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Abstract The notion of an atomic operator between spaces of measurable functions was introduced
in 2002 in a paper by Drakhlin, Ponosov and Stepanov in order to provide a reasonable generalization
of local operators useful for applications. It has been shown that, roughly speaking, atomic operators
amount to compositions of local operators with shifts. A natural problem is then when a continuous-
in-measure atomic operator can be represented as a composition of a Nemytskǐı (composition) operator
generated by a Carathéodory function, and a shift operator. In this paper we will show that the answer to
this question is inherently related to the possibility of extending an atomic operator with continuity from
a space of functions measurable with respect to some σ-algebra to a larger space of functions measurable
with respect to a larger σ-algebra, as well as to the possibility of extending any σ-homomorphism from
a smaller-measure algebra to a σ-homomorphism on a larger-measure algebra. We characterize precisely
the condition on the respective σ-algebras which provides such possibilities and induces the positive
answer to the above representation problem.
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1. Introduction

In [3] a particular class of operators, called atomic operators and generalizing the notion
of a local operator between ideal function spaces, was introduced and many of its analytic
properties—like acting, boundedness, continuity, compactness and convergence in various
topologies—were studied. We recall here that this class contains local (in particular,
Nemytskǐı) operators, shift operators and is closed with respect to compositions. This
study was to a large extent inspired by stochastic applications. For instance, atomic
operators arise naturally in the problem of finding periodic (in distribution) solutions
to stochastic differential equations. Moreover, many problems for stochastic dynamical
systems can be reduced to the study of atomic operators.

The representation theorem proved in [3] asserts that, roughly speaking, an atomic
operator is always a composition of a local operator and a shift. However, even if the
atomic operator is continuous, the respective local operator is not necessarily a Nemyt-
skǐı operator generated by some Carathéodory function, since in general it will be acting
between the spaces of functions measurable with respect to different σ-algebras. In fact,
the same paper provides examples of continuous atomic operators arising in stochastic
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applications that cannot be represented as a composition of a Nemytskǐı operator gener-
ated by a Carathéodory function, and a shift. Nevertheless, the question of when such a
representation exists is of utmost importance for applications, for instance, for the pur-
pose of seeking invariant measures or fixed points (maybe appropriately generalized) of
atomic operators.

The above representation problem is inherently related to another two problems.
Namely, suppose that (Ω, Σ′, µ) is a measure space and that Σ ⊂ Σ′ is some smaller
σ-algebra. The first problem is when an atomic operator defined over a space of functions
measurable with respect to Σ can be extended with continuity to the bigger space of func-
tions measurable with respect to Σ′. The second problem is when a nullset-preserving
σ-homomorphism between Σ and any other σ-algebra of sets can be extended to the
whole Σ′. A related question is when such a σ-homomorphism can be represented by a
point map [8]. In this paper we show that all the above problems are in fact equivalent
and admit a positive answer if and only if Σ satisfies the so-called Ω-condition, which
was recently introduced in [7]. Moreover, for standard measure spaces we are able to
completely characterize the Ω-condition on σ-subalgebras in terms of the existence of a
piecewise-injective generating function.

2. Notation and preliminaries

Let (Ω1, Σ1, µ1) and (Ω2, Σ2, µ2) be two measure spaces, and let Σ0
1 ⊂ Σ1, Σ0

2 ⊂ Σ2

be the σ-ideals of the µ1- and µ2-nullsets, respectively. We denote by Σ̃i := Σi/Σ0
i ,

i = 1, 2, the respective measure algebras (see § 42 of [8]). The elements of Σ̃i (i.e. the
equivalence classes of sets) will be denoted ẽi or [ei], i = 1, 2. Further on we will, however,
frequently abuse the notation and identify the elements of the measure algebras Σ̃i with
the elements of the respective original σ-algebras of sets Σi. A map F : Σ̃1 → Σ̃2 is called
a σ-homomorphism, if F (Ω1) = Ω2, F (Ω1\e) = Ω2\F (e) whenever e ∈ Σ̃1 and

F

( ∞⊔
i=1

ei

)
=

∞⊔
i=1

F (ei),

for any pairwise disjoint collection of {ei}∞
i=1 ⊂ Σ̃1, where

⊔
stands for the disjoint union.

