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Abstract. Due to a result by Glasner and Downarowicz [Isomorphic extensions and
applications. Topol. Methods Nonlinear Anal. 48(1) (2016), 321–338], it is known that
a minimal system is mean equicontinuous if and only if it is an isomorphic extension
of its maximal equicontinuous factor. The majority of known examples of this type are
almost automorphic, that is, the factor map to the maximal equicontinuous factor is almost
one-to-one. The only cases of isomorphic extensions which are not almost automorphic
are again due to Glasner and Downarowicz, who in the same article provide a construction
of such systems in a rather general topological setting. Here, we use the Anosov–Katok
method to provide an alternative route to such examples and to show that these may
be realized as smooth skew product diffeomorphisms of the two-torus with an irrational
rotation on the base. Moreover – and more importantly – a modification of the construction
allows to ensure that lifts of these diffeomorphisms to finite covering spaces provide novel
examples of finite-to-one topomorphic extensions of irrational rotations. These are still
strictly ergodic and share the same dynamical eigenvalues as the original system, but show
an additional singular continuous component of the dynamical spectrum.

Key words: topological dynamics, extension structures, mean equicontinuity, torus diffeo-
morphisms, Anosov–Katok method
2020 Mathematics Subject Classification: 37B05 (Primary); 37C05 (Secondary)

1. Introduction
The celebrated Halmos–von Neumann theorem provides a classification, up to isomor-
phism, of ergodic measure-preserving dynamical systems with discrete dynamical spec-
trum. Moreover, any such system can be realized as a rotation on some compact abelian
group [HvN42, vN32]. From the measure-theoretic viewpoint, this provides a rather
complete picture for the class of dynamical systems with discrete spectrum. However,
topological realizations of such systems can still show a surprising variety of different
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behaviours. One particular subclass that has recently attracted considerable attention are
mean equicontinuous systems [GRLZ19, GRM19, HLY11, LTY15, LYY21]. In the
minimal case, Downarowicz and Glasner showed that these are exactly those topological
dynamical systems which are measure-theoretically isomorphic to their maximal equicon-
tinuous factor (MEF) via the respective continuous factor map [DG16]. Such systems are
called isomorphic extensions (of the MEF). Equivalently, these systems are characterized
by discrete spectrum with continuous eigenfunctions. A generalization of these results to
the non-minimal case and more general group actions is provided in [FGL22]. Subsequent
work has concentrated on characterizing different types of mean equicontinuous systems
in terms of invertibility properties of the factor map to the MEF. For instance, the fact
that almost all points of a strictly ergodic system are injectivity points of the factor map,
which implies mean equicontinuity, is equivalent to the stronger property of diam-mean
equicontinuity [GR17, GRJY21].

Examples of mean equicontinuous systems in the literature are abundant. In particular,
these include the classes of regular Toeplitz flows [Dow05, JK69, MP79, Wil84] and
regular model sets arising from Meyer’s cut and project method [BLM07, Mey72, Moo00,
Sch00]. In both cases, the factor map is almost surely injective, so that the dynamics are
diam-mean equicontinuous. Examples of mean equicontinuous systems whose factor maps
are not almost surely injective are given by certain irregular Toeplitz flows (e.g. [Wil84])
and irregular models sets [FGJO21]. In these cases, the systems are almost automorphic,
meaning that the factor maps are almost one-to-one, i.e. the set of injectivity points is
residual.

Mean equicontinuous systems for which the factor map to the MEF has no singular
fibres are much more difficult to find. In fact, to the best of our knowledge, the only
non-trivial examples were so far given by Glasner and Downarowicz in [DG16], who
showed that homeomorphisms with these properties are generic in certain spaces of
extensions of minimal group rotations. (A ‘trivial’ example would be a homeomorphism
of the circle with a unique fixed point. In this case, the MEF is just a single point.) One
aim of this note is to provide an alternative construction of such examples based on the
well-known Anosov–Katok method [AK70, FK04]. As a byproduct, we also obtain the
smoothness of the resulting diffeomorphisms.

THEOREM 1.1. There exist C∞-diffeomorphisms ϕ of the two-torus with the following
properties.
(a) ϕ is a skew product over some irrational rotation Rα : T1 → T1, x �→ x + α mod 1.
(b) ϕ is totally strictly ergodic (all iterates of ϕ are strictly ergodic) and mean

equicontinuous, with the rotation Rα as its maximal equicontinuous factor and the
projection to the first coordinate as the factor map.

(c) The unique ϕ-invariant measure μ is the projection of the Lebesgue measure λ on
T1 onto some measurable graph, that is, it is of the form μ = (IdT1 × γ )∗λ, where
γ : T1 → T1 is measurable.

Note that since the projection to the first coordinate is the factor map to the MEF, all
fibres are circles. In particular, there exist no injectivity points. A genericity statement
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similar to that in [DG16] can also be obtained (see Remark 4.1(a)), but we will not focus
on this issue.

The price we have to pay for the smoothness of the examples is that of a more restricted
setting. While the construction in [DG16] allows to choose an arbitrary strictly ergodic
system as factor, our examples are always extensions of irrational rotations with Liou-
villean rotation number. However, on the positive side, the Anosov–Katok construction
allows to exert additional control over the lifts of the resulting torus diffeomorphisms to
finite covering spaces, and also of all iterates. We can thus ensure that all these mappings
are uniquely ergodic. This entails that the finite lifts do not have additional dynamical
eigenvalues, so that their discrete spectrum coincides with that of the original system and
there has to be a continuous part of the dynamical spectrum. A classical result of Katok
and Stepin on cyclic approximations [KS67], combined with further modifications of the
construction, allows to ensure that this new part of the spectrum is singular continuous.
Altogether, we obtain the following.

THEOREM 1.2. For any m ∈ N with m � 2, there exist C∞-diffeomorphisms ϕ of the
two-torus with the following properties.
(a) ϕ is a skew product over some irrational rotation Rα : T1 → T1, x �→ x + α mod 1.
(b) ϕ is totally strictly ergodic and a measure-theoretic m to 1 extension of the irrational

rotation Rα , which is the maximal equicontinuous factor of the system.
(c) The unique ϕ-invariant measure μ is the projection of the Lebesgue measure λ on T1

onto some m-valued measurable graph, that is, it is of the form μ = ∑m
j=1(IdT1 ×

γj )∗λ, where γj : T1 → T1 are measurable functions for j = 1, . . . , m and γi(x) �=
γj (x) λ-almost surely for all i �= j . (We call such systems m : 1-topomorphic
extensions (of the MEF) in analogy to the notion of topo-isomorphic extensions,
for which the topological factor map to the MEF is measure-theoretically one-to-one
and hence measure-theoretic isomorphism.)

(d) The dynamical spectrum of ϕ is given by the (discrete) dynamical spectrum of Rα

and a singular continuous component.

In the case m = 2, these examples are measure-theoretically similar to (generalized)
Thue–Morse subshifts [Kea68], and also to strictly ergodic irregular Toeplitz flows
constructed by Iwanik and Lacroix in [IL94]. In both cases, the systems are also
measure-theoretically finite-to-one extensions of their MEF, exhibit the same discrete
spectrum as the MEF and equally show an additional singular continuous part of the
spectrum. However, the topological structure of these examples is quite different, since
Toeplitz flows always have a residual set of injectivity points for the projection to the MEF,
whereas almost all fibres over the MEF of the generalized Thue–Morse subshift contain
exactly two points.

Note that as measure theoretically finite-to-one extensions of equicontinuous systems,
the examples provided by Theorems 1.1 and 1.2 have zero entropy. An interesting question,
which we have to leave open here, is to understand if their complexity can be adequately
described by some notion of slow entropy on a suitable scale or other topological invariants
(see [FGJ16, KT97, Pet16]).
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1.1. Structure of the article. In §2, we provide all the required preliminaries on topo-
logical dynamics, spectral theory, mean equicontinuity and the Anosov–Katok method. In
§3, we show that mean equicontinuity is a Gδ-property. This observation has been made
already in [DG16], but to simplify the Anosov–Katok construction carried out in §4, we
provide a different Gδ-characterization of mean equicontinuity here. Finally, in §5, we
discuss how to modify the construction to ensure that all iterates of all finite lifts will
still be strictly ergodic, no new dynamical eigenvalues occur and the additional spectral
component is singular continuous.

