A VARIANT OF SEPARABILITY IN DUAL SYSTEMS

by J. O. POPOOLA[†] and I. TWEDDLE (Received 19th November 1975)

1. Introduction

In (12) we introduced the concept of *essential separability* and used it to define two classes of locally convex spaces, δ -barrelled spaces and infra- δ -spaces, which serve as domain and range spaces respectively in certain closed graph theorems (12, Theorems 3 and 7). In this note we continue the study of these ideas. The relevant definitions are reproduced below.

Section 2 is concerned with characterisations of essential separability and its connection with weak compactness properties. In Section 3 we discuss some relationships between δ -barrelled, barrelled and countably barrelled spaces. Finally, in Section 4 we consider the associated δ barrelled topology of an infra- δ -space in connection with a completeness result of V. Eberhardt and N. Adasch for infra-*s*-spaces.

Generally we follow the topological vector space notation of (13). Except where alternative symbols are introduced in the text, E^* will denote the algebraic dual of a vector space E, and when E is a separated locally convex space, E' will represent its (continuous) dual. When we refer to the dimension of E (dim E) we shall always mean its vector space dimension. $\xi|_A$ denotes the induced topology on a subset A of a topological space $(X, \xi), |B|$ is the cardinality of a set B and c is the cardinal number of the real field.

We are grateful to the referee for improving our original version of Theorem 2, which now appears as a corollary.

2. Essentially separable sets

We begin by reformulating the definition of essential separability which was given in (12). Let (E, F) be a dual pair. We regard E as a subspace of F^* and say that a subset A of E is *essentially separable for the dual pair* (E, F) if it is contained in a $\sigma(F^*, F)$ -separable set. When the dual pair is clearly indicated, we simply say that A is essentially separable. In particular, if E is a separated locally convex space and A and B are subsets of E and E' respectively, we will usually write "A (resp. B) is essentially

[†] The first author was supported by a Commonwealth Academic Staff Scholarship which he gratefully acknowledges.

separable" for "A (resp. B) is essentially separable for the dual pair (E, E') (resp. (E', E))".

Theorem 1. If A is essentially separable for the dual pair (E, F) then $\sigma(E, F)|_A$ has a base consisting of at most c sets.

Proof. This is trivial if $A = \emptyset$. Otherwise let H be the linear span of A and let G be the $\sigma(F^*, F)$ -closed linear span of A. Since $(F/H^o)^*$ is isomorphic to G and G is $\sigma(F^*, F)$ -separable (12, Corollary to Theorem 1), it follows that $(F/H^o)^*$ is isomorphic to a product of at most c copies of the scalar field (4, Chapter VIII, Theorem 7.2). Thus the dimension and consequently the cardinality of F/H^o are at most c. Let Φ be the set of all non-empty finite subsets of F/H^o , so that $|\Phi| \le c$, and let $\{x_n : n \in \mathbb{N}\}$ be an at most countable $\sigma(F^*, F)$ -dense subset of G. Note that $\sigma(F^*, F)$, $\sigma(G, F/H^o)$ and $\sigma(E, F)$ all coincide on A.

Let

$$\mathcal{T} = \{ \{ x \in A : |\langle x - x_n, x' \rangle | < 1, x' \in \phi \} : \phi \in \Phi, n \in \mathbb{N} \}.$$

Certainly $|\mathcal{T}| \leq c$ and each element of \mathcal{T} is $\sigma(E, F)|_A$ -open. Let $y \in A$ and let U be any $\sigma(E, F)|_A$ -neighbourhood of y. There exists $\phi_0 \in \Phi$ such that

$$V = \{x \in A : |\langle x - y, x' \rangle| < 1, x' \in \phi_0\} \subseteq U.$$

Also there exists $n_0 \in \mathbb{N}$ such that

$$x_{n_0} \in \{x \in G : |\langle x - y, x' \rangle| < 1, x' \in 2\phi_0\}.$$

Then $W = \{x \in A : |\langle x - x_{n_0}, x' \rangle| < 1, x' \in 2\phi_0\} \in \mathcal{T}, y \in W \text{ and } W \subseteq V \subseteq U$. Thus \mathcal{T} is a base for $\sigma(E, F)|_{\mathcal{A}}$.

Since any topological space has a dense subset of cardinality at most that of a given base for its topology, we have immediately:

Corollary. If A is essentially separable for the dual pair (E, F), then A has a $\sigma(E, F)$ -dense subset of cardinality at most c.