Every (Σ2, Σ1)-measurable map g : Ω2 → Ω1 satisfying

µ2(g−1(e1)) = 0 when µ1(e1) = 0 (2.1)

generates a σ-homomorphism according to the formula F (ẽ1) := [g−1(e1)]. The latter
σ-homomorphism is said to be induced by a point map g, and in this case we will write
F = g−1.

A measure space (Ω, Σ, µ) is called standard if Ω is a Polish space and Σ is either the
Borel σ-algebra or its completion with respect to finite Borel measure µ. Below all the
measure spaces we will be dealing with are assumed to be complete and all the measures
are assumed to be finite.

By L0(Ω, Σ, µ; X ), where X is a separable metric space, we denote the space of (classes
of) X -valued measurable functions equipped with the usual metric inducing the topology
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of convergence in measure. Whenever there is no possibility of confusion, the references
to X , Ω, Σ and/or µ will be omitted.

3. Extension of atomic operators

For the sake of brevity denote Xi := L0(Ωi, Σi; Xi), i = 1, 2. Recall the following notion
introduced in [3].

Definition 3.1. An operator T : X1 → X2 is called atomic with respect to
the σ-homomorphism F : Σ̃1 → Σ̃2 if T (x)|F (e1) = T (y)|F (e1) whenever x|e1 = y|e1 for
x, y ∈ X1.

We will further omit the reference to the particular σ-homomorphism if it is unneces-
sary.

We remark that in [3] a slightly different definition of an atomic operator was
given, namely, the operator T : X1 → X2 was called atomic with respect to the
nullset-preserving σ-homomorphism between the original σ-algebras F : Σ1 → Σ2 if
T (x)|F (e1) = T (y)|F (e1) whenever x|e1 = y|e1 for x, y ∈ X1. The requirement that F be
nullset preserving means that µ2(F (e1)) = 0 whenever µ1(e1) = 0. Clearly, every nullset-
preserving σ-homomorphism F : Σ1 → Σ2 between the original σ-algebras generates
a σ-homomorphism F̃ of the respective measure algebras according to the formula
F̃ (ẽ1) := [F (e1)]. Vice versa, given a σ-homomorphism between the measure algebras
F̃ : Σ̃1 → Σ̃2, provided that the measure space (Ω2, Σ2, µ2) is complete, we can con-
struct a nullset-preserving σ-homomorphism F : Σ1 → Σ2 between the original σ-
algebras satisfying [F (e1)] := F̃ (ẽ1). The respective construction is provided by the for-
mula F (e1) := π(F̃ (ẽ1)), where π : Σ̃2 → Σ2 is the lifting map satisfying [π(ẽ2)] = ẽ2.
The existence of the latter is ensured by the von Neumann–Maharam lifting theorem
(Theorem 4.4 in [4]), for which completeness of (Ω2, Σ2, µ2) is essential. Therefore, the
definition of atomic operator given in [3] is equivalent to the above one provided one
works with complete measure spaces.

The notion of an atomic operator seems to be just a reasonable generalization of
the classical notion of a local operator for many applications. In fact, a local operator
between spaces of measurable functions is just an atomic one with respect to the identity
σ-homomorphism. In particular, a Nemytskǐı operator Nf : L0(Ω; X1) → L0(Ω; X2)
defined by the formula (Nfu)(ω) := f(ω, u(ω)) for a given function f : Ω × X1 → X2

is local, and hence, atomic. But the class of atomic operators is, in fact, much wider
and also embodies a lot of operators which though being non-local have many properties
similar to those of local operators. Here we enlist some of the most important examples
of atomic operators.

Example 3.2. The examples below were pointed out in [3].

(1) Let g : Ω2 → Ω1 be a (Σ2, Σ1)-measurable function satisfying (2.1). Then the shift
operator Tg : X1 → X2 defined by the formula

(Tgu)(ω2) := u(g(ω2)) for µ2-a.e. ω2 ∈ Ω2

is atomic with respect to the σ-homomorphism induced by g.
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(2) A composition of two atomic operators is still atomic. In particular, a composition
of a local (e.g. Nemytskǐı) operator and a shift is atomic, though, generally speaking,
not local.

(3) Every linear continuous-in-measure disjointness preserving (D-) operator (i.e. an
operator sending functions with disjoint supports into functions with disjoint sup-
ports) is atomic. Note that nonlinear D-operators in general need not be atomic.