2. Preliminaries
2.1. Topological and measure-preserving dynamics. We refer to standard textbooks
such as [Aus88, BS02, KH97, Wal82] for the following basic facts on topological
dynamics and ergodic theory. Throughout this article, a topological dynamical system (tds)
is a pair (X, ϕ), where X is a compact metric space and ϕ is a homeomorphism of X. We
say ϕ (or (X, ϕ)) is minimal if there exists no non-empty ϕ-invariant compact subset of
X. Equivalently, ϕ is minimal if for all x ∈ X, the ϕ-orbit Oϕ(x) = {ϕn(x) | n ∈ Z} of
x is dense in X. The tds (X, ϕ) is called equicontinuous if for any ε > 0, there exists
δ > 0 such that dX(x, y) < δ implies dX(ϕn(x), ϕn(y)) < ε for all n ∈ N. In this case,
there is an equivalent metric on X such that ϕ becomes an isometry. When (X, ϕ) is both
equicontinuous and minimal, then X can be given the structure of a compact abelian group
with group operation ⊕ such that ϕ is just the rotation by some element from X, that is,
there exists α ∈ X such that ϕ(x) = x ⊕ α for all x ∈ X. We write x 	 y for x ⊕ (	y) in
this situation, where 	y is the inverse of y. Since minimal rotations on compact abelian
groups are always uniquely ergodic, the same holds for minimal equicontinuous systems.

Another tds (Y , ψ) is called a factor of (X, ϕ) with factor map π : X → Y if π is
continuous and onto and satisfies π ◦ ϕ = ψ ◦ π . If in addition π is a homeomorphism,
we say (X, ϕ) and (Y , ψ) are conjugate. Note that both minimality and equicontinuity are
inherited by factors. Since factor maps are in general not unique, we will sometimes also
refer to the triple (Y , ψ , π) as a factor to specify the factor map. We call such a triple a
maximal equicontinuous factor (MEF) of (X, ϕ) if (Y , ψ) is equicontinuous and for any
other equicontinuous factor (Z, ρ, p), there exists a unique factor map q between (Y , ψ)

and (Z, ρ) such that p = q ◦ π . The existence of an MEF is ensured by the following
statement, which also addresses the question of uniqueness.

THEOREM 2.1. [Aus88, Theorem 9.1, p. 125] Every topological dynamical system (X, ϕ)

has an MEF (Y , ψ , π). If (Ŷ , ψ̂ , π̂) is another MEF, then there is a unique conjugacy
h : (Y , ψ) → (Ŷ , ψ̂) such that π̂ = h ◦ π . In particular, the systems (Y , ψ) and (Ŷ , ψ̂)

are conjugate in this case.

Remark 2.2.
(a) Despite the lack of uniqueness, we will often refer to an MEF (Y , ψ) of (X, ϕ) as ‘the

MEF’, in particular, in situations where we are only interested in conjugacy-invariant
properties.

(b) Note also that once we have fixed an equicontinuous tds (Y , ψ) as the MEF
of a minimal system (X, ϕ), the corresponding factor map π is unique modulo
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post-composition with a rotation on Y (where we refer to the above-mentioned group
structure of minimal equicontinuous systems). The reason is the fact that, in this case,
given two different factor maps π1, π2 : X → Y , the Y-valued function π1 	 π2 is
continuous and ϕ-invariant, and therefore constant by minimality.

A measure-preserving dynamical system (mpds) is a quadruple (X, A, μ, ϕ) consisting
of a probability space (X, A, μ) and a measurable transformation ϕ : X → X that
preserves the measure μ, that is, ϕ∗μ = μ, where ϕ∗μ(A) = μ(ϕ−1(A)). An mpds is
ergodic if every ϕ-invariant set A ∈ A has measure 0 or 1. This is equivalent to the validity
of the assertion of the Birkhoff ergodic theorem: for any f ∈ L1(μ), there holds

lim
n→∞

1
n

n−1∑
i=0

f ◦ ϕi(x) =
∫

X

f dμ (2.1)

for μ-almost every x ∈ X. Given two mpds (X, A, μ, ϕ) and (Y , B, ν, ψ), we call a
measurable map h : X → Y a measure-theoretic isomorphism if there exist sets A ∈
A, B ∈ B such that μ(A) = ν(B) = 1, h : A → B is a bi-measurable bijection, h∗μ = ν

and ϕ ◦ h = ψ ◦ h on A.
The mpds we consider will mostly be topological, that is, X will be a compact metric

space, A = B(X) the Borel σ -algebra on X, μ a Borel measure and ϕ a homeomorphism.
In particular, this means that ϕ is a bi-measurable bijection. For any tds (X, ϕ), the exis-
tence of at least one ϕ-invariant probability measure is ensured by the Krylov–Bogolyubov
theorem. If there exists exactly one invariant measure – which is necessarily ergodic in this
case – we call a tds uniquely ergodic. In this case, the uniform ergodic theorem states that
the convergence of the ergodic averages in equation (2.1) is uniform for any continuous
function f on X. Actually, the same holds if ϕ admits multiple invariant measures, but the
integral of the function f is the same with respect to all of them. This is a more or less
direct consequence of the Krylov–Bogolyubov procedure and can be extended, to families
of continuous functions that are compact in the uniform topology, in the following way.

THEOREM 2.3. (Simultaneous uniform ergodic theorem) Suppose that (X, ϕ) is uniquely
ergodic with invariant measure μ. For any compact family F ⊆ C(X, [0, 1]) of continuous
functions and x ∈ X, the simultaneous ergodic averages

An : X × F −→ R, (x, f ) �−→ 1
n

n−1∑
i=0

f (ϕi(·))

converge uniformly to the function (x, f ) �→ ∫
f dμ.

We omit the proof, which is a straightforward adaptation of the standard argument for
the uniform ergodic theorem (see e.g. [Wal82, Theorem 6.19]).

2.2. Spectral theory of dynamical systems. Given an mpds (X, A, μ, ϕ), the associated
Koopman operator is given by

Uϕ : L2
μ(X) → L2

μ(X), f �→ f ◦ ϕ.

Since μ is ϕ-invariant, Uϕ is a unitary operator, so that σ(Uϕ) ⊆ S1. It is well known that
spectral properties of Uϕ are closely related to dynamical properties of the system. For

https://doi.org/10.1017/etds.2024.70 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.70


Non-almost automorphic isomorphic extensions 1229

instance, ergodicity of ϕ is equivalent to the simplicity of 1 as an eigenvalue, and weak
mixing of the system is equivalent to the absence of any further eigenvalues.

For any continuous function f : σ(Uϕ) → C, the continuous functional calculus yields
the existence of a bounded linear operator f (Uϕ) on L2

μ(X) such that the mapping

C(σ (Uϕ), C) → C∗(Uϕ) = {f (Uϕ) | f ∈ C(σ (Uϕ), C)}, f �→ f (Uϕ)

is an isomorphism of C∗-algebras. Given g ∈ L2
μ(X), this further allows to define a

bounded linear functional

g : C(σ (Uϕ), C) → C, f �→ 〈f (Uϕ)g, g〉
and thus, by virtue of the Riesz representation theorem, a Borel measure μg on
σ(Uϕ) ⊆ S1 such that

〈f (Uϕ)g, g〉 =
∫

σ(Uϕ)

f dμg .

The measure μg is called the spectral measure associated to g. Moreover, there exists an
orthogonal decomposition

L2
μ(X) = L2

μ(X)pp ⊕ L2
μ(X)sc ⊕ L2

μ(X)ac

of L2
μ(X), where

L2
μ(X)pp = {g ∈ L2

μ(X) | μg is a pure point},
L2

μ(X)sc = {g ∈ L2
μ(X) | μg is singular continuous},

L2
μ(X)ac = {g ∈ L2

μ(X) | μg is absolutely continuous}.
In our setting, the reference measure with respect to which the singularity and absoluteness
(of continuity) is defined is the Lebesgue measure on the circle.

The spectra σpp(Uϕ), σsc(Uϕ) and σac(Uϕ) obtained from the restriction of Uϕ to these
subspaces are called the discrete/pure point, singular continuous and absolutely continuous
part, or component, of the dynamical spectrum of Uϕ . Note that the different spectral parts
need not be disjoint.

In the case of a purely discrete spectrum, it turns out that a system is uniquely
characterized, up to isomorphism, by the group of its dynamical eigenvalues.

