud 

interactions. The first thing is that cooling can amplify small density 

fluctuations in the undisturbed gas (Chevalier & Theys 1975). This means 

that inhomogeneities that would be unimportant in the adiabatic case can 

have observable effects once cooling occurs. Apart from this we might 

get high velocity dense regions where the shocks intersect at the rear 

of the cloud (Tenorio-Tagle & Rozyczka 1984). There are also various 

radiative instabilities which would cause corrugations in the shock 

fronts so that both the interior and exterior flow is much more 

complicated than in the adiabatic case. 

The trouble is that, although we have some idea of the consequences 

of cooling, we are unable to come up with reliable quantitative results 

which can be compared with the observations. Numerical simulations, at 

least those carried out so far, are too crude to be much use. What is 

needed is high resolution numerical calculations supported by the sort 

of analysis described earlier. In this context I think that Whitham's 

area rule for shock propagation might be very useful (Whitham 1974). 

Despite all these theoretical difficulties, we can say something. 

In the first place the dominant shocks in the cloud will tend to 

propagate parallel to the primary shock since the lateral shocks are 

much slower. So if only the cloud shocks are radiative, we will tend to 

see tangential filaments such as those in the Cygnus Loop. On the other 

hand if the exterior shocks cool, we should see large scale lacy 

structures such as those in Shan 147 and Vela. 

Radiative Instabilities. We can write the cooling rate shown in figure 1 

in the form 

A = Ap2*(p/pc|) , (17) 

where 
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2 
c , = 

kT 

fim 
(18) 

can be chosen to be the and T^ is a reference temperature. 

temperature at the maximum of * (T =10 K). If we then set *(T ) = 1, 
26 

we get A = 2x10 e.g.s. 

For a spherical remnant the flow is now governed by the parameters 

E , p , A, and c and from these we can form a dimensionless parameter 
o n * 

s9 _ 10 
10 

51 

0.11 

10 
•24 

0.22 

(19) 

Here T is the temperature defined by equation (3). a only affects the 
sg 

evolution of the remnant if there is radiatively cooling gas at 

temperatures below T . 

Let us now look at the stability of gas whose cooling rate is given 

by (17). Suppose that *(T) « Ts. Then if cooling occurs at constant 

pressure, the cooling time increases with increasing temperature if s < 

2, while for constant density this is true for s < 1. This suggests that 

there is instability if s < 2 for constant pressure cooling and s < 1 

for constant density. 

Now the pressure will remain roughly constant if the cooling time 

t » t where t is some dynamical timescale. Conversely the 
cool dyn dyn 
density will remain constant if t « t . Suppose that a region of 

cool dyn 

initial size t begins to cool and that the resulting compression is one 

dimensional. Then 

pit) * 

The relevant dynamical time is obviously the sound crossing time, so 

I 1 
— oc 

c pT 
dyn 1/2 

On the other hand we have for the cooling time 

„ J? „ A _ 
cool p2TS 

PT s-1 

Hence 
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cool 

and so increases as the gas cools if s < 3/2. If t ever becomes much 
dyn 

smaller than t , then we expect a large pressure imbalance to occur 
cool 

which will lead to the formation of shocks. A necessary condition for 

this is s < 3/2. For the interstellar cooling law this condition is 

satisfied for T > T^ and so we expect this kind of instability for 

spherical remnants if a > 1. From (19) we can see that this should 

happen for almost all such remnants. 

Various authors have looked at radiative instabilities. Both 

Avedisova (1974) and McCray, Stein & Kafatos (1975) carried out a 

linearised stability analysis with the post shock pressure held fixed. 

They found that density fluctuations grow if s < 3 for perturbations 

with wavelength much greater than the cooling length, while s < 2 is 

required if the wavelength is much shorter than the cooling length. 

However, these are isobaric instabilities and do not lead to the 

formation of additional shocks. 

In my numerical calculations of thin shell formation in spherical 

remnants (Falle 1975, 1981), I found that cooling led to the formation 

of multiple shocks which caused large variations in the speed of the 

primary shock. Langer, Chanmugam and Shaviv (1981,1982) found a similar 

effect in their calculations of radiative accretion onto white dwarfs. 

These results have stimulated a lot of interest in such 

instabilities. Chevalier & Imamura (1982) used a linearised stability 

analysis to show that the shock speed will not be constant if s < 0.8, 

even if it is driven by a constant speed piston. To some extent this is 

confirmed by numerical calculations (Imamura, Wolff & Durisen 1984). 

Recently Bertschinger (1986) has extended this analysis to two 

dimensions and shown that in that case instability occurs if s < 1. 

It has become common practice to deduce the velocity of radiative 

shocks by comparing the observed optical and UV line ratios with those 

predicted by steady shock models with various shock speeds (e.g. Raymond 

et.al. 1980). Unfortunately the above considerations suggest that 

radiative shocks will not be steady if the shock speed is high enough 
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for cooling to occur in the unstable region of the cooling curve. 

-1 

o 
cd 
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00 o 
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-3 

100 150 200 
V, (km/s) 

Figure 4. Instantaneous [0III]5008/[0II]3728 line ratio for an unsteady 

shock whose mean speed is 175 km s . The solid line is the ratio for a 

steady shock (Innes, Giddings & Falle 1987). 

Recently Innes, Falle & Giddings (1987) have shown that, if the 

detailed atomic physics is included, then radiative shocks will be 

unsteady if their speed is greater than 130 km s . The line ratios then 

do not correlate with the primary shock speed, nor even with the mean 

fluid speed, but vary dramatically on the cooling timescale. This effect 

can be seen in figure 4 which shows the instantaneous 

[OIII]5008/[OII]3728 line ratio plotted against the instantaneous 

primary shock speed for a shock driven by a constant speed piston such 

that the mean shock speed is 175 km s . The variations in shock speed 

were induced by a single sinusoidal density perturbation upstream. The 

perturbation had an amplitude of 50% of the upstream density and a 

wavelength 1.4 times the thickness of the cooling region. 
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Conclusions. I have discussed some of the effects that radiative cooling 

and density inhomogeneities can have on the evolution of supernova 

remnants. As far as the overall energetics is concerned, it is clear 

that the Kahn (1976) and Laumbach & Probstein (1969) approximations give 

us reasonable estimates of the efficiency with which supernovae inject 

energy into the interstellar medium. 

Interactions with small scale inhomogeneities are more difficult to 

deal with, but we can use laboratory experiments, numerical simulations 

and perhaps Whitham's area rule (Whitham 1974) to deduce how clouds of 

various sizes and densities affect the appearance of remnants. We 

clearly need a reliable quantitative theory of such interactions in 

order to make the proper use of the detailed observations that are now 

possible. 

Finally I have indicated that radiative instabilities must exist in 

radiative remnants and that these make it very difficult to interpret 

the spectra of radiative shocks. They may also be responsible for at 

least some of the complex structure seen in old remnants. 
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