(4) Atomic operators arise naturally in stochastic applications. For instance, a problem
of finding a strong periodic solution to a stochastic differential equation can be
naturally reduced to a fixed-point problem for an operator which is a composition
of the so-called Wiener shift and the evolution (propagation) operator along the
trajectories of the stochastic differential equation. Since the latter operator is known
to be local, the original problem is reduced to finding fixed points of an atomic
operator.

We now consider the following problems, which are quite closely related to each other.

Problem 3.3. In [3] it has been shown that every atomic operator T can in fact be
represented as a composition T = N ◦ TF of a local operator and some generalized shift
operator TF with respect to a σ-homomorphism F . Suppose that the atomic operator
T : X1 → X2 is continuous in measure. We would like to know when the local opera-
tor N involved in the respective representation is a Nemytskǐı operator generated by a
Carathéodory function.

Problem 3.4. Let Σ1 ⊂ Σ′
1, where Σ′

1 is some larger σ-algebra of subsets of Ω. We
would like to know under which condition every continuous-in-measure atomic operator
T : X1 → X2 can be extended to a continuous-in-measure atomic operator T ′ : X ′

1 → X2

over the larger space X ′
1 := L0(Ω1, Σ

′
1; X1).

Problem 3.5. Let F : Σ̃1 → Σ̃2 be a σ-homomorphism. We would like to know when
it can be extended to a σ-homomorphism F ′ : Σ̃′

1 → Σ̃2.

The answers to the above problems we provide here involve the following notion which
first appeared in [7].

Definition 3.6. Let Σ1 ⊂ Σ′
1 be σ-algebras of subsets of Ω1. Then Σ1 is said to

satisfy the Ω-condition with respect to Σ′
1 (written Σ1 ∈ Ω(Σ′

1)) if there is an at-most-
countable cover of Ω1 by pairwise disjoint sets Ω1 =

⊔
j Ωj

1, Ωj
1 ∈ Σ′

1, such that for each
j ∈ N one has Σ1 ∩ Ωj

1 = Σ′
1 ∩ Ωj

1.

It is worth remarking that the same notion of Ω-condition can be extended in an
obvious way to measure algebras, namely, by saying that Σ̃1 ∈ Ω(Σ̃′

1) if Σ1 ∩ Ωj
1/Σ0

1 =
Σ′

1 ∩Ωj
1/Σ0

1 for each j ∈ N and for some partition of Ω1 by an at-most-countable number
of disjoint sets {Ωj

1}j∈N, where Σ0
1 stands for the σ-ideal of µ1-nullsets.

The following result gives the answer to Problem 3.4. Note that its proof also uses the
answer to Problem 3.5 given by Proposition 5.1.
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Theorem 3.7. Let Σ̃1 ∈ Ω(Σ̃′
1). Then every atomic operator T : X1 → X2 admits a

(not necessarily unique) extension to an atomic operator T ′ : X ′
1 → X2. Moreover, T ′ is

continuous in measure whenever T is continuous in measure.

Proof. Let T : X1 → X2 be atomic with respect to the σ-homomorphism F :
Σ̃1 → Σ̃2. According to Proposition 5.1 proven below, the latter admits an extension
to F ′ : Σ̃′

1 → Σ̃2. We now use Lemma 3.8 below to find the desired extension T ′ of the
operator T , which is atomic with respect to F ′. �

Lemma 3.8. Let T : X1 → X2 be atomic with respect to the σ-homomorphism
F : Σ̃1 → Σ̃2, while Σ̃1 ∈ Ω(Σ̃′

1) and F admits an extension to a σ-homomorphism
F ′ : Σ̃′

1 → Σ̃2. Then the operator T admits the unique extension to the operator T ′ :
X ′

1 → X2, which is atomic with respect to F ′. Moreover, the extended operator T ′ is
continuous in measure whenever T is continuous in measure.

Proof. Existence. For an arbitrary v ∈ X ′
1 and for every j ∈ N there is a vj ∈ X1

such that
v|Ωj

1
= vj |Ωj

1
. (3.1)

Now set
(T ′v)(x) := (Tvj)(x) for µ2-a.e. x ∈ F ′(Ωj

1).