THEOREM 2.4. (Halmos and von Neumann [HvN42, vN32]) An ergodic mpds
(X, A, μ, ϕ) has purely discrete spectrum if and only if it is measure-theoretically
isomorphic to a minimal rotation of a compact abelian group equipped with its Haar
measure. Moreover, two mpds with purely discrete spectrum are isomorphic if and only if
they have the same group of eigenvalues.

To prove the existence of a singular continuous spectral component, we will use a
classical result from the theory of approximations by periodic transformations presented in
[KS67]. An mpds (X, A, μ, ϕ) admits cyclic approximation by periodic transformations
(capt) with speed s : N → R+

0 if there exists a sequence (ϕn)n∈N of bijective bi-measurable
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transformations on X and a sequence (Pn)n∈N of finite measurable partitions of X, Pn =
{Pn,1, . . . , Pn,Kn}, such that for all n ∈ N:
(P1) ϕn cyclically permutes the elements of Pn;
(P2) for each A ∈ A, there exist An ∈ σ(Pn) such that μ(A�An)

n→∞−→ 0;
(P3)

∑Kn

i=1 μ(ϕ(Pn,i )�ϕn(Pn,i )) ≤ s(Kn).
Here, σ(Pn) denotes the σ -algebra generated by Pn.

THEOREM 2.5. [KS67, Corollary 3.1] If an mpds (X, A, μ, ϕ) admits capt with speed
s : N → R+

0 and limn→∞ ns(n) = 0, then Uϕ has no absolutely continuous spectral
component, that is, σac(Uϕ) = ∅.

2.3. Mean equicontinuity. A tds (X, ϕ) is called mean equicontinuous if for all ε > 0,
there is δ > 0 such that dX(x, y) < δ implies

dB(x, y) = lim
n→∞

1
n

n−1∑
i=0

d(ϕi(x), ϕi(y)) < ε. (2.2)

It turns out that in the minimal case, mean equicontinuity implies unique ergodicity and
is moreover equivalent to a certain invertibility property of the factor map onto the MEF.

THEOREM 2.6. [DG16, Theorem 2.1] Suppose (X, ϕ) is minimal and (Y , ψ , π) is an
MEF. Denote by ν the unique invariant measure of (Y , ψ). Then the following are
equivalent.
(1) (X, ϕ) is mean equicontinuous.
(2) (X, ψ) is uniquely ergodic with unique invariant measure μ and π is a

measure-theoretic isomorphism between the mpds (X, B(X), μ, ϕ) and (Y , B(Y ),
ν, ψ).

Given a uniquely ergodic tds (X, ϕ) and a factor (Y , ψ , π) (which is automatically
uniquely ergodic as well), we say (X, ϕ) is an isomorphic extension of (Y , ψ) if
π is a measure-theoretic isomorphism between the two mpds (X, B(X), μ, ϕ) and
(Y , B(Y ), ν, ψ), where μ and ν are the unique invariant measures for ϕ and ψ , respec-
tively. Hence, condition (2) above can be rephrased by saying that (X, ϕ) is an isomorphic
extension of (Y , ψ).

Note that the above statement implies, in particular, that the dynamical spectrum of
mean equicontinuous systems coincides with that of the MEF and is therefore purely
discrete.

The mapping dB : X × X → R+
0 defined in equation (2.2) is always a pseudo-metric on

X. It is called the Besicovitch pseudo-metric. For mean equicontinuous systems, it provides
a way to directly define an MEF of the system.

PROPOSITION 2.7. [DG16] Suppose (X, ϕ) is mean equicontinuous. Define an equiva-
lence relation on X by

x ∼ y ⇔ dB(x, y) = 0.
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Then the quotient system (X/ ∼, ϕ/ ∼) together with the canonical projection as a factor
map is an MEF.

The proof of this fact in [DG16] is implicit – it is contained in the proof of [DG16,
Theorem 2.1].

2.4. The Anosov–Katok method. The Anosov–Katok method is arguably one of the
best-known and most widely used constructions in smooth dynamics and allows to obtain a
broad scope of examples with particular combinations of dynamical properties. Although
many readers will already be familiar with the general method, we provide a brief
introduction to fix notation and comment on some specific issues that will be relevant
in our context. The construction of mean equicontinuous diffeomorphism of the two-torus
will then be carried out in §4, while the modification required to obtain the finite-to-one
extensions in Theorem 1.2 will be discussed in §5.

We restrict to the case of tori Td = Rd/Zd and denote by Homeo(Td) the space of
homeomorphisms of the d-dimensional torus, by Ck(Td) the space of k-times differentiable
torus endomorphisms (including the cases k = ∞ and k = ω, were the latter stands for
‘real-analytic’) and let

Diffeok(Td) = {ϕ ∈ Homeo(Td) | ϕ, ϕ−1 ∈ Ck(Td)}.
We will identify Diffeo0(Td) and Homeo(Td). Further, we denote the supremum metric
on C0(Td) by dsup and let

dk(ϕ, ψ) = k
max
i=0

max{dsup(ϕ
(i), ψ(i)), dsup((ϕ

−1)(i), (ψ−1)(i))}

be the standard metric on the space of torus diffeomorphisms. By Bk
ε (ψ), we denote the

ε-ball around ψ in Diffeok(Td).
Our aim is to recursively construct a sequence (ϕn)n∈N of torus diffeomorphisms

according to the following scheme.
• Each ϕn will be of the form Hn ◦ Rρn ◦ H−1

n , where Rρ : Td → Td , x �→ x + ρ

denotes the rotation with rotation vector ρ ∈ Td and Hn ∈ Diffeo∞(Td).
• The Hn will be of the form Hn = h1 ◦ · · · ◦ hn, where each hn ∈ Diffeo∞(Td)

commutes with the rotation Rρn−1 , that is, hn ◦ Rρn−1 = Rρn−1 ◦ hn. Note that con-
sequently, we have that Hn ◦ Rρn−1 ◦ H−1

n = ϕn−1. Hence, at this stage, we have
introduced the new conjugating map hn, but the system has not changed yet.

• When going from step n − 1 to n in the construction, we choose hn first and only
pick the new rotation vector ρn afterwards. Therefore, the continuity of the mapping
ρ �→ Hn ◦ Rρ ◦ H−1

n (with respect to the metric dk for any k ∈ N) allows to control
the difference between ϕn−1 and ϕn in the respective metric.

• As a consequence, we can ensure that the resulting sequence (ϕn)n∈N is Cauchy in
Diffeok(Td) for any k ∈ N, simply by recursively choosing ρn sufficiently close to
ρn−1 with respect to dn in the nth step of the construction. This ensures that the ϕn

converge to some limit ϕ ∈ Diffeo∞(Td).
So far, the above items explain how to ensure the convergence of the constructed sequence
(ϕn)n∈N, but they do not yet specify how to obtain any particular dynamical properties.
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It turns out, however, that the method is tailor-made to realize any Gδ-properties in the
space Homeo(Td). Suppose we want to ensure that our limit diffeomorphism ϕ belongs
to a set of torus homeomorphism A ⊆ Homeo(Td) which is Gδ , that is, it is of the
form A = ⋂

n∈N Un with Un ⊆ Homeo(Td) open. As discussed below, both minimal and
uniquely ergodic torus homeomorphisms can be characterized in this way. We then proceed
as follows.

(i) By choosing hn and ρn accordingly, we ensure that ϕn ∈ Un. How this is done
exactly depends on the property that defines A. This is actually the crucial step in
the construction and we will provide details further below.

(ii) Since Un is open, there exists ηn > 0 such that B0
ηn

(ϕn) ⊆ Un. By ensuring that the
distance between ϕj and ϕj+1 is small and decays sufficiently fast for all j ≥ n, this
yields ϕ = limj→∞ ϕj ∈ B0

ηn
(ϕn) ⊆ Un as well. Since this works for all n ∈ N, we

obtain ϕ ∈ A.
(iii) To ensure ϕn ∈ Un, it will often be convenient not to go from ϕn−1 to ϕn directly, but

to pass through some intermediate map ϕ̂n−1 instead. This is, for example, useful
to ensure that the limit system is minimal and/or uniquely ergodic. For instance,
we may first choose a totally irrational rotation number ρ̂n−1 and define ϕ̂n−1 =
Hn ◦ Rρ̂n−1 ◦ H−1

n . Then, ϕ̂n−1 is minimal and uniquely ergodic, since this is true
for the irrational rotation Rρ̂n−1 . If Un is defined in such a way that it contains all
minimal/uniquely ergodic torus homeomorphisms, then ϕ̂n−1 ∈ Un is automatic. If
ϕn is then chosen sufficiently close to ϕ̂n−1 (by choosing ρn close to ρ̂n−1), we
obtain ϕn ∈ Un, as required. Further, if both ρ̂n−1 and ρn are close enough to ρn−1,
then ϕn will also be close to ϕn−1 in Diffeok(Td).

