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1. Introduction

In (12) we introduced the concept of essential separability and used it to
define two classes of locally convex spaces, 8-barrelled spaces and infra-S-
spaces, which serve as domain and range spaces respectively in certain
closed graph theorems (12, Theorems 3 and 7). In this note we continue the
study of these ideas. The relevant definitions are reproduced below.

Section 2 is concerned with characterisations of essential separability
and its connection with weak compactness properties. In Section 3 we
discuss some relationships between 5-barrelled, barrelled and countably
barrelled spaces. Finally, in Section 4 we consider the associated 8-
barrelled topology of an infra-8-space in connection with a completeness
result of V. Eberhardt and N. Adasch for infra-s-spaces.

Generally we follow the topological vector space notation of (13).
Except where alternative symbols are introduced in the text, E* will
denote the algebraic dual of a vector space E, and when E is a separated
locally convex space, E' will represent its (continuous) dual. When we
refer to the dimension of E (dim E) we shall always mean its vector space
dimension, i;\A denotes the induced topology on a subset A of a topological
space (X, £), \B\ is the cardinality of a set B and c is the cardinal number
of the real field.

We are grateful to the referee for improving our original version of
Theorem 2, which now appears as a corollary.

2. Essentially separable sets

We begin by reformulating the definition of essential separability which
was given in (12). Let (E, F) be a dual pair. We regard E as a subspace of
F* and say that a subset A of E is essentially separable for the dual pair
(E, F) if it is contained in a a(F*, F)-separable set. When the dual pair is
clearly indicated, we simply say that A is essentially separable. In par-
ticular, if £ is a separated locally convex space and A and B are subsets of
E and E' respectively, we will usually write "A (resp. B) is essentially
t The first author was supported by a Commonwealth Academic Staff Scholarship which he

gratefully acknowledges.
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separable" for "A (resp. B) is essentially separable for the dual pair (E, E')
(resp. (£', £))".

Theorem 1. If A is essentially separable for the dual pair (E, F) then
o~(E, F)\A has a base consisting of at most c sets.

Proof. This is trivial if A = 0. Otherwise let H be the linear span of A
and let G be the o-(F*, F)-closed linear span of A. Since (F/H°)* is
isomorphic to G and G is a(F*, inseparable (12, Corollary to Theorem 1),
it follows that (FIH°)* is isomorphic to a product of at most c copies of
the scalar field (4, Chapter VIII, Theorem 7.2). Thus the dimension and
consequently the cardinality of Ff H° are at most c. Let 4> be the set of all
non-empty finite subsets of F/H°, so that |<J>| =£ c, and let {xn: n G N} be an
at most countable o-(F*, F)-dense subset of G. Note that <r(F*, F),
a(G, FIH") and a(E, F) all coincide on A.

Let

ST = {{xG. A: \(x - xm JC'>|< 1, j c ' £ # < ^ e $ , « e N}.

Certainly |ST\ =s c and each element of £T is <r(E, F)|,t-open. Let y G A and
let U be any cr(E, F)|A-neighbourhood of y. There exists 0O G 4> such that

V = {x G A: \(x - y,x')\<l,x'£<t>0}Q U.
Also there exists n0 £ N such that

^ G { x £ G : | { x - y, x')| < 1, x' G 20O}.

Then W = { J £ A : | ( X - ^ , J C ' ) | < 1 , x ' e 2 ^ } £ 5 , y G W a n d W C V C
[/. Thus 3T is a base for o-(£, F )U

Since any topological space has a dense subset of cardinality at most
that of a given base for its topology, we have immediately:

Corollary. 1/ A is essentially separable for the dual pair (E, F), then A
has a cr(E, F)-dense subset of cardinality at most c.

The next result and its corollary are analogues of (9, Proposition 1.3).

Theorem 2. Let E be a topological vector space with topology | , let A
be an absolutely convex subset of E and let si be a base of neighbourhoods
of 0 for i;\A. For each W G.sl, let W be an open balanced ^-neighbourhood
of 0 such that W C\ A C. W. Then if D is a dense subset of A, the sets
(d+W')r\A ( d £ D , WE. s£) form a base for £\A.