The next result and its corollary are analogues of (9, Proposition 1.3).

Theorem 2. Let E be a topological vector space with topology ξ , let A be an absolutely convex subset of E and let \mathcal{A} be a base of neighbourhoods of 0 for $\xi|_A$. For each $W \in \mathcal{A}$, let W' be an open balanced ξ -neighbourhood of 0 such that $W' \cap A \subseteq W$. Then if D is a dense subset of A, the sets $(d + W') \cap A$ $(d \in D, W \in \mathcal{A})$ form a base for $\xi|_A$.

Proof. Let $y \in A$ and let Y be any $\xi|_A$ -neighbourhood of y. There exist ξ -neighbourhoods U and V of 0 and $W \in \mathcal{A}$ such that

$$(y+U) \cap A \subseteq Y$$
, $V+V+V \subseteq U$ and $W \subseteq V(*)$.

Choose $d \in (y + (V \cap W')) \cap D$ and let $x \in X = (d + W') \cap A$. Since A is

absolutely convex and W' is balanced, $\frac{1}{2}(x-d) \in A \cap W'$ and so by (*)

$$x = y + 2(\frac{1}{2}(x - d)) + (d - y) \in (y + 2W + V) \cap A \subseteq Y.$$

The result now follows since X is an $\xi|_A$ -open set which contains y.

Corollary. Let (E, F) be a dual pair and let A be an absolutely convex subset of E. Then $\sigma(E, F)|_A$ has a base consisting of at most c sets if and only if

- (i) 0 has a base of neighbourhoods for $\sigma(E, F)|_A$ consisting of at most c sets,
- (ii) A has a $\sigma(E, F)$ -dense subset of cardinality at most c.

Proof. The conditions are clearly necessary. An application of Theorem 2 establishes their sufficiency.

Let (E, F) be a dual pair and let A be a non-empty $\sigma(E, F)$ -bounded set. The $\sigma(F^*, F)$ -closed absolutely convex envelope B of A is $\sigma(F^*, F)$ compact. Let H be the linear span of A and let L be the linear span of B. $(F/H^o, L)$ is a dual pair and F/H^o is a normed space under $\tau(F/H^o, L)$ with B as the closed unit ball of the dual space L. We denote this normed space by $\mathcal{N}(F, A)$ and its completion by $\mathcal{B}(F, A)$. We now characterise essential separability for A in terms of these spaces.

Lemma 1. If a normed space E has a total subset D with $|D| \le c$, then dim $E \le c$.

Proof. The linear span X of D has cardinality at most c and since each element of E is the limit of a sequence in X, it follows that $|E| \le c^{\aleph_0} = c$. Thus dim $E \le c$.

Theorem 3. Let (E, F) be a dual pair and let A be a non-empty $\sigma(E, F)$ -bounded set. The following are equivalent:

- (i) A is essentially separable;
- (ii) dim $\mathcal{N}(F, A) \leq c$;
- (iii) dim $\mathscr{B}(F, A) \leq c$.

Proof. The argument used in the first part of the proof of Theorem 1 shows that (i) \Rightarrow (ii), for $\mathcal{N}(F, A)^*$ is isomorphic to the $\sigma(F^*, F)$ -closed linear span of A. ((ii) \Rightarrow (iii)) follows from Lemma 1, while ((iii) \Rightarrow (ii)) is trivial.

Suppose that (ii) holds. The $\sigma(F^*, F)$ -closed linear span of A is $\sigma(F^*, F)$ -separable, being isomorphic to a product of at most c copies of the scalar field (4, Chapter VIII, Theorem 7.2). Thus A is essentially separable.

As a corollary we have a partial converse of Theorem 1.

Corollary. Let A be a non-empty absolutely convex $\sigma(E, F)$ -bounded

set. Then A is essentially separable if and only if 0 has a base of neighbourhoods for $\sigma(E, F)|_A$ consisting of at most c sets.

Proof. The necessity of the condition is immediate by Theorem 1. If the condition is satisfied, there is a set $\{\phi_{\lambda} : \lambda \in \Lambda\}$ of non-empty finite subsets of F such that $|\Lambda| \leq c$ and $\{\{x \in A : |\langle x, x' \rangle| \leq 1, x' \in \phi_{\lambda}\}: \lambda \in \Lambda\}$ is a base of neighbourhoods of 0 for $\sigma(E, F)|_{A}$. The $\sigma(F^*, F)$ -closure B of A is $\sigma(F^*, F)$ -compact and absolutely convex, and by the bipolar theorem $\{\{x \in B : |\langle x, x' \rangle| \leq 1, x' \in \phi_{\lambda}\}: \lambda \in \Lambda\}$ is a base of neighbourhoods of 0 under $\sigma(F^*, F)|_{B}$.