(iv) In §4, we will actually use a further modification of the above scheme and
pass through an additional third map ϕ̃n−1 = Hn ◦ Rρ̃n−1 ◦ H−1

n , where ρ̃n−1 is
irrational, but not totally irrational (so the entries of the rotation vector are rationally
related).

The following works in high generality for any compact metric space X. Using a very
similar argument as made in item (ii), we obtain the following proposition.

PROPOSITION 2.8. Let A = ⋂
n∈N Un ⊆ Homeo(X) =: Z, where the Un are open with

respect to d0. There exists a sequence (ηA
n )n∈N of functions ηA

n : Zn −→ R+ such that if a
sequence (ϕn)n∈N ∈ ZN satisfies

d0(ϕn, ϕn+1) < ηA
n (ϕ1, . . . , ϕn) and ϕn ∈ Un (2.3)

for all n ∈ N, then it converges with limit ϕ = limn→∞ ϕn ∈ A.

Sketch of proof. If we set ηA
n < 2−n, any sequence satisfying equation (2.3) will be Cauchy

and converge to some ϕ ∈ Z as Z is complete. The idea is now to choose ηA small enough
such that equation (2.3) implies ϕn ∈ Uk for n � k. This can be done by fixing some δk > 0
such that Bδk

(ϕk) ⊆ Uk and then making sure that equation (2.3) implies d0(ϕn, ϕk) < δk ,
i.e. ϕn ∈ Bδk

(ϕk). One way to do that and to encode all the previously imposed conditions
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into ηA
n is to recursively ensure that

ηA
n (ϕ1, . . . , ϕn) < min

(
δn

2
,

n−1
min
k=1

(ηA
k (ϕ1, . . . , ϕk) − d0(ϕk , ϕn))

)
. (2.4)

Now we argue that if (ϕn)n∈N satisfies equation (2.3), then equation (2.4) inductively
implies

ηA
k (ϕ1, . . . , ϕk) > d0(ϕk , ϕn) (2.5)

for any n > k, and thus both ηA
n > 0 and ϕn ∈ Bδk

(ϕk) (as ηA
k (ϕ1, . . . , ϕk) < δk). For

n = k + 1, equation (2.5) holds trivially. Now for the induction step n → n + 1, we have
that

d0(ϕn+1, ϕn) < ηA
n (ϕ1, . . . , ϕn) < ηA

k (ϕ1, . . . , ϕk) − d0(ϕk , ϕn).

The triangle inequality now implies equation (2.5).
In total, ϕm ∈ Bη(ϕn) ⊆ Bη(ϕn) for all m > n. So ϕ ∈ Bη(ϕn) ⊆ Un for all n ∈ N and

thus ϕ ∈ ⋂
n∈N Un = A. �

2.5. Gδ-characterization of strict ergodicity. It is well known that the set Homeose(X)

of strictly ergodic homeomorphisms of X is Gδ in Homeo(X). For the convenience of the
reader, we include a short proof of this folklore result.

We first show that minimality is Gδ . Let ε > 0. A set A ⊆ X is called ε-dense if
Bε(A) = X. Observe that the mapping ξ is minimal if and only if for any ε > 0, there
is M ∈ N such that {x, ϕ(x), . . . , ϕM(x)} is ε-dense for any x ∈ X. Furthermore, the kth
iterate of a homeomorphism depends continuously on that homeomorphism. Therefore,

Umin
M ,ε = {ψ ∈ Homeo(X, X) | for all x ∈ X : {x, ψ(x), . . . , ψM(x)} is ε-dense}

is open in the supremum norm. If Homeomin(X) denotes the set of all minimal homeomor-
phisms of X, the above yields

Homeomin(X) =
⋂

ε∈Q+

⋃
M∈N

Umin
M ,ε .

This means in particular that Homeomin(X) is Gδ .
Now, we turn to unique ergodicity. Fix a dense set {sn | n ∈ N} ⊂ C(X, R). Given n ∈ N

and a continuous map ξ : X → X, we can assign to any g ∈ C(X, R) its n-step ergodic
average

Aξ
ng = 1

n

n−1∑
i=0

g ◦ ξ i .

It is well known (e.g. [EW10, Theorem 4.10, p. 105]) that ξ is uniquely ergodic if and only
if for every k ∈ N, the sequence of functions (A

ξ
nsk)n∈N converges pointwise to a constant.

For g ∈ C(X, R), we denote by V (g) its variation over X, that is,

V (g) := sup
x∈X

g(x) − inf
y∈X

g(y).
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Given any ψ-invariant probability measure μ, we have
∫

A
ψ
n g dμ = ∫

g dμ. This implies
that if V (A

ψ
n g)

n→∞−−−→ 0, then A
ψ
n g

n→∞−−−→ ∫
g dμ.

As A
ξ
kg depends continuously on ξ and V (f ) depends continuously on f, we see that

Uue
n,K ,β := {ψ ∈ Homeo(X, X) | V (A

ψ
Ksn) < β}

is open in the supremum metric. In particular, the set of those transformations for which
the ergodic average of sn eventually stabilizes at a variation below β, given by

Uue
n,β =

⋃
K∈N

⋂
k>K

Uue
n,k,β ,

is Gδ . We notice that ψ ∈ ⋂
k∈N

⋂
β∈Q+ Uue

k,β if and only if A
ψ
n sn converges to

∫
sn dμ

for any n ∈ N if and only if ψ is uniquely ergodic. This yields that the set Homeoue(X) of
uniquely ergodic homeomorphisms of X is Gδ .

Altogether, this shows that Homeose(X) = Homeomin(X) ∩ Homeoue(X) is a Gδ-set as
claimed.

3. Gδ-characterization of mean equicontinuity for skew products
As discussed in the previous section, to construct mean equicontinuous systems via the
Anosov–Katok method, it is instrumental to have an explicit Gδ-characterization of mean
equicontinuity available. In principle, such a characterization is already contained in
[DG16]. However, the latter uses the fact that mean equicontinuity is equivalent to the
existence of a unique self-joining on the product space X × X over the MEF as a common
factor. Since we want to avoid working in the product space, as this would rather complicate
the construction in the next section, we provide an alternative characterization here. As in
[DG16], we make use of the fact that we are in a skew product setting and the factor map
is given a priori (by the projection to the first coordinate). We formulate the statement in
abstract terms, as it might be useful in other situations as well.

PROPOSITION 3.1. Let (X, ϕ) be a tds and (Y , ψ , π) an equicontinuous factor. Then
(Y , ψ , π) is an MEF of (X, ϕ) and (X, ϕ) is an isomorphic extension of (Y , ψ) if and
only if for all ε > 0, there exists some K ∈ N such that, for all x, y ∈ X, we have

π(x) = π(y) �⇒ 1
K

K∑
i=0

dX(ϕi(x), ϕi(y)) < ε. (3.1)

Remark 3.2. (a) Denote by Homeoeq(Y ) the space of equicontinuous homeomorphisms of
Y. Consider the space

E(π) = {ϕ ∈ Homeo(X) | there exists ψ ∈ Homeoeq(Y ) : π ◦ ϕ = ψ ◦ π}
with the subspace

E iso(π) =
{
ϕ ∈ E(π)

∣∣∣∣ there exists ψ ∈ Homeo(Y ) : (Y , ψ , π) is the MEF of (X, ϕ)

and (X, ϕ) is its isomorphic extension

}
.
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Let

U iso
n (π) = {ϕ ∈ E(π) | there exists K ∈ N : equation (3.1) holds with ε = 1/n}.