Note that the above definition is correct. In fact, although there might exist another
ṽj ∈ X1 such that

v|Ωj
1

= ṽj |Ωj
1
,

but clearly then

ṽj |Φ(Ωj
1) = vj |Φ(Ωj

1),

where Φ(e1) stands for the minimum (up to a set of µ1-measure zero) set from Σ1 which
contains e1 ∈ Σ′

1. Therefore, in view of atomicity of T one has

(T ṽj)(x) = (Tvj)(x) for µ2-a.e. x ∈ F (Φ(Ωj
1)),

and hence

(T ṽj)(x) = (Tvj)(x) for µ2-a.e. x ∈ F ′(Ωj
1),

since F ′(Ωj
1) ⊂ F ′(Φ(Ωj

1)) = F (Φ(Ωj
1)).

It is easy to observe that T ′ is the desired extension (namely, it is atomic with respect
to F ′). In fact, if u, v ∈ X ′

1 are such that

u|e1 = v|e1 ,

then for each j ∈ N there exist uj , vj ∈ X1 such that

u|Ωj
1

= uj |Ωj
1
, v|Ωj

1
= vj |Ωj

1
.
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Therefore,

uj |Φ(e1∩Ωj
1) = vj |Φ(e1∩Ωj

1),

which implies

Tuj |F (Φ(e1∩Ωj
1)) = Tvj |F (Φ(e1∩Ωj

1)),

in view of atomicity of T . Then

Tu|F ′(e1∩Ωj
1) = Tuj |F ′(e1∩Ωj

1) = Tvj |F ′(e1∩Ωj
1) = Tv|F ′(e1∩Ωj

1),

since F ′(e1 ∩ Ωj
1) ⊂ F ′(Φ(e1 ∩ Ωj

1)) = F (Φ(e1 ∩ Ωj
1)).

Uniqueness. Let T ′
1 and T ′

2 both be extensions of T atomic with respect to F ′. Again,
for every v ∈ X ′

1 and for every j ∈ N there is a vj ∈ X1 such that (3.1) holds. In view
of atomicity of T ′

1 and T ′
2 the restrictions of T ′

1v and T ′
2v to each F ′(Ωj

1) coincide with
those of T ′

1v
j and T ′

2v
j . But since T ′

1v
j = T ′

2v
j = Tvj , then in view of the arbitrariness

of j one has T ′
1v = T ′

2v.

Continuity. The verification of this property is straightforward. Suppose in fact that
T is continuous and let vν → v in X ′

1. For each j ∈ N, let vj
ν , vj ∈ X1 be such that

vν |Ωj
1

= vj
ν |Ωj

1
, v|Ωj

1
= vj |Ωj

1
.

Then one has vj
ν → vj in L0(Φ(Ωj

1), Σ1 ∩ Φ(Ωj
1), µ1). Hence T ′vν = Tvj

ν → Tvj = T ′v in
L0(F ′(Ωj

1), Σ2 ∩ F (Ωj
1), µ2) and, since the latter holds for all j ∈ N, one has T ′vν → Tv

in X2. �

Note that one has uniqueness of the extended operator only when the extension of the
respective σ-homomorphism is fixed. In fact, even a local operator can have several exten-
sions to atomic operators (among which, clearly, there is exactly one local extension), as
the following example shows.

Example 3.9. Let Ω1 = Ω2 = S1 be a unit circumference, let X1 = X2 = R, and
let Σ′

1 = Σ2 be a completion of the Borel σ-algebra with respect to the one-dimensional
Haussdorf measure. Let g : S1 → S1 be the rotation of the circumference by the angle
2πα. Consider any measurable map h : S1 → S1 such that (h ◦ g)(x) = h(x) for a.e. x ∈
S1. Let Σ1 := h−1(Σ′

1). The operator T : X1 → X2 defined by

(Tu)(x) := f(x, u(g(x))) (3.2)

for some Carathéodory function f : S1 × R → S1 is clearly local. Fore every u ∈ X1 one
has u ◦ g = u, and hence (Tu)(x) = f(x, u(x)). Therefore, a continuous local extension
T ′ : X ′

1 → X2 of the operator T is clearly given by the formula

(T ′u)(x) = f(x, u(x)).