Let $z \in B \setminus \{0\}$. Then there exists $\lambda_0 \in \Lambda$ such that $|\langle z, x' \rangle| > 1$ for some $x' \in \phi_{\lambda_0}$. It follows that $D = \bigcup \{\phi_{\lambda} : \lambda \in \Lambda\}$ separates the elements of B and so the set of equivalence classes in $\mathcal{N}(F, A)$ of the elements of D is total. Since $|D| \leq c$, the result now follows from Lemma 1 and Theorem 3.

Remark. The Corollary to Theorem 1 does not have a similar converse. If $E = l''_{\infty}$ and $F = l'_{\infty}$, the closed unit ball A of l_{∞} is a $\sigma(l''_{\infty}, l'_{\infty})$ -dense subset of the closed unit ball B of l''_{∞} and |A| = c. Clearly $\mathcal{N}(l'_{\infty}, A) = \mathcal{B}(l'_{\infty}, A) = l'_{\infty}$. Now it follows from (17, Theorem 2.3 and Note 1.8(a)) that dim $l'_{\infty} \ge 2^c$. In fact dim $l'_{\infty} = 2^c$ for dim $l_{\infty} = c$ and dim $l'_{\infty} \le \dim l^*_{\infty} = c^c = 2^c$. Thus neither A nor B is essentially separable for the dual pair $(l''_{\infty}, l'_{\infty})$. Note however that A is essentially separable for the dual pair (l_{∞}, l_{1}) .

We now identify some particular essentially separable sets.

Lemma 2. Let E be a normed space and let B be the closed unit ball of E'. If |B| = c then dim $E \le c$.

Proof. There is a set Λ with cardinality at most c and a bijection $\lambda \mapsto x'_{\lambda}$ of Λ onto $A = \{x' \in B : ||x'|| = 1\}$. For each $\lambda \in \Lambda$, choose $x_{\lambda} \in E$ such that $\langle x_{\lambda}, x'_{\lambda} \rangle \neq 0$. Let M be the closed vector subspace of E generated by $\{x_{\lambda} : \lambda \in \Lambda\}$. Then M = E, for otherwise we would be able to find $\lambda_0 \in \Lambda$ such that $\langle x, x'_{\lambda_0} \rangle = 0$ for all $x \in M$, contradicting $\langle x_{\lambda_0}, x'_{\lambda_0} \rangle \neq 0$.

The result now follows from Lemma 1.

Corollary. Let (E, F) be a dual pair and let A be a $\sigma(E, F)$ -compact convex set. If $|A| \leq c$ then A is essentially separable.

Proof. Let C be the balanced hull of A and let B be the closed absolutely convex envelope of A. Then C is $\sigma(E, F)$ -compact, $|C| \le c$ and since $B \subseteq C + C + C + C$, it follows that B is a $\sigma(E, F)$ -compact set with cardinality at most c. In fact |B| = 0, 1 or c. In the case |B| = c the corollary now follows from Lemma 2 and Theorem 3. The other cases are trivial.

Theorem 4. Let E be a separated locally convex space whose topology is defined by at most c seminorms and let F be the completion of E. Then each

320

subset of E which is $\sigma(F, E')$ -relatively compact and whose cardinality is at most c is essentially separable.

Proof. Since the topology of F is also defined by at most c seminorms and since the dual of F is (isomorphic to) E', it is enough to establish the result when E is complete. We may regard E as a subspace of a product $\Pi \{E_{\lambda} : \lambda \in \Lambda\}$ of Banach spaces E_{λ} ($\lambda \in \Lambda$) where $|\Lambda| \le c$ (13, Chapter V, Proposition 16 and Corollary to Proposition 19). For each $\lambda \in \Lambda$ let p_{λ} be the canonical projection of the product onto E_{λ} .