Then, by the above statement, we have E iso(π) = ⋂
n∈N U iso

n (π). As the sets U iso
n (π) are

open, this implies that E iso(π) is a Gδ-set in E(π).
Note here that the property in equation (3.1) only depends on the factor map π , but not

on the map ψ acting on the factor space.
(b) A similar characterization could be given with a fixed factor system (Y , ψ) on the

base. However, in the context of the Anosov–Katok construction, where the base systems of
the approximating diffeomorphisms will be circle rotations with varying rotation numbers,
the independence of ψ in the above characterization is crucial.

(c) According to Proposition 2.8, there are mappings

ηme
n : Homeo(Td)n −→ [0, 2−n]

such that if a sequence (ϕ̃n)n∈N in E(π) satisfies ϕ̃n ∈ U iso
n (π) and

d0(ϕ̃n, ϕ̃n+1) < ηme
n (ϕ̃1, . . . , ϕ̃n)

for all n ∈ N, then its limit ϕ = limn→∞ ϕ̃n exists and belongs to E iso(π).

Proof of Proposition 3.1. First, assume that(Y , ψ , π) is an MEF and (X, ϕ) is an iso-
morphic extension of (Y , ψ). Then, by Theorem 2.7,π(x) = π(y) implies dB(x, y) = 0.
Let

Jπ (X) = {(x, y) ∈ X × X | π(x) = π(y)}.
Then dB(x, y) is the ergodic average of the function dX for the action of ϕ × ϕ on X × X.
Since these ergodic averages are identically zero on the compact invariant set Jπ (X), we
have that

∫
Jπ (X)

dX(x, y) dγ (x, y) = 0 for all ϕ × ϕ-invariant measures γ on Jπ (X) (in
fact, by [DG16, Proposition 2.5], there is only one such measure when (X, ϕ) is mean
equicontinuous). The uniform ergodic theorem therefore implies that the functions

aK(x, y) = 1
K

K∑
i=0

dX(ϕi(x), ϕi(y))

uniformly converge to zero as K → ∞. Hence, we have aK < ε for sufficiently large
K ∈ N, which is just an equivalent reformulation of equation (3.1).

Conversely, suppose that for all ε > 0, there exists K ∈ N such that equation (3.1) holds.
We assume without loss of generality that ψ is an isometry. Denote by �Y and �X the
diagonals in the respective product spaces Y × Y and X × X. Note that thus Jπ (X) =
(π × π)−1(�Y ).

Now, fix ε > 0 and choose K ∈ N according to equation (3.1). This means that the
function aK is strictly smaller than ε on Jπ (X). By compactness of Jπ (X) and continuity
of aK , there exists δ1 > 0 such that aK < ε on Bδ1 (Jπ (X)). Due to the continuity of
π × π , there exists η > 0 such that A = (π × π)−1(Bη(�Y )) ⊆ Bδ1(Jπ (X)). Further, as
π is uniformly continuous, there exists δ > 0 such that π × π(Bδ(Jπ (X))) ⊆ Bη(�Y ).
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As ψ is an isometry, the set A is ϕ × ϕ-invariant. Since dB is equal to the ergodic
average of aK for the action of (ϕ × ϕ)K and aK < ε on A, this yields dB < ε on A.
However, by the above choices, dX(x, y) < δ implies dY (π(x), π(y)) < η and therefore
(x, y) ∈ A. Hence, we obtain that dX(x, y) < δ implies dB(x, y) < ε. As ε > 0 was
arbitrary, this means that (X, ϕ) is mean equicontinuous.

Therefore, Theorem 2.6 implies that (X, ϕ) is an isomorphic extension of its MEF,
which we denote by (Ŷ , ψ̂ , π̂). By definition, we know that (Y , ψ) is a factor of the MEF,
so the fibres of π̂ are contained in the fibres of π . However, since the Besicovitch distance
dB between two points is zero on each fibre of π , and as this property characterizes the
fibres of the MEF due to Proposition 2.7 (note here that the fibres do not depend on the
particular choice of the MEF), the fibres of π are also contained in the fibres of π̂ . Thus,
π and π̂ have the same fibres, which implies that (Y , ψ , π) is also an MEF and (X, ϕ) is
an isomorphic extension of (Y , ψ).

4. Mean equicontinuous skew products on the torus: Proof of Theorem 1.1
We are going to construct mean equicontinuous diffeomorphisms of the two-torus which
have skew product form

ϕ : T2 → T2, (x, y) �→ (x + α, ϕx(y)) (4.1)

and are such that the underlying irrational rotation Rα : T1 → T1, x �→ x + α is the
MEF and the factor map is given by the projection π : T2 → T1, (x, y) �→ x to the first
coordinate. To do so, we employ the Anosov–Katok method as described in Section 2.4
and recursively define sequences of skew product diffeomorphism (ϕn)n∈N, (ϕ̃n)n∈N and
(ϕ̂n)n∈N whose common limit ϕ will satisfy the assertions of Theorem 1.1. The general
scheme of our inductive construction will be as follows.
• The mappings ϕn, ϕ̃n and ϕ̂n will be of the form

ϕn = Hn ◦ Rρn ◦ H−1
n , ϕ̃n = Hn+1 ◦ Rρ̃n

◦ H−1
n+1 and ϕ̂n = Hn+1 ◦ Rρ̂n

◦ H−1
n+1,

where ρn is rational, ρ̃n = αρn with α ∈ R\Q and ρ̂n is totally irrational. Further, for
technical reasons, we require that

ρn =
(

pn

qn

,
p′

n

qn

)
with pn, p′

n, qn ∈ N relatively prime. (4.2)

• The conjugating diffeomorphisms Hn will be of the form Hn = h1 ◦ · · · ◦ hn, where
hn+1 always commutes with the rotation Rρn . Moreover, all hn have skew product
structure hn : (x, y) �→ (x, hn,x(y)), with fibre maps hn,x : T1 → T1.

• We choose the functions ηse
n and ηme

n and the sets U iso
n (π) according to Proposition 2.8

and Remark 3.2(c).
• The approximating torus diffeomorphisms ϕn, ϕ̃n, ϕ̂n will be chosen such that for each

n ≥ 2, they satisfy
dn(ϕn, ϕ̃n) ≤ 1

3 min{ηse
n−1(ϕ̂1, . . . , ϕ̂n−1), ηme

n−1(ϕ̃1, . . . , ϕ̃n−1)}, (4.3)

dn(ϕ̃n, ϕ̂n) ≤ 1
3 min{ηse

n−1(ϕ̂1, . . . , ϕ̂n−1), ηme
n (ϕ̃1, . . . , ϕ̃n)}, (4.4)

dn(ϕ̂n, ϕn+1) ≤ 1
3 min{ηse

n (ϕ̂1, . . . , ϕ̂n), ηme
n (ϕ̃1, . . . , ϕ̃n)}, (4.5)

ϕ̃n ∈ U iso
n (π). (4.6)
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Note that these conditions together imply that

dn(ϕ̃n, ϕ̃n+1) ≤ ηme
n (ϕ̃1, . . . , ϕ̃n), (4.7)

dn(ϕ̂n, ϕ̂n+1) ≤ ηse
n (ϕ̂1, . . . , ϕ̂n), (4.8)

for all n ∈ N, which together with equation (4.6) means that the conditions of
Proposition 2.8 and Remark 3.2(c) are met, where Proposition 2.8 is applied to
the sequence (ϕ̂n)n∈N and Remark 3.2(c) is applied to (ϕ̃n)n∈N. Note here that the
diffeomorphisms ϕ̂n are all strictly ergodic, since they are conjugate to a totally
irrational torus rotation. Consequently, the common limit ϕ of all the sequences, whose
existence is also guaranteed by equations (4.3)–(4.5) (note that ηme

n , ηse
n ≤ 2−n), is

both strictly ergodic and mean equicontinuous, with π as the factor map to the MEF.
The MEF is then given by (T1, Rα , π), where α = limn→∞ π(ρn).

• Note that the conditions in equations (4.3)–(4.5) can always be ensured by choosing
the rotation vectors ρn, ρ̃n, ρ̂n and ρn+1 sufficiently close to each other. The reason
is the fact that we have ϕn = Hn+1 ◦ Rρn ◦ H−1

n+1 due to the commutativity between
hn+1 and Rρn combined with the continuity of ρ �→ Hn+1 ◦ Rρ ◦ H−1

n+1. Therefore,
the only issue that remains to be addressed is to ensure that the intermediate maps ϕ̃n

are indeed contained in U iso
n (π).