Proof. Let y G A and let Y be any f ̂ -neighbourhood of y. There exist
^-neighbourhoods U and V of 0 and W E. si such that

(y + U) D A C Y, V+ V+VCU and W Q V(*).

Choose d G (y + (V n W')) fl D and let x G X = (d + W) n A. Since A is
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absolutely convex and W is balanced, \(x-d)&AC\ W and so by (*)

x = y + 2(k(x -d)) + (d-y)G(y + 2W+V)DAQY.

The result now follows since X is an ^l^-open set which contains y.

Corollary. Let (E, F) be a dual pair and let A be an absolutely convex
subset of E. Then a(E, F)\A has a base consisting of at most c sets if and
only if

(i) 0 has a base of neighbourhoods for a(E, F)\A consisting of at most c
sets,

(ii) A has a cr(E, F)-dense subset of cardinality at most c.

Proof. The conditions are clearly necessary. An application of
Theorem 2 establishes their sufficiency.

Let (E, F) be a dual pair and let A be a non-empty a(E, F)-bounded
set. The cr(F*, F)-closed absolutely convex envelope B of A is a(F*, F)-
compact. Let H be the linear span of A and let L be the linear span of B.
(F/H°, L) is a dual pair and F/H" is a normed space under T(FIH°, L) with B
as the closed unit ball of the dual space L. We denote this normed space by
Jf(F, A) and its completion by 33(F, A). We now characterise essential
separability for A in terms of these spaces.

Lemma 1. / / a normed space E has a total subset D with \D\ « c, then
dim E =£ c.

Proof. The linear span X of D has cardinality at most c and since
each element of E is the limit of a sequence in X, it follows that
\E\ ^cH»=c. Thus dim E « c.

Theorem 3. Let (E, F) be a dual pair and let A be a non-empty
cr(E, F)-bounded set. The following are equivalent:

(i) A is essentially separable;
(ii) dim^V(F, A ) « c ;

(iii) dim 98 (F, A)« c.

Proof. The argument used in the first part of the proof of Theorem 1
shows that (i)^(ii), for Jf(F, A)* is isomorphic to the a(F*, F)-closed
linear span of A. ((ii) => (iii)) follows from Lemma 1, while ((iii) => (ii)) is
trivial.

Suppose that (ii) holds. The a(F*, F)-closed linear span of A is
cr(F*, F)-separable, being isomorphic to a product of at most c copies of the
scalar field (4, Chapter VIII, Theorem 7.2). Thus A is essentially separable.

As a corollary we have a partial converse of Theorem 1.

Corollary. Let A be a non-empty absolutely convex a(E, F)-bounded
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set. Then A is essentially separable if and only if 0 has a base of
neighbourhoods for <r(E, F)\A consisting of at most c sets.

Proof. The necessity of the condition is immediate by Theorem 1.
If the condition is satisfied, there is a set {<f>K: A E A} of non-empty finite

subsets of F such that |A| *s c and {{x G A: \(x, x')\ s£ 1, x' G <j>k): A G A} is a
base of neighbourhoods of 0 for a(E, F)\A. The cr(F*, F)-closure B of A is
a(F*, F)-compact and absolutely convex, and by the bipolar theorem
{{x£B: \(x, x')\ =£ 1, x' G <f>x}: A G A} is a base of neighbourhoods of 0 under
<r(F*, F)\B.

Let zGB\{0}. Then there exists AOE A such that \{z, x')\> 1 for some
x' G <£v It follows that D = U {<£A: A G A} separates the elements of B and
so the set of equivalence classes in Jf(F, A) of the elements of D is total. Since
\D\ =£ c, the result now follows from Lemma 1 and Theorem 3.

Remark. The Corollary to Theorem 1 does not have a similar con-
verse. If E = l!L and F = IL, the closed unit ball A of /„ is a <r(/£, /i)-dense
subset of the closed unit ball B of II and |A| = c. Clearly Jf(lL» A) =
38(1 L, A)=^ IL Now it follows from (17, Theorem 2.3 and Note 1.8(a)) that
dim IL, s* 2C. In fact dim IL, = 2C for dim /„ = c and dim IL =£ dim /* = cc = 2C.
Thus neither A nor B is essentially separable for the dual pair (/£, IL). Note
however that A is essentially separable for the dual pair (/„, /)).