Let A be a non-empty $\sigma(E, E')$ -relatively compact set with $|A| \leq c$. For each $\lambda \in \Lambda$, $p_{\lambda}(A)$ is $\sigma(E_{\lambda}, E'_{\lambda})$ -relatively compact and so by Krein's theorem (10, Section 24, 5(4)) the $\sigma(E_{\lambda}, E'_{\lambda})$ -closed absolutely convex envelope B_{λ} of $p_{\lambda}(A)$ is $\sigma(E_{\lambda}, E'_{\lambda})$ -compact. Now $|p_{\lambda}(A)| \leq c$ and so the absolutely convex envelope D_{λ} of $p_{\lambda}(A)$ has cardinality at most c. Since each element of B_{λ} is the $\sigma(E_{\lambda}, E'_{\lambda})$ -limit of a sequence in D_{λ} (10, Section 24, 1(7)), it is easily shown that $|B_{\lambda}| \leq c$. By the Corollary to Lemma 2, B_{λ} and therefore $p_{\lambda}(A)$ are essentially separable for the dual pair $(E_{\lambda}, E'_{\lambda})$. Let C_{λ} be a $\sigma(E'_{\lambda}^*, E'_{\lambda})$ -separable set which contains $p_{\lambda}(A)$. We now have

$$A \subseteq \prod \{ p_{\lambda}(A) \colon \lambda \in \Lambda \} \subseteq C = \prod \{ C_{\lambda} \colon \lambda \in \Lambda \}$$

and C is $\sigma(\prod_{\lambda \in \Lambda} E'_{\lambda}^*, \Sigma_{\lambda \in \Lambda} E'_{\lambda})$ -separable (4, Chapter VIII, Theorem 7.2). Thus A is essentially separable for the dual pair $(\prod_{\lambda \in \Lambda} E_{\lambda}, \Sigma_{\lambda \in \Lambda} E'_{\lambda})$.

Let H be the linear span of A and let H^{\bullet} , E^{\bullet} be the polars of H and E respectively in $\sum_{\lambda \in \Lambda} E'_{\lambda}$ and let H^{\bullet} be the polar of H in E'. Then

$$\left(\sum_{\lambda \in \Lambda} E'_{\lambda}\right) / H^{\bullet} \simeq \left(\left(\sum_{\lambda \in \Lambda} E'_{\lambda}\right) / E^{\bullet}\right) / (H^{\bullet}/E^{\bullet}) \simeq E'/H^{\bullet}.$$

The result now follows from Theorem 3.

Corollary. Let E, F be as in the theorem and let B be a subset of E which is $\sigma(F, E')$ -relatively compact. If x is an element of the $\sigma(F, E')$ -closure of B, there is an essentially separable subset A of B such that x is in the $\sigma(F, E')$ -closure of A.

Proof. By (16, (b)) there is a subset A of B with cardinality at most c such that x is in the $\sigma(F, E')$ -closure of A. The result now follows from the theorem since A is also $\sigma(F, E')$ -relatively compact.

As an application of this corollary we obtain in Theorem 5 criteria for weak compactness and weak relative compactness in a separated locally convex space whose topology is defined by at most c seminorms. These would appear to be the natural analogues of the well-known sequential criteria in a metrizable locally convex space (10, Section 24, 3(8), (9)).

Theorem 5. Let E be a separated locally convex space whose topology 20/4-D

is defined by at most c seminorms. A subset B of E is $\sigma(E, E')$ -relatively compact (resp. $\sigma(E, E')$ -compact) if and only if each essentially separable subset of B is $\sigma(E, E')$ -relatively compact (resp. $\sigma(E, E')$ -relatively compact and has its $\sigma(E, E')$ -closure contained in B).

Proof. The conditions are clearly necessary.

Under either condition, B is $\sigma(E, E')$ -relatively countably compact, since a countable set is trivially essentially separable. Then if F is the completion of E, B is $\sigma(F, E')$ -relatively compact by Eberlein's theorem (10, Section 24, 2(1)). It follows from the Corollary to Theorem 4 that each $\sigma(F, E')$ -point of closure x of B is already in E so that B is $\sigma(E, E')$ relatively compact under either condition. Under the bracketed condition, $x \in B$ so that B is $\sigma(E, E')$ -compact.

The concept of *Schauder dimension* for Banach spaces was introduced in (7). We end the present section by combining this idea with a property of essentially separable sets. The terminology is that of (7).

Theorem 6. Let E be a Banach space and suppose that every subset of the closed unit ball of E' has a $\sigma(E', E)$ -dense subset of cardinality at most c. If E has a Schauder dimension, then dim $E \leq c$.