To start the induction, we let H1 = h1 = IdT2 and choose ϕ1 to be an arbitrary rational
rotation on T2 whose rotation vector satisfies equation (4.2). Note that the inductive
assumptions in equations (4.3)–(4.5) are all still empty at this point.

Now, suppose that ϕ1, . . . , ϕN , ϕ̃1, . . . , ϕ̃N−1 and ϕ̂1, . . . , ϕ̂N−1 have been con-
structed such that equations (4.3)–(4.6) hold for all n = 1, . . . , N − 1. We have ρn =
((pn/qn), (p′

n/qn)), where pn, p′
n, qn ∈ N are relatively prime. The aim is to choose hn+1

and ρ̃n in such a way that ϕ̃n ∈ U iso
n (π), that is, ϕ̃n satisfies equation (3.1) with ε = 1/n.

To that end, we note that orbits of Rρn move along closed curves of the form

L(ρn, t) = {(xpn/qn, t + xp′
n/qn) | x ∈ [0, qn)},

which are parametrized by the functions

ρn,t : T1 → L(t , ρn), x �→ (xpn, t + xp′
n).

We now dwell on this insight a bit further to see how we need to choose hn+1. First,
observe that the mapping ρn,t conjugates the one-dimensional rotation r1/qn on T1 and the
restriction of Rρn to L(t , ρn), that is, Rρn ◦ ρn,t = ρn,t ◦ r1/qn . Consequently, the orbits
of ϕn = Hn+1 ◦ Rρn ◦ H−1

n+1 move along the curves Hn+1(L(ρn, t)), and Hn+1 ◦ ρn,t

provides a conjugacy between the action of ϕn on these curves and the rational rotation
r1/qn . Moreover, if we change the rotation vector ρn to ρ̃n = αρn, where α is an irrational
real number, then the orbits of ϕ̃n still move along the same curves, but now the action of
ϕ̃n on these curves is conjugate to the irrational rotation rα/qn on T1 (again with conjugacy
Hn+1 ◦ ρn,t ).

Given two points z, z′ ∈ T2 with π(z) = π(z′), we may choose x, tz, tz′ ∈ T1 such that
z = Hn+1(ρn,tz (x)) and z′ = Hn+1(ρn,tz′ (x)). For the average distance of the iterates of
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these two points along their orbits, we obtain

1
n

n−1∑
i=0

d(ϕ̃i
n(z), ϕ̃i

n(z
′)) = 1

n

n−1∑
i=0

d(ϕ̃i
n(ρn,tz (x)), ϕ̃i

n(ρn,tz′ (x)))

= 1
n

n−1∑
i=0

Fn,tz,t ′z ◦ ri
α/qn

(x), (4.9)

where

Fn,t ,t ′ : T1 → R+, x �→ d(Hn+1 ◦ ρn,t (x), Hn+1 ◦ ρn,t ′(x)).

By unique ergodicity of the irrational rotation rα/qn , the averages in equation (4.9)
converge uniformly to

∫
T1 Fn,t ,t ′(x) dx. As the family {Fn,t ,t ′ | t , t ′ ∈ T1} is compact, the

simultaneous uniform ergodic theorem 2.3 implies that this convergence is even uniform
in the parameters t , t ′ ∈ T1. This means that for any κ > 0, there exists K ∈ N such that

∣∣∣∣ 1
K

K−1∑
i=0

d(ϕ̃i
n(z), ϕ̃i

n(z
′)) −

∫
T1

Fn,tz,tz′ (x) ds

∣∣∣∣ < κ

holds for all z, z′ ∈ T1 with π(z) = π(z′). Hence, to ensure the validity of equation (4.6),
it suffices to let κ = 1/2n and to choose hn+1 in such a way that∫

T1
Fn,t ,t ′(x) dx ≤ 1

2n
(4.10)

holds for all t , t ′ ∈ T1.
Now, constructing such a mapping hn+1 is not difficult, albeit somewhat technical.

We first define hn+1 on the vertical strip S = I × T1, where I = [0, 1/qn]. We fix
δ > 0 and choose some circle diffeomorphism g, homotopic to the identity, such that
g(T1 \ Bδ(1/2)) ⊆ Bδ(0). For instance, g could be the projective action of a diagonal
matrix

(
λ 0
0 1/λ

)
with sufficiently large λ > 0. Then we choose a smooth homotopy G :

[0, 1] × T1 → T1, (x, y) �→ Gx(y) between G0 = IdT1 and G1 = g such that Gx = IdT1

for all x in some neighbourhood of zero. We assume δ ∈ [0, 1/4qn], let Î = [δ, 1/qn − δ]
and choose a smooth mapping T : S → S such that T (x, y) = (x, Tx(y)), where Tx(y) =
y + (x/(1/qn − 2δ)) for all (x, y) ∈ Î and Tx = IdT1 for all x in a neighbourhood of zero.
Thus, the image of a horizontal line segment Î × {y} under T ‘wraps’ around the torus
exactly once in the vertical direction.

Using these auxiliary mappings, we let

hn+1 : S → S, (x, y) �→

⎧⎪⎪⎨
⎪⎪⎩

Gx/δ ◦ T (x, y), 0 ≤ x ≤ δ,

g ◦ T (x, y), δ < x < 1/qn − δ,

G(1−x)/δ ◦ T (x, y), 1/qn − δ ≤ x ≤ 1/qn.

(4.11)

Then hn+1 is smooth on S and coincides with the identity on a neighbourhood of ∂S.
Now, we first focus on that segment of a curve L(ρn, t) passing through S, which is

parametrized by the mapping p−1
n I → T1, x �→ ρn,t (x). Note that there are pn such

pieces, which all differ by an additive constant that is a multiple of 1/pn. On p−1
n Î , this
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function has constant slope 1/(1/qn − 2c) + (pn/qn). As a consequence, it passes through
the set Î × Bδ(1/2) at most twice over the interval Ŝ and we obtain that

LebT1({x ∈ p−1
n I | Tx ◦ ρn,t (x) ∈ Bδ(1/2)}) ≤ 2δ + δ

pnqn

. (4.12)

Since g maps the complement of the interval Bδ(1/2) into the interval Bδ(0) and
equation (4.12) holds for all t ∈ T1, the images of respective segments of two different
curves L(qn, t), L(qn, t ′) under T will be 2δ-close to each other most of the time. More
precisely, we obtain

LebT1({x ∈ p−1
n I | |hn+1,s ◦ ρn,t (x) − hn+t ,s ◦ ρn,t ′(x)| ≥ 2δ}) ≤ 4δ + 2δ

pnqn

. (4.13)

So far, we have only defined hn+1 on S and only considered the restriction of the curves
ρn,t to the interval p−1

n I , which only parametrizes the 1/pnqnth part of the whole curves
L(ρn, t). However, if we extend the definition of hn+1 by commutativity to all of T2, i.e.
by setting hn+1|Rk

ρn
(S) = Rk

ρn
◦ hn+1|S ◦ R−k

ρn
, k = 1, . . . , qn − 1, then the behaviour of all

pnqn segments of pairs of curves hn+1(L(qn, t)) and hn+1(L(qn, t ′)) will be the same –
we are simply looking at a rotated version of the same situation. Therefore, we obtain the
estimate

LebT1({x ∈ T1 | |hn+1,x ◦ ρn,t (x) − hn+1,x ◦ ρn,t ′(x)| ≥ 2δ}) ≤ 6δpnqn. (4.14)

Since Hn is uniformly continuous, we may choose δ in such a way that d(x, y) < 2δ

implies d(Hn(x), Hn(y)) < 1/4n. Then, equation (4.14) implies

LebT1({s ∈ T1 | |Hn+1,s ◦ ρn,t (s) − Hn+t ,s ◦ ρn,t ′(s)| ≥ 1/4n}) ≤ 6δpnqn. (4.15)

When δ is sufficiently small (say δ < 1/24npnqn), this finally yields equation (4.10).
To complete the induction step, we now choose ρ̃n = αρn, where α ∈ R \ Q is

sufficiently close to 1 such that equation (4.3) holds. After that, we can take ρ̂n to be any
totally irrational rotation vector, close enough to ρ̃n to ensure equation (4.4), and finally
choose a new rational rotation vector ρn+1 that is close enough to ρ̂n to ensure equation
(4.5) and satisfy that equation (4.2) holds. This completes the inductive construction and
therefore the proof of Theorem 1.1.