On the other hand, another continuous atomic extension of this operator to the whole
space X ′

1 is given by the same formula (3.2). This operator is atomic with respect to F ′

defined by F ′(ẽ′
1) := [g−1(e′

1)], but it is not local.
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We remark that Lemma 3.8 despite being extremely simple has interesting conse-
quences on its own. For instance, one has to mention that its immediate corollary is the
following assertion on the extension of local operators proved in [7].

Corollary 3.10. Let N : X1 → X2 be a local operator, and let Σ̃1 ∈ Ω(Σ̃′
1). Then N

admits the unique extension to the local operator N ′ : X ′
1 → X2. Moreover, the extended

operator N ′ preserves the continuity of N in measure.

We can now claim the following representation result for continuous-in-measure atomic
operators which gives an answer to Problem 3.3.

Theorem 3.11. Let (Ω1, Σ1, µ1) and (Ω2, Σ2, µ2) be standard measure spaces and
let F : Σ̃1 → Σ̃2 be a σ-homomorphism. Then any continuous operator T : X1 → X2

atomic with respect to F can be represented as

(Tu)(x) = f(x, u(g(x))) for µ2-a.e. x ∈ Ω2

for some Carathéodory function f : Ω2 × X1 → X2, a measurable function g : Ω2 → Ω1

satisfying (2.1) and every u ∈ X1, if and only if F (Σ̃1) ∈ Ω(Σ̃2).

Proof. Theorem 32.3 of [8] implies the existence of a measurable function g : Ω2 → Ω1

satisfying (2.1) and [g−1(e1)] = F (ẽ1) for every e1 ∈ Σ′
1. According to the representation

Theorem 3.1 from [3], one has T = N ◦ Tg, where N is a local operator defined over
L0(Ω2, F (Σ̃1), µ2; X1). If F (Σ̃1) ∈ Ω(Σ̃2), then according to Corollary 3.10 the operator
N admits a unique continuous local extension to the whole space L0(Ω2, Σ2, µ2; X1), and
hence is representable as

(Nv)(x) = f(x, v(x)) for µ2-a.e. x ∈ Ω2,

where f : Ω2 × X1 → X2 is a Carathéodory function.
Otherwise, if F (Σ̃1) �∈ Ω(Σ̃2), then Theorem 7 from [7] asserts the existence of a

continuous local operator N : L0(Ω2, F (Σ̃1), µ2; X1) → L0(Ω2, Σ2, µ2; X2), which cannot
be represented as a Nemytskǐı operator generated by a Carathéodory function. Therefore,
the operator T := N ◦ Tg is atomic with respect to F but cannot be represented as
indicated in the statement of the theorem. �

4. The Ω-condition and piecewise-injective functions

Before studying Problem 3.5, we recall a notion of ω-condition for a function acting
between two standard measure spaces. This notion was introduced by Drakhlin in [2] to
study a class of shifts in Lebesgue spaces which have ‘nice’ representation of adjoints.

Definition 4.1. Let (Ωi, Σi, µi), i = 1, 2, be standard measure spaces. We say that a
measurable function g : Ω2 → Ω1

(i) is piecewise injective if there exists a disjoint at-most-countable covering of Ω2 by
measurable sets Ω2 =

⊔
j Ωj

2 such that over each Ωj
2 the function is injective;

https://doi.org/10.1017/S001309150200072X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150200072X


702 E. Stepanov

(ii) satisfies the ω-condition if it is piecewise injective, satisfies (2.1), and the respective
inverses γj : g(Ωj

2) → Ωj
2, γj ◦ g|Ωj

2
= id satisfy (2.1).

Note that a piecewise-injective function g : Ω2 → Ω1 satisfying (2.1) can always be
changed on a set of zero µ2-measure in order to satisfy the ω-condition. In fact, consider
the measures µj

1 on Ω1 defined by

µj
1(e1) := µ2(g−1(e1) ∩ Ωj

2)

for every e1 ∈ Σ′
1. Since µj

1 are absolutely continuous with respect to µ1, we may consider
the respective Radon–Nikodym derivatives dµj

1/dµ1 and set

Ej
2 := g−1

({
y :

dµj
1

dµ1
(y) = 0

})
∩ Ωj

2.