We now identify some particular essentially separable sets.

Lemma 2. Let E be a normed space and let B be the closed unit ball of
E'. If \B\ = c then dim E *£ c.

Proof. There is a set A with cardinality at most c and a bijection A *-+ x'k
of A onto A = {x '£B: ||A;'|| = 1}. For each A G A, choose xk G E such that
(xx, x'x) ^ 0. Let M be the closed vector subspace of E generated by
{xx: A G A}. Then M — E, for otherwise we would be able to find Ao 6 A
such that (x, x'x0) = 0 for all x G M, contradicting (x^, x'^) ¥• 0.

The result now follows from Lemma 1.

Corollary. Let (E, F) be a dual pair and let A be a o-(E, F)-compact
convex set. If \A\ =£ c then A is essentially separable.

Proof. Let C be the balanced hull of A and let B be the closed
absolutely convex envelope of A. Then C is a(E, F)-compact, \C\ =£ c and
since BCC+C + C + C, it follows that B is a <r(E, F)-compact set with
cardinality at most c. In fact |B| = 0, 1 or c. In the case \B\ = c the corollary
now follows from Lemma 2 and Theorem 3. The other cases are trivial.

Theorem 4. Let E be a separated locally convex space whose topology is
defined by at most c seminorms and let F be the completion of E. Then each
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subset of E which is cr(F, E')-relatively compact and whose cardinality is at
most c is essentially separable.

Proof. Since the topology of F is also defined by at most c seminorms
and since the dual of F is (isomorphic to) E', it is enough to establish the
result when E is complete. We may regard E as a subspace of a product
H{EX: A £A} of Banach spaces Ex (A EA) where |A|« c (13, Chapter V,
Proposition 16 and Corollary to Proposition 19). For each A G A let pk be
the canonical projection of the product onto EA.

Let A be a non-empty a(E, £')-relatively compact set with |A| =s c. For
each AGA, pk(A) is a(Ex, E'^-relatively compact and so by Krein's
theorem (10, Section 24, 5(4)) the ar(Ek, EA)-closed absolutely convex
envelope J3A of pk(A) is <T(EX, EA)-compact. Now |pA(A)|«£c and so the
absolutely convex envelope DA of pk(A) has cardinality at most c. Since
each element of J3A is the a(Ek, £A)-limit of a sequence in DA (10, Section
24, 1(7)), it is easily shown that |BA|« c. By the Corollary to Lemma 2, Bk

and therefore pk(A) are essentially separable for the dual pair (Ek, E'k). Let
CA be a a(E'k*, EA)-separable set which contains pk(A). We now have

A C [ I (PA(A): A £ A} C C = f l {C* : A G A}

and C is o-(IIAeA E'k*, 2AeA EA)-separable (4, Chapter VIII, Theorem 7.2).
Thus A is essentially separable for the dual pair (IIAeA Ek, 2AeAliA).

Let H be the linear span of A and let H', E' be the polars of H and E
respectively in 2ASA E'k and let H' be the polar of H in £' . Then

i ) / H * - (C?A ̂C?A
The result now follows from Theorem 3.

Corollary. Let E, F be as in the theorem and let B be a subset of E
which is cr(F, E')-relatively compact. If x is an element of the <r(F, En-
closure of B, there is an essentially separable subset A of B such that x is in
the a(F, Enclosure of A.

Proof. By (16, (b)) there is a subset A of B with cardinality at most c
such that x is in the <r(F, ij')-closure of A. The result now follows from the
theorem since A is also a(F, i?')-relatively compact.

As an application of this corollary we obtain in Theorem 5 criteria for
weak compactness and weak relative compactness in a separated locally
convex space whose topology is defined by at most c seminorms. These
would appear to be the natural analogues of the well-known sequential
criteria in a metrizable locally convex space (10, Section 24, 3(8), (9)).