Proof. Let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a maximal strongly linearly independent subset of *E* and let $\{x'_{\lambda} : \lambda \in \Lambda\}$ be a subset of *E'* such that $\langle x_{\mu}, x'_{\lambda} \rangle = \delta_{\lambda\mu}$ for all $\lambda, \mu \in \Lambda$. Now $\{\|x'_{\lambda}\|^{-1}x'_{\lambda} : \lambda \in \Lambda\}$ is a subset of the closed unit ball of *E'* with no proper $\sigma(E', E)$ -dense subset, for if $\lambda \neq \mu, \langle x_{\lambda}, \|x'_{\lambda}\|^{-1}x'_{\lambda} - \|x'_{\mu}\|^{-1}x'_{\mu} \rangle =$ $\|x'_{\lambda}\|^{-1}$. Thus $|\Lambda| \leq c$. Since $\{x_{\lambda} : \lambda \in \Lambda\}$ is total in *E* (7, Proposition 1), the result now follows from Lemma 1.

3. δ -barrelled spaces

We gave the following definition in (12).

A separated locally convex space E is δ -barrelled if each essentially separable $\sigma(E', E)$ -bounded set is equicontinuous.

We showed by example that a δ -barrelled space need not be barrelled even in its associated Mackey topology. On the other hand, since δ barrelled spaces are necessarily σ -barrelled, a separable δ -barrelled space is barrelled (3, Corollary 4a). Further a δ -barrelled space which has a strongly dense subset of cardinality at most c is always barrelled (12, Corollary 2 of Theorem 3). We now give two generalisations of this last result.

Theorem 7. Let E be a δ -barrelled space with completion F. Suppose that there is a family $(X_{\lambda})_{\lambda \in \Lambda}$ of subsets of E such that (i) $|\Lambda| \leq c$, (ii) $\cup \{X_{\lambda} : \lambda \in \Lambda\}$ is total in E under $\beta(E, E')$,

(iii) for each $\lambda \in \Lambda$, X_{λ} is $\sigma(F, E')$ -relatively compact.

Then $(E, \tau(E, E'))$ is barrelled.

Proof. Let Y_{λ} be the $\sigma(F, E')$ -closed absolutely convex envelope of X_{λ} $(\lambda \in \Lambda)$. By Krein's theorem (10, Section 24, 5(4)) and (iii), each Y_{λ} is $\sigma(F, E')$ -compact. Denote by G the subspace of F spanned by $\cup \{Y_{\lambda} : \lambda \in \Lambda\}$ and by H the subspace of E spanned by $\cup \{X_{\lambda} : \lambda \in \Lambda\}$.

Let B be a $\sigma(E', E)$ -closed bounded set and let A be a subset of B which is essentially separable for the dual pair (E', G). Certainly A is essentially separable for the dual pair (E', H) and since H is $\beta(E, E')$ dense in E, it follows easily from Theorem 3 that A is essentially separable for the dual pair (E', E). Since E is δ -barrelled, A is equicontinuous. If C is the $\sigma(E', E)$ -closure of A, then $C \subseteq B$ and C is also $\sigma(E', F)$ -compact (13, Chapter VI, Corollary 3 of Theorem 2) and therefore $\sigma(E', G)$ compact. Since each Y_{λ} is $\sigma(G, E')$ -compact and absolutely convex, E' has a topology of the dual pair (E', G)-compact. This implies that B is $\sigma(E', H)$ compact, and since E is contained in the completion of H for the topology induced by $\beta(E, E')$, we deduce that B is $\sigma(E', E)$ -compact.

Remark. In Theorem 7, the initial δ -barrelled topology of E need not be $\tau(E, E')$. To see this, we refer to (12, Theorem 2 and Remark (i) following Theorem 8). If |M| > c, $l_2(M)$ is δ -barrelled but not barrelled under the topology of uniform convergence on the $\sigma(l_2(M), l_2(M))$ -bounded essentially separable sets. However the conditions of Theorem 7 are satisfied by taking the closed unit ball of $l_2(M)$ as the single X_{λ} .

We require the following lemma for our other result in this direction. It is probably well-known but we include a proof for completeness.

Lemma 3. Let E be a σ -barrelled space. If $\sum_{\lambda \in \Lambda} x_{\lambda}$ converges unconditionally in E, it also converges unconditionally under $\beta(E, E')$ to the same sum.