Remark 4.1.
(a) The above construction starts with an arbitrary rational rotation Rρ1 and allows to

ensure that the resulting limit diffeomorphism ϕ is arbitrarily close to Rρ1 . Together
with the Gδ-property of mean equicontinuity and strict ergodicity, this implies that
the set of skew product diffeomorphisms which satisfy the assertions of Theorem 1.1
form a residual subset of the space

Cob(T2, π) = {H ◦ Rρ ◦ H−1 | ρ ∈ T2, H ∈ Diffeok(T2), π ◦ H = π},
where k ∈ N0 ∪ {∞} is arbitrary. The analogous observation has been made in
[DG16].
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(b) All the torus maps in the above construction, and hence also the resulting
diffeomorphisms ϕ, may be chosen as the projective actions of quasiperiodic
SL(2, R)-cocycles (compare [HP06]).

5. Total strict ergodicity for lifts and non-existence of additional eigenvalues
Given any l, m ∈ N, T(l,m) = R/lZ × R/mZ is a canonical finite covering space of
the torus T2. For any torus homeomorphism ψ homotopic to the identity, there exist
lifts L

ψ

(l,m;s) : T(l,m) → T(l,m) with s ∈ A(l, m) = (Z/lZ) × (Z/mZ), which are uniquely

determined by the requirement that L
ψ

(l,m;s)(0) ∈ [s1, s1 + 1) × [s2, s2 + 1). Note that

two different lifts L
ψ

(l,m;s) and L
ψ

(l,m;s) are conjugate by the integer translation (x, y) �→
(x + (s′

1 − s1), y + (s′
2 − ss)) on T(l,m) and thus share the same dynamical properties.

We denote the iterates of these lifts by L
ψ ,j
(l,m;s) = (L

ψ

(l,m;s))
j . Note that L

ψ ,j
(l,m;s) may

differ from L
ψj

(l,m;s) by an integer translation. For any rotation Rρ on T2, its lift L
Rρ

(l,m;s) is
conjugate to the torus rotation R((ρ1+s1)/ l,(ρ2+s2)/m), where a conjugacy h(l,m) is simply
given by rescaling, that is, h(l,m)(x, y) = (x/l, y/m). Obviously, this does not affect the
arithmetical properties of the rotation vector (rational, irrational or totally irrational). We
can also rescale the lifts L

ψ

(l,m;s) to obtain homeomorphisms 
ψ

(l,m;s) = h(l,m) ◦ L
ψ

(l,m;s) ◦
h−1

(l,m) of the standard torus T2. Further, given torus homeomorphisms ϕ, ψ homotopic to
the identity, we have

dk(ϕ, ψ) = min
s∈A(l,m)

dk

(
L

ϕ

(l,m;0), L
ψ

(l,m;s)

)
≥ min

s∈A(l,m)
dk

(

ϕ

(l,m;0), 
ψ

(l,m;s)

)
. (5.1)

5.1. Total strict ergodicity of the lifts. To ensure that all iterates of all lifts of the
diffeomorphism ϕ from Theorem 1.1 are strictly ergodic as well, we may now modify the
construction in §4 by replacing the conditions in equations (4.3)–(4.5) with the following
stronger assumptions: we recursively choose sequences s

(l,m)
n , s̃

(l,m)
n , ŝ

(l,m)
n such that

dn

(
L

ϕn

(l,m,s(l,m)
n )

, L
ϕ̃n

(l,m,s̃(l,m)
n )

)
= dn(ϕn, ϕ̃n),

dn

(
L

ϕ̃n

(l,m,s̃(l,m)
n )

, L
ϕ̂n

(l,m,ŝ(l,m)
n )

)
= dn(ϕ̃n, ϕ̂n),

dn

(
L

ϕ̂n

(l,m,ŝ(l,m)
n )

, L
ϕn+1

(l,m,s(l,m)
n+1 )

)
= dn(ϕ̂n, ϕn+1)

hold for all n ∈ N. Then, in the nth step of the induction, we exert control over the speed
of convergence not only for the original maps ϕn, ϕ̂n, ϕ̃n, but also for all iterates of all lifts
up to level n. To that end, we require that for all l, m, j = 1, . . . , n, we have

dn

(

ϕn,j
(l,m;s(l,m)

n )
, 

ϕ̃n,j
(l,m;s̃(l,m)

n )

)

≤ 1
3

min
{
ηse

n−1

(

ϕ̂1,j
(l,m;ŝ(l,m)

1 )
, . . . , 

ϕ̂n−1,j

(l,m;ŝ(l,m)
n−1 )

)
, ηme

n−1

(

ϕ̃1,j
(l,m;s̃(l,m)

1 )
, . . . , 

ϕ̃n−1,j

(l,m;s̃(l,m)
n−1 )

)}
,

(5.2)
dn

(

ϕ̃n,j
(l,m;s̃(l,m)

n )
, 

ϕ̂n,j
(l,m;ŝ(l,m)

n )

)

≤ 1
3

min
{
ηse

n−1

(

ϕ̂1,j
(l,m;ŝ(l,m)

1 )
, . . . , 

ϕ̂n−1,l

(l,m;ŝ(l,m)
n−1 )

)
, ηme

n

(

ϕ̃1,l
(l,m;s̃(l,m)

1 )
, . . . , 

ϕ̃n,j
(l,m;s̃(l,m)

n )

)}
, (5.3)
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dn

(

ϕ̂n,j
(l,m;ŝ(l,m)

n )
, 

ϕn+1,j

(l,m;s(l,m)
n+1 )

)

≤ 1
3

min
{
ηse

n

(

ϕ̂1,j
(l,m;ŝ(l,m)

1 )
, . . . , 

ϕ̂n,j
(l,m;ŝ(l,m)

n )

)
, ηme

n

(

ϕ̃1,j
(l,m;s̃(l,m)

1 )
, . . . , 

ϕ̃n,j
(l,m;s̃(l,m)

n )

)}
.

(5.4)

With the same reasoning as in §4, we now obtain that for any (l, m) ∈ N2 and j ∈ N,
the sequence 

ϕ̂n,j
(l,m,ŝ(l,m)

n )
converges to a strictly ergodic diffeomorphism, which is a rescaled

lift 
ϕ,j
(l,m,s) of an iterate of ϕ = limn→∞ ϕ̂n.

Let ψ = 
ϕ

(1,m;0). The invariant measure of ϕ is of the form μ = (IdT1 × γ )∗LebT1 ,
where γ : T1 → T1 is the measurable function whose graph supports μ. Consequently, if
we let

γj : T1 → T1, x �→ γ (x) + j − 1
m

, j = 1, . . . , m, (5.5)

then

μψ = 1
m

m∑
j=1

(IdT1 × γj )∗LebT1 (5.6)

defines an invariant measure for the rescaled lift ψ . By unique ergodicity, it is the only
ψ-invariant measure. This proves assertions (a)–(c) of Theorem 1.2.

5.2. Non-existence of additional eigenvalues. We consider a torus diffeomorphism ϕ

that satisfies the assertions (a)–(c) of Theorem 1.2. Fix m ∈ N and let ψ = 
ϕ

(1,m;0) as
above. Recall that both mappings are skew products over the irrational rotation rα : x �→
x + α. Our aim is to show that ψ has the same discrete dynamical spectrum as ϕ, that is,
there exist no additional dynamical eigenvalues for ψ .