Theorem 5. Let E be a separated locally convex space whose topology
20/4—D

https://doi.org/10.1017/S0013091500026559 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026559


322 J. O. POPOOLA and I. TWEDDLE

is defined by at most c seminorms. A subset B of E is a(E, E')-relatively
compact (resp. a(E, E')-compact) if and only if each essentially separable
subset of B is cr(E, E')-relatively compact (resp. a(E, E')-relatively com-
pact and has its a(E, E')-closure contained in B).

Proof. The conditions are clearly necessary.
Under either condition, B is a(E, ij')-relatively countably compact,

since a countable set is trivially essentially separable. Then if F is the
completion of E, B is cr(F, ii')-relatively compact by Eberlein's theorem
(10, Section 24, 2(1)). It follows from the Corollary to Theorem 4 that each
a(F, fs')-point of closure x of B is already in E so that B is <r(E, i r -
relatively compact under either condition. Under the bracketed condition,
x £ B so that B is a(E, E')-compact.

The concept of Schauder dimension for Banach spaces was introduced
in (7). We end the present section by combining this idea with a property of
essentially separable sets. The terminology is that of (7).

Theorem 6. Let E be a Banach space and suppose that every subset of
the closed unit ball of E' has a a(E', E)-dense subset of cardinality at most
c. If E has a Schauder dimension, then dim E =£ c.

Proof. Let {xx: A £ A} be a maximal strongly linearly independent
subset of E and let {x'K: A S A} be a subset of E' such that (x^, x'K) = Skli for
all A, n £ A. Now {||jcl|r'jcj: A £ A} is a subset of the closed unit ball of E'
with no proper a(E', i?)-dense subset, for if A ^ /u,, (xA, ||jtA||~';cA- ||jĉ ||~'jr̂ > =
||xA||~'. Thus |A|s£c. Since {xA:A£A} is total in E (7, Proposition 1), the
result now follows from Lemma 1.

3. 5-barrelIed spaces

We gave the following definition in (12).
A separated locally convex space E is S-barrelled if each essentially

separable cr(E', Unbounded set is equicontinuous.

We showed by example that a 5-barrelled space need not be barrelled
even in its associated Mackey topology. On the other hand, since 5-
barrelled spaces are necessarily <r-barrelled, a separable 5-barrelled space
is barrelled (3, Corollary 4a). Further a 5-barrelled space which has a
strongly dense subset of cardinality at most c is always barrelled (12,
Corollary 2 of Theorem 3). We now give two generalisations of this last
result.

Theorem 7. Let E be a S-barrelled space with completion F. Suppose
that there is a family (XA)AGA of subsets of E such that

(0 |A|«c,
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(ii) U {Xx: A G A} is total in E under /3(£, £'),
(iii) for each A G A, Xx is <r(F, E')-relatively compact.

Then (E, T(E, E')) is barrelled.

Proof. Let Yk be the a(F, E')-closed absolutely convex envelope of Xx

(A G A). By Krein's theorem (10, Section 24, 5(4)) and (iii), each YA is
a(F, E')-compact. Denote by G the subspace of F spanned by U {YA: A G
A} and by H the subspace of E spanned by U {XA: A G A}.

Let B be a a(E', -B)-closed bounded set and let A be a subset of B
which is essentially separable for the dual pair (E', G). Certainly A is
essentially separable for the dual pair (E',H) and since H is /3(E, E')-
dense in E, it follows easily from Theorem 3 that A is essentially separable
for the dual pair (E1, E). Since E is S-barrelled, A is equicontinuous. If C
is the cr(E', Enclosure of A, then C CB and C is also <r(E', F)-compact
(13, Chapter VI, Corollary 3 of Theorem 2) and therefore a(E',G)-
compact. Since each YA is cr(G, E')-compact and absolutely convex, E' has
a topology of the dual pair (£', G) defined by at most c seminorms and so
by Theorem 5, J3 is cr(E', G)-compact. This implies that B is <r(E',H)-
compact, and since E is contained in the completion of H for the topology
induced by fl(E, E'), we deduce that B is a(E', E)-compact.

Remark. In Theorem 7, the initial 5-barrelled topology of E need not
be T(E, E'). TO see this, we refer to (12, Theorem 2 and Remark (i)
following Theorem 8). If |M|>c , /2(M) is 5-barrelled but not barrelled
under the topology of uniform convergence on the <T(/2(M), /2(M))-bounded
essentially separable sets. However the conditions of Theorem 7 are
satisfied by taking the closed unit ball of 12(M) as the single Xx.