Setting now

g̃(x) :=

⎧⎪⎪⎨
⎪⎪⎩

g(x), x ∈ Ω2 \
⋃
j

Ej
2,

x0, x ∈
⋃
j

Ej
2,

where x0 ∈ Ω1 is arbitrary, and observing that µ2(E
j
2) = 0, one arrives at the conclusion

that g(x) = g̃(x) for µ2-a.e. x ∈ Ω2, while g̃ satisfies the ω-condition. Therefore, we will
just identify the piecewise-injective functions satisfying (2.1) with the functions satisfying
the ω-condition.

We find it convenient to also provide the following simple and rather folkloric lemma.

Lemma 4.2. Let g : Ω2 → Ω1 satisfy the ω-condition. Then there is a Borel set
Ω′

2 ⊂ Ω2 with µ2(Ω2 \ Ω′
2) = 0, such that Ω′

2 =
⊔

j Ω′j
2 , where all Ω′j

2 are Borel sets,
while the restrictions g|Ω′j

2
are Borel measurable, injective and possess Borel-measurable

inverses γj which satisfy (2.1).

Proof. Let Ω2 =
⊔

j Ωj
2, where Ωj

2 are injectivity sets for g : Ω2 → Ω2, as indicated
in Definition 4.1. It is enough to show that for each j there is a Borel set Ω′j

2 ⊂ Ωj
2 with

µ2(Ω
j
2 \ Ω′j

2 ) = 0, while the restriction of g to Ω′j
2 is Borel measurable. Borel measurabil-

ity of inverses γj will follow then from the Kuratowski–Suslin Theorem (Theorem 8.3.7
of [1]), and putting Ω′

2 :=
⊔

j Ω′j
2 we will conclude the proof of the lemma.

To prove this claim, pick up a countable set of generators G = {Gν} of B1, i.e. σ(G) =
B1, where σ(G) stands for the minimum σ-algebra generated by G, and Bi stands for the
Borel σ-algebra of Ωi, i = 1, 2. For each ν ∈ N one has

g−1(Gν) ∩ Ωj
2 = B′

j,ν ∪ C ′
j,ν ,

where B′
j,ν ∈ B2 and C ′

j,ν ⊂ Cj,ν ∈ B2, µ2(Cj,ν) = 0. Let Dj ∈ B2 be such that
µ2(Ω

j
2 \ Dj) = 0 and set

Ω′j
2 := Dj \

⋃
ν

Cj,ν .
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Clearly, Ω′j
2 is a Borel set, while µ2(Ω

j
2 \ Ω′j

2 ) = 0. One now has

g−1(Gν) ∩ Ω′j
2 = B′

j,ν ∩ Ω′j
2 ∈ B2,

for every ν ∈ N, which proves that the restriction of g to Ω′j
2 is Borel measurable, and

hence concludes the proof. �

The above lemma has a very easy but rather significant consequence formulated in the
proposition below.

Proposition 4.3. Let (Ωi, Σi, µi), i = 1, 2, be standard measure spaces, while g :
Ω2 → Ω1 satisfy the ω-condition. Then g−1(Σ̃1) ∈ Ω(Σ̃2).

Proof. Let Ω′
2 =

⊔
j Ω′j

2 be as in the statement of Lemma 4.2. We will show that
g−1(Σ1) ∩ Ω′j

2 /Σ0
2 = Σ2 ∩ Ω′j

2 /Σ0
2 for all j, where Σ0

2 stands for the σ-ideal of µ2-nullsets.
The only non-trivial inclusion to be proven is

Σ2 ∩ Ω′j
2 /Σ0

2 ⊂ g−1(Σ1) ∩ Ω′j
2 /Σ0

2 .

To show the latter, consider an arbitrary ẽ2 ∈ Σ2 ∩ Ω′j
2 /Σ0

2 and let e2 ⊂ ẽ2 be such a
Borel set that [e2] = ẽ2. Clearly, e2 ∩ Ω′j

2 is a Borel set and since g is injective over Ω′j
2

and has a Borel-measurable inverse, then

e2 ∩ Ω′j
2 = g−1(g(e2 ∩ Ω′j

2 )) ∩ Ω′j
2 .

Minding that [e2 ∩ Ω′j
2 ] = ẽ2 and that g(e2 ∩ Ω′j

2 ) = γ−1
j (e2) ∈ Σ1 is a Borel set suffices

to conclude the proof. �

The above proposition asserts, roughly speaking, that a function between stan-
dard measure spaces satisfying the ω-condition generates a σ-algebra satisfying the
Ω-condition. Below we will prove that in a sense a reverse statement is valid, namely,
that every σ-subalgebra of a standard measure space which satisfies the Ω-condition is
generated by some function satisfying the ω-condition.