Proof. It is enough to show that $\sum_{\lambda \in \Lambda} x_{\lambda}$ is unconditionally Cauchy under $\beta(E, E')$, for then the result will follow from (10, Section 18, 4(4)). Suppose that this is false and denote by Φ the set of all non-empty finite subsets of Λ . Then there is a $\sigma(E', E)$ -bounded set B such that for each $\phi \in \Phi$, there exist $\phi' \in \Phi$ with $\phi' \cap \phi = \emptyset$ and $x' \in B$ such that $|\langle \Sigma_{\lambda \in \phi'} x_{\lambda}, x' \rangle| > 1$. We can thus determine sequences (ϕ_n) in Φ and (x'_n) in Bsuch that $\phi_{n+1} \cap \bigcup_{r=1}^n \phi_r = \emptyset$ and $|\langle \Sigma_{\lambda \in \phi_n} x_{\lambda}, x'_n \rangle| > 1$ $(n \in \mathbb{N})$.

But $\{x'_n : n \in \mathbb{N}\}$ is equicontinuous and so there exists $\phi_0 \in \Phi$ such that $|\langle \Sigma_{\lambda \in \phi} x_{\lambda}, x'_n \rangle| \leq 1$ for all $n \in \mathbb{N}$ and for all $\phi \in \Phi$ with $\phi \cap \phi_0 = \emptyset$. Since $\phi_n \cap \phi_0 = \emptyset$ for all sufficiently large *n* we obtain a contradiction.

Theorem 8. Let E be a δ -barrelled space and suppose that there is a family $(x_{\mu})_{\mu \in M}$ of elements of E such that

(a) for each $x \in E$ there exist scalars α_{μ} ($\mu \in M$) such that $\sum \alpha_{\mu} x_{\mu}$ is unconditionally convergent to x,

(b) there is a family $(z_{\lambda})_{\lambda \in \Lambda}$ of elements of E such that $z_{\lambda} = \sum \alpha_{\mu}^{(\lambda)} x_{\mu}$ $(\lambda \in \Lambda), |\Lambda| \leq c$ and for each $\mu \in M$, at least one $\alpha_{\mu}^{(\lambda)} \neq 0$.

Then each $\sigma(E', E)$ -bounded set is essentially separable and consequently E is barrelled.

Proof. Let A be a non-empty $\sigma(E', E)$ -bounded set. For each $x \in E$ let \bar{x} denote its equivalence class in $\mathcal{N}(E, A)$. If $x = \sum \alpha_{\mu} x_{\mu}$ as above, it follows from Lemma 3 that $\sum \alpha_{\mu} \bar{x}_{\mu}$ converges unconditionally to \bar{x} in $\mathcal{N}(E, A)$. Since $\mathcal{N}(E, A)$ is a normed space, $\{\mu \in M : \alpha_{\mu} \bar{x}_{\mu} \neq 0\}$ is at most countable and so $\bigcup_{\lambda \in \Lambda} \{\mu \in M : \alpha_{\mu}^{(\lambda)} \bar{x}_{\mu} \neq 0\}$ has cardinality at most c. But by (b) this set is just $\{\mu \in M : \bar{x}_{\mu} \neq 0\}$. Since $\{\bar{x}_{\mu} : \mu \in M\}$ is total in $\mathcal{N}(E, A)$ the result now follows from Lemma 1 and Theorem 3.

Remark. It should be noted that the space E of Theorem 8 need not have a dense subset of cardinality at most c. Using the argument in part (3) of the proof of (4, Chapter VIII, Theorem 7.2), we see that \mathbb{R}^{M} has no such subset if $|M| > 2^{c}$. However we may apply Theorem 8 to \mathbb{R}^{M} with $x_{\mu} = (\delta_{\mu\gamma})_{\gamma \in M}$ and a single z_{λ} , viz Σx_{μ} . Theorem 8 is an analogue of (15, Theorem 1).

In (12, Theorem 2) we showed that a δ -barrelled space E is both δ -barrelled and countably barrelled (8) under the topology $\delta(E, E')$ of uniform convergence on the $\sigma(E', E)$ -bounded essentially separable sets. We end this section by giving an example of a δ -barrelled space which is not countably barrelled. In (14, Proposition 4.4), J. Schmets describes a general method of constructing σ -barrelled spaces which are not countably barrelled. We adapt this technique to our present purpose, although our approach is rather different.