Suppose that γ : T1 → T1 is the measurable function whose graph supports the unique
ϕ-invariant measure μ, that is, μ = (IdT1 × γ )∗LebT1 . Then, as discussed in the previous
section, the unique ψ-invariant measure μψ is given by equation (5.6). Now, suppose for
a contradiction that f ∈ L2

μψ (T2) is an eigenfunction of Uψ with a new eigenvalue λ

that is not contained in the group of eigenvalues M(α) = {exp(2πikα) | k ∈ Z} of Uϕ .
Then f cannot be constant in the fibres (that is, independent of the second coordinate y),
since in this case, x �→ f (x, 0) would define an eigenfunction of rα with eigenvalue λ,
contradicting the fact that the eigenvalue group of rα is M(α) as well. Further, the function

g : T1 → T1, x �→
m∏

j=1

f (x, γj (x))

is an eigenfunction of rα with eigenvalue λm, since we have

ψ({(x, γ1(x)), . . . , (x, γm(x))}) = {(x + α, γ1(x + α)), . . . , (x + α, γm(x + α))}
and therefore

g(x + α) =
m∏

j=1

f ◦ ψ(x, γj (x)) = λm

m∏
j=1

f (x, γj (x)) = λmg(x)
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LebT1 -almost surely on T1. Hence, g is an eigenfunction of rα . This implies λm =
exp(2πikα) for some k ∈ Z, so that λ must be of the form

λ = exp
(

2πi

(
kα + p

m

))

for some (k, p) ∈ (Z × {0, . . . , m − 1}) \ (mZ × {0}).
We first assume that k = 0. In this case, f is an eigenfunction of ψm with eigenvalue

λm = 1. As f is non-constant, this contradicts the ergodicity of ψm.
Second, assume that p = 0. In this case, we consider the rescaled lift ψ̃ = 

ψ

(1,m,0) of
ψ , which is now a skew product over the rotation rα/m. The eigenfunction f transforms to
an eigenfunction

f̃ (x, y) = f (mx, y)

of Uψ̃ , which still has the same eigenvalue λ = exp(2πikα/m). However, this is now
an eigenvalue of the underlying rotation rα/m, which corresponds to the eigenfunction
g(x, y) = exp(2πikx/m) of Uψ̃ . As g is constant in y for ν-almost every x, but f̃ is not, the
two eigenfunctions cannot coincide. Since they have the same eigenvalue, this contradicts
the unique ergodicity of ψ̃ (note that ψ̃ is still a lift of the original map ϕ and is therefore
uniquely ergodic).

Finally, we consider the case where k �= 0 �= p. In this case, f is an eigenfunction of
ψm, with eigenvalue exp(2πikα). However, ψm is a rescaled lift of ϕm, which has the
same properties as ϕ (it satisfies the assertions of Theorem 1.1), but has underlying rotation
number mα. This means that we are in exactly the same situation as in the case p = 0
above, and again arrive at a contradiction.

Altogether, this shows that ψ has exactly the same dynamical eigenvalues as ϕ.
However, the two systems cannot be isomorphic, as measure-theoretic factor maps into
group rotations are uniquely determined up to post-composition with a rotation and the
canonical factor map from ψ to ϕ is m : 1. Due to the Halmos–von Neumann theorem,
ψ and ϕ cannot have the same (purely discrete) dynamical spectrum. This means that the
spectrum of Uψ must have a continuous component.

5.3. Singularity of the continuous spectral component. To complete the proof of
Theorem 1.2, our aim now is to show that the Anosov–Katok construction of ϕ can
be modified such that the map ψ defined in the last section has a singular continuous
spectral component. To that end, we need to show that ϕ and all its lifts admit cyclic
approximation by periodic transformations with speed o(1/n), in the sense of Theorem
2.5. The main problem here lies in the fact that – unlike for Anosov–Katok construction
in an area-preserving setting – the unique invariant measure μ of the transformation ϕ is
not known a priori. Therefore, it is necessary to control both the size of the symmetric
differences between the images of partition elements under ϕn and the eventual limit ϕ

and also the limit measure of these sets at the same time. Recall that, in the end, we need
to show that there exist suitable partitions Pn that satisfy conditions (P1)–(P3) from §2.2.
This will exclude the existence of an absolutely continuous spectral component and thus
complete the proof.
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We adopt the notation from the main construction in §4. In particular, qn is the
denominator of the rotation vector ρn of the nth approximating diffeomorphism ϕn. Note
that ρn was chosen only after the nth conjugating diffeomorphism Hn was defined. Hence,
we can require that

d(x, y) < 2/qn ⇒ d(Hn(x), Hn(y)) < 1/n. (5.7)

We define the partition Pn as Pn = {Pn,i,j | i, j = 0, . . . , qn − 1}, where

Pn,i,j = Hn([i/qn, (i + 1)/qn) × [j/qn, (j + 1)/qn)).

Note that ϕn = Hn ◦ Rρn ◦ H−1
n cyclically permutes the elements of Pn due to the fact that

ρn = (pn/qn, p′
n/qn) with pn, p′

n, qn relatively prime in equation (4.2). Moreover, due to
equation (5.7), the maximal diameter of an element of Pn is at most 1/n, which implies
condition (P2) due to the regularity of the measure μ. Hence, both conditions (P1) and
(P2) are satisfied.

It remains to show condition (P3) with sufficiently fast speed of convergence. We choose
an arbitrary function s : N → R+ which satisfies limn→∞ ns(n) = 0, so that Theorem 2.5
will be applicable. As Kn = �Pn = q2

n , we have to ensure that

qn−1∑
i,j=0

μ(ϕn(Pn,i,j )�ϕ(Pn,i,j )) ≤ s(q2
n). (5.8)

To do so, we need to introduce further inductive assumptions into the construction carried
out in §4 that we already modified by equations (5.2)–(5.4) above.

Suppose that n ∈ N and Hn+1 has already been chosen, but not the rotation vectors
ρ̃n, ρ̂n and ρn+1 (which then define ϕ̃n, ϕ̂n and ϕn+1). Let μn = (Hn+1)∗LebT2

and note that, independent of the choice ρ̂n (assuming total irrationality), this is the
unique invariant measure of ϕ̂n = Hn+1 ◦ Rρn ◦ H−1

n+1. For i, j = 1, . . . , qn, we choose
continuous functions fn,i,j : T2 → [0, 1] such that

∂(ϕn(Pn,i,j )) ⊆ int(f −1
n,i,j (1))

and ∫
T2

fn,i,j dμn < s(q2
n)/q2

n .

For the latter condition, note that since ϕn simply permutes the elements of Pn, the
set ∂(ϕn(Pn,i,j )) is simply the boundary of another partition element, and therefore a
smooth curve that has measure zero with respect to μn (which has smooth density with
respect to Lebesgue, since it is the image of the Lebesgue measure under the smooth
diffeomorphism Hn).

If ρ̃n and subsequently ρ̂n are chosen sufficiently close to ρn, so that ϕ̃n and ϕ̂n are close
to ϕn, then we have

ϕ̂n(Pn,i,j )�ϕn(Pn,i,j ) ⊆ int(f −1
n,i,j (1)). (5.9)
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By unique ergodicity, there exists Mn ∈ N such that

sup
x∈T2

1
Mn

Mn∑
l=1

fn,i,j ◦ ϕ̂l
n(x) < s(q2

n)/q2
n . (5.10)

Since both equations (5.9) and (5.10) are open conditions, we may now choose δn > 0 such
that, for all ψ ∈ Bδn(ϕ̂n), the following conditions hold:

ψ(Pn,i,j )�ϕn(Pn,i,j ) ⊆ int(f −1
n,i,j (1)) (5.11)

sup
x∈T2

1
Mn

Mn∑
l=1

fn,i,j ◦ ψl(x) < s(q2
n)/q2

n . (5.12)

We can now require, throughout the inductive construction in §4 that for all n ∈ N, we
have

d0(ϕ̂n, ϕ̂m) ≤ δm for all m = 1, . . . , n − 1. (5.13)

For this, when going from n to n + 1, it suffices to ensure that

max{d0(ϕ̂n, ϕn+1), d0(ϕn+1, ϕ̃n+1), d0(ϕ̃n+1, ϕ̂n+1)} <
1
3

n

min
m=1

δm − d0(ϕ̂n, ϕ̂m).

This, in turn, is simply achieved by a sufficiently small variation of the rotation vectors
when choosing ρn+1, ρ̃n+1 and ρ̂n+1. In particular, it does not contradict any other
recursive assumptions that we have made elsewhere during the construction.

As a consequence, the resulting limit ϕ will still satisfy equations (5.11) and (5.12) (with
ψ replaced by ϕ). However, if μ denotes the unique ϕ-invariant measure, then the above
conditions imply that, for all n ∈ N,

μ(ϕ(Pn,i,j )�ϕn(Pn,i,j ))
(5.11)≤

∫
T2

fn,i,j dμ
(5.12)≤ s(q2

n)/q2
n .

This proves equation (5.8), so that Theorem 2.5 yields the absence of singular continuous
spectrum for Uϕ . Hence, assertion (d) of Theorem 1.2 holds, which completes the proof.
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