We require the following lemma for our other result in this direction. It
is probably well-known but we include a proof for completeness.

Lemma 3. Let E be a a-barrelled space. If EAeAxA converges un-
conditionally in E, it also converges unconditionally under fi(E, E') to the
same sum.

Proof. It is enough to show that SAEA xK is unconditionally Cauchy
under P(E,E'), for then the result will follow from (10, Section 18, 4(4)).
Suppose that this is false and denote by <& the set of all non-empty finite
subsets of A. Then there is a <r(E', £)-bounded set B such that for each
<£G<I>, there exist f £ $ with <f>' fl <f> = 0 and x'£ B such that
|(£AS^xA, *')l > 1- We can thus determine sequences (<£„) in $ and (x'n) in B
such that <f>n+l n u;_, 4>r = 0 and |<2Ae*, JCA, jej>| > 1 (n E N).

But {x'n: n G N} is equicontinuous and so there exists <£0G<I> such that
|<2Ae^JcA,x;>|«l for all nGN and for all <£ G $ with <f> n <f>0 = 0. Since
<l>n H 4>a ~ 0 for all sufficiently large n we obtain a contradiction.
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Theorem 8. Let E be a S-barrelled space and suppose that there is a
family (Jc/t)t,eM of elements of E such that

(a) for each x £ £ there exist scalars a^ (/u. G M) such that E a^ is
unconditionally convergent to x,

(b) there is a family (ZA)AEA of elements of E such that zA = £ a^A)xM

(A G A), |A| =£ c and for each /u. G M, at least one a™ ¥ 0.
Then each o-(E', E)-bounded set is essentially separable and con-

sequently E is barrelled.

Proof. Let A be a non-empty <r(E'', £)-bounded set. For each x G E let
x denote its equivalence class in Jf(E, A). If x = E a^x^ as above, it follows
from Lemma 3 that 2 a^x^ converges unconditionally to x in Jf(E, A).
Since Jf(E, A) is a normed space, {/i EM: a^x^Q} is at most countable
and so UAeA {/x G M: a^x^ 0} has cardinality at most c. But by (b) this set
is just {fi G M: x^ 0}. Since {xH: n G M) is total in Jf(E, A) the result now
follows from Lemma 1 and Theorem 3.

Remark. It should be noted that the space E of Theorem 8 need not
have a dense subset of cardinality at most c. Using the argument in part (3)
of the proof of (4, Chapter VIII, Theorem 7.2), we see that RM has no such
subset if \M\ > 2C. However we may apply Theorem 8 to RM with x^ =
(S^y)ysM and a single zA, viz 2 x^. Theorem 8 is an analogue of (15, Theorem
1).

In (12, Theorem 2) we showed that a S-barrelled space E is both
6-barrelled and countably barrelled (8) under the topology 8(E, E') of
uniform convergence on the a(E', £)-bounded essentially separable sets.
We end this section by giving an example of a 8-barrelled space which is
not countably barrelled. In (14, Proposition 4.4), J. Schmets describes a
general method of constructing cr-barrelled spaces which are not countably
barrelled. We adapt this technique to our present purpose, although our
approach is rather different.

Let E = R(M) and let E' = {(&)e RM: |{/x: &* 0}| « c}. For any subset A
of .E' let suppA = {vGM: 3(£,)G A with £,5*0}. It follows from the
Corollary to Theorem 1 that if A is essentially separable for the dual pair
(E',E), |suppv4|=£c (*). Thus if A is a <r(E', Unbounded essentially
separable set, it is o-(E', £)-relatively compact. Since the closed absolutely
convex envelope of an essentially separable set is essentially separable, the
Mackey-Arens theorem shows that S(E, E') is a topology of the dual pair
(E, E') under which E is 8-barrelled (cf. Example 1 of (12)).

For each non-empty subset B of M

{ ( g G R M : 4 = 0 if

is easily seen to be a closed bounded absolutely convex subset of RM.
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Therefore S(B) is compact in RM and since it is contained in E', it is
<r(E', JS)-compact.