Let $E = \mathbb{R}^{(M)}$ and let $E' = \{(\xi_{\mu}) \in \mathbb{R}^{M} : |\{\mu : \xi_{\mu} \neq 0\}| \leq c\}$. For any subset A of E' let supp $A = \{\nu \in M : \exists (\xi_{\mu}) \in A \text{ with } \xi_{\nu} \neq 0\}$. It follows from the Corollary to Theorem 1 that if A is essentially separable for the dual pair (E', E), $|\text{supp } A| \leq c$ (*). Thus if A is a $\sigma(E', E)$ -bounded essentially separable set, it is $\sigma(E', E)$ -relatively compact. Since the closed absolutely convex envelope of an essentially separable set is essentially separable, the Mackey-Arens theorem shows that $\delta(E, E')$ is a topology of the dual pair (E, E') under which E is δ -barrelled (cf. Example 1 of (12)).

For each non-empty subset B of M

$$S(B) = \{ (\xi_{\mu}) \in \mathbb{R}^{M} : \xi_{\mu} = 0 \quad \text{if} \quad \mu \notin B, \ \Sigma \mid \xi_{\mu} \mid \leq 1 \}$$

is easily seen to be a closed bounded absolutely convex subset of \mathbb{R}^{M} .

324

Therefore S(B) is compact in \mathbb{R}^{M} and since it is contained in E', it is $\sigma(E', E)$ -compact.

We now take $M = \mathcal{P}(\mathbb{R})$, the power set of R. In this case $E' \neq \mathbb{R}^M$ and $(E, \tau(E, E'))$ is not barrelled. Let \mathcal{B} be the collection of all $\sigma(E', E)$ -bounded essentially separable sets together with the sets $S(\mathcal{P}(C))$ where C is a compact subset of R. The topology ξ on E of uniform convergence on the sets in \mathcal{B} is then a δ -barrelled topology of the dual pair (E, E') and a base of neighbourhoods of the origin for ξ is given by all sets of the form $D^{\circ} \cap \epsilon S(\mathcal{P}(C))^{\circ}$ (**), where D is a non-empty $\sigma(E', E)$ -bounded essentially separable set, $\epsilon > 0$ and C is a compact subset of R.

Now $A = \bigcup_{n=1}^{\infty} S(\mathcal{P}([-n, n]))$ is a subset of $S(\mathcal{P}(\mathbb{R}))$ so that A is a $\sigma(E', E)$ -bounded set which is the union of a sequence of ξ -equicontinuous sets. Given any set V of the form (* *), by (*) and the fact that $|\mathcal{P}([-n, n]) \setminus \mathcal{P}(C)| = 2^c$ for all sufficiently large n, we may choose $\nu \in (\bigcup_{n=1}^{\infty} \mathcal{P}([-n, n])) \setminus \{(\operatorname{supp} D) \cup \mathcal{P}(C)\}$. Then $(2\delta_{\mu\nu})_{\mu \in M} \in V$ so that $(\delta_{\mu\nu})_{\mu \in M} \in A$, this shows that A is not ξ -equicontinuous and consequently (E, ξ) is δ -barrelled but not countably barrelled.

4. Infra-δ-spaces

Let E be a separated locally convex space and for each vector subspace H of E' let H^{δ} be the intersection of all vector subspaces G of E* such that

(i) $H \subseteq G$,

(ii) the $\sigma(E^*, E)$ -closure of each $\sigma(E^*, E)$ -bounded subset of G which is essentially separable for the dual pair (E^*, E) is contained in G.

As in (12) we say that E is an infra- δ -space if for each $\sigma(E', E)$ -dense vector subspace H, we have $E' \cap H^{\delta} = E'$.

For any separated locally convex space E, the upper bound topology η of the initial topology ξ of E and $\delta(E, (E')^{\delta})$ is clearly the coarsest δ -barrelled topology on E which is finer than ξ . We call η the associated δ -barrelled topology of E. This definition is analogous to Adasch's definition of the associated barrelled topology (1), which is clearly finer than the associated δ -barrelled topology.

It is shown in (5, Theorem 1.5) and in (2, Section 4) that an infra-sspace (1) is complete in its associated barrelled topology. As pointed out in (12), the infra- δ -spaces form a proper subclass of the infra-s-spaces, so that this completeness result applies to infra- δ -spaces. However essentially the same proof as that given in (5) shows that an infra- δ -space is actually complete in its associated δ -barrelled topology. To show that this is a genuine improvement, we adapt ideas from (6) to give an example of an infra- δ -space for which the associated barrelled topology and the associated δ -barrelled topology are not even topologies of the same dual pair.