We now take M = 0>(R), the power set of R. In this case E' ^ RM and
(£, T(E, £')) is not barrelled. Let 98 be the collection of all a(E',E)-
bounded essentially separable sets together with the sets S(2P(C)) where C
is a compact subset of R. The topology f on E of uniform convergence on
the sets in 38 is then a 8-barrelled topology of the dual pair {E, E') and a
base of neighbourhoods of the origin for £ is given by all sets of the form
D° D eS(@(C))° (**), where D is a non-empty <r(£", E)-bounded essen-
tially separable set, e > 0 and C is a compact subset of R.

Now A = U"=i S(@([-n, n])) is a subset of S(0»(R)) so that A is a
<T(E', E)-bounded set which is the union of a sequence of £-equicontinuous
sets. Given any set V of the form (* *), by (*) and the fact that
|0>([-«, n])\9>(C)\ = 2C for all sufficiently large n, we may choose v G
(u:_,0>([-n,i!]))\{(suppD)U3>(C)}. Then ( 2 8 ^ ) ^ 6 V so that («(U,)^6M

£ V. Since ( S ^ ^ E M E A, this shows that A is not |-equicontinuous and
consequently (£, £) is 8-barrelled but not countably barrelled.

4. Infra-8-spaces

Let E be a separated locally convex space and for each vector sub-
space H of E' let Hs be the intersection of all vector subspaces G of E*
such that

(i) HCG,
(ii) the »•(£*, Enclosure of each a(E*, £)-bounded subset of G which

is essentially separable for the dual pair (E*, E) is contained in G.

As in (12) we say that E is an infra-5-space if for each cr(E', £)-dense
vector subspace H, we have E' D Hs = E'.

For any separated locally convex space E, the upper bound topology 17
of the initial topology £ of E and S(E, (E')s) is clearly the coarsest
5-barrelled topology on E which is finer than £ We call 17 the associated
S-barrelled topology of E. This definition is analogous to Adasch's defini-
tion of the associated barrelled topology (1), which is clearly finer than the
associated 5-barrelled topology.

It is shown in (5, Theorem 1.5) and in (2, Section 4) that an infra-s-
space (1) is complete in its associated barrelled topology. As pointed out in
(12), the infra-S-spaces form a proper subclass of the infra-s-spaces, so that
this completeness result applies to infra-S-spaces. However essentially the
same proof as that given in (5) shows that an infra-S-space is actually
complete in its associated S-barrelled topology. To show that this is a
genuine improvement, we adapt ideas from (6) to give an example of an
infra-5-space for which the associated barrelled topology and the as-
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sociated 8-barrelled topology are not even topologies of the same dual pair.
Let £ = RM where \M\ = 2C and let E' = {(£jeR M : |{/tt: £„.* 0}| « Ko}.

We show first of all that E is an infra-S-space for any topology of the dual
pair (E, E'). Let H be a a{E', £)-dense vector subspace and let (x'n) be a
sequence in Hs D E' which converges to x' GE E' under cr(E', E). Since
{jt|,:neN} is (essentially) separable, its a(E*, £)-closure must be con-
tained in each G considered in constructing Hs. Thus x' £ Hs and so
HSC\E' is <T(E', E)-sequentially closed. But as pointed out by V. Eber-
hardt in (6), Theorem 2.1 of (11) now shows that Hs n E' is a(E',E)-
closed. Since H C Hs D E', we must then have Hs C\E' = E'.

It is clear that if B is any subset of RM which is a product of intervals,
B n E' is a(RM, R(M))-dense in B. It follows from this observation that the
associated barrelled topology for any topology of the dual pair (E, E') is
T ( R ( M ) , R M ) . However if F ' = {(£JGRM: |{/x: {„.* 0}|=s c}, we know from
the previous section that S(E, F') is a 8-barrelled topology of the dual pair
(E,F'). If we start with the topology <r(E, E') on E, the associated
S-barrelled topology TJ must therefore be coarser than S(E, F'). (In fact it is
not difficult to show that TJ = S(E, F')). Since F'*RM, we may take
(E, <T(E, E')) for the promised example.
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