Let $E = \mathbb{R}^{M}$ where $|M| = 2^{c}$ and let $E' = \{(\xi_{\mu}) \in \mathbb{R}^{M} : |\{\mu : \xi_{\mu} \neq 0\}| \leq \aleph_{0}\}$. We show first of all that E is an infra- δ -space for any topology of the dual pair (E, E'). Let H be a $\sigma(E', E)$ -dense vector subspace and let (x'_{n}) be a sequence in $H^{\delta} \cap E'$ which converges to $x' \in E'$ under $\sigma(E', E)$. Since $\{x'_{n}: n \in \mathbb{N}\}$ is (essentially) separable, its $\sigma(E^{*}, E)$ -closure must be contained in each G considered in constructing H^{δ} . Thus $x' \in H^{\delta}$ and so $H^{\delta} \cap E'$ is $\sigma(E', E)$ -sequentially closed. But as pointed out by \mathbb{V} . Eberhardt in (6), Theorem 2.1 of (11) now shows that $H^{\delta} \cap E'$ is $\sigma(E', E)$ closed. Since $H \subseteq H^{\delta} \cap E'$, we must then have $H^{\delta} \cap E' = E'$.

It is clear that if B is any subset of \mathbb{R}^{M} which is a product of intervals, $B \cap E'$ is $\sigma(\mathbb{R}^{M}, \mathbb{R}^{(M)})$ -dense in B. It follows from this observation that the associated barrelled topology for any topology of the dual pair (E, E') is $\tau(\mathbb{R}^{(M)}, \mathbb{R}^{M})$. However if $F' = \{(\xi_{\mu}) \in \mathbb{R}^{M} : |\{\mu : \xi_{\mu} \neq 0\}| \le c\}$, we know from the previous section that $\delta(E, F')$ is a δ -barrelled topology of the dual pair (E, F'). If we start with the topology $\sigma(E, E')$ on E, the associated δ -barrelled topology η must therefore be coarser than $\delta(E, F')$. (In fact it is not difficult to show that $\eta = \delta(E, F')$). Since $F' \neq \mathbb{R}^{M}$, we may take $(E, \sigma(E, E'))$ for the promised example.

REFERENCES

(1) N. ADASCH, Tonnelierte Räume und zwei Sätze von Banach, Math. Ann. 186 (1970), 209-214.

(2) N. ADASCH, Vollständigkeit und der Graphensatz, J. Reine Angew. Math. 249 (1971), 217-220.

(3) M. DE WILDE and C. HOUET, On increasing sequences of absolutely convex sets in locally convex spaces, *Math. Ann.* 192 (1971), 257-261.

(4) J. DUGUNDJI, Topology (Allyn and Bacon, Boston, 1966).

(5) V. EBERHARDT, Der Graphensatz von A.P. und W. Robertson für s-Räume, Manuscripta Math. 4 (1971), 255-262.

(6) V. EBERHARDT, Einige Vererbbarkeitseigenschaften von B-und B,-vollständigen Räumen, Math. Ann. 215 (1975), 1-11.

(7) J. W. EVANS and R. A. TAPIA, Hamel versus Schauder dimension, Amer. Math. Monthly 77 (1970), 385-388.

(8) T. HUSAIN, Two new classes of locally convex spaces, Math. Ann. 166 (1966), 289-299.

(9) N. J. KALTON, Some forms of the closed graph theorem, Proc. Cambridge Philos. Soc. 70 (1971), 401-408.

(10) G. KÖTHE, Topological Vector Spaces I (Springer-Verlag, Berlin, 1969).

(11) N. NOBLE, The continuity of functions on cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187-198.

(12) J. O. POPOOLA and I. TWEDDLE, On the closed graph theorem, *Glasgow* Math. J. 17(1976), 89-97.

(13) A. P. ROBERTSON and W. J. ROBERTSON, *Topological Vector Spaces*, 2nd edition (Cambridge University Press, Cambridge, 1973).

(14) J. SCHMETS, Espaces associés à un espace linéaire à semi-normes-applications aux espaces de fonctions continues (Université de Liège, 1972-3).

(15) I. TWEDDLE, Unconditional convergence and bases, Proc. Edinburgh Math. Soc. 18 (Series II) (1973), 321-324.

(16) M. VALDIVIA, Some criteria for weak compactness, J. Reine Angew. Math. 255 (1972), 165-169.

(17) K. YOSIDA and E. HEWITT, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66.

UNIVERSITY OF STIRLING AND UNIVERSITY OF LAGOS