5. Extensions of σ-homomorphisms

In this section we will study Problem 3.5 and we will see that it is in fact quite closely
related to Problems 3.3 and 3.4. The answer to this problem is given by the following
proposition.

Proposition 5.1. Let Σ̃1 ∈ Ω(Σ̃′
1). Then every σ-homomorphism F : Σ̃1 → Σ̃2

admits an extension to a σ-homomorphism F ′ : Σ̃′
1 → Σ̃2.

Proof. According to the assumptions there is an at-most-countable covering Ω1 =⊔
j Ωj

1, Ωj
1 ∈ Σ′

1, such that for each j ∈ N one has Σ1 ∩ Ωj
1/Σ0

1 = Σ′
1 ∩ Ωj

1/Σ0
1 . Observe

that for each e′
1 ∈ Σ̃′

1 the minimum Σ1-measurable set containing e′
1 is defined uniquely

up to a set of measure zero, and thus denote the equivalence class of the latter by
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Φ(e′
1). Note that Φ : Σ′

1 ∩ Ωj
1/Σ0

1 → Σ̃1 is a σ-homomorphism. In fact, the only non-
trivial property to verify is Φ(e′

1) ∩ Φ(e′′
1) = ∅ whenever e′

1 ∩ e′′
1 = ∅. Suppose this is not

true, i.e. there exist such disjoint e′
1, e

′′
1 ∈ Σ′

1 ∩Ωj
1/Σ0

1 that the set T := Φ(e′
1)∩Φ(e′′

1) has
positive measure. In view of the Ω-condition, one has Φ(e′

1)∩Ωj
1 = e′

1 and Φ(e′′
1)∩Ωj

1 = e′′
1 ,

and hence, since e′
1 and e′′

1 are disjoint, T ∩ (e′
1 ∪ e′′

1) = ∅. It is easy to observe now that
the set Φ(e′

1)\T ∈ Σ1 contains e′
1 but has measure strictly less than that of Φ(e′

1), which
contradicts the definition of Φ.

If e′j
1 ∈ Σ′

1 ∩ Ωj
1, define

F ′j(e′j
1 ) := F (ej

1) ∩ Ωj
2, where ej

1 := Φ(e′j
1 ) and Ωj

2 := F (Φ(Ωj
1)).

Then, clearly, F ′j : Σ′
1 ∩ Ωj

1/Σ0
1 → Σ2 ∩ Ωj

2/Σ0
2 is a σ-homomorphism. The desired

extension is now given by
F ′(e′

1) :=
⊔
j

F ′j(e′
1 ∩ Ωj

1)

for every e′
1 ∈ Σ̃′

1. �

We can claim more, namely that the above proposition in a certain sense completely
characterizes the Ω-condition. For this purpose consider first the following example.

Example 5.2. Let Ω1 = (0, 1) × (0, 1), Σ′
1 being the usual Lebesgue σ-algebra of

Ω1 and µ1 being the two-dimensional Lebesgue measure, while Ω2 = (0, 1), Σ2 is the
Lebesgue σ-algebra of Ω2 and µ2 is the one-dimensional Lebesgue measure. Let Σ1 ⊂
Σ′

1 stand for the σ-algebra of the sets e2 × (0, 1), where e2 ∈ Σ2, and define the σ-
homomorphism F : Σ̃1 → Σ̃2 by setting

F ([e2 × (0, 1)]) := ẽ2.

Clearly, Σ̃1 �∈ Ω(Σ̃′
1). Moreover, in this case F cannot be extended to the whole Σ̃′

1. In
fact, if it were possible, then by Theorem 32.3 of [8] there would exist a measurable
function g : Ω2 → Ω1 satisfying (2.1) and [g−1(e1)] = F (ẽ1) for every e1 ∈ Σ′

1, that is,

[g−1(e2 × (0, 1))] = ẽ2.

Since g = (φ, ψ), where φ, ψ : Ω2 → Ω2 are the components of the function g, then the
above relationship implies

[φ−1(e2)] = ẽ2

for all ẽ2 ∈ Σ̃2, and therefore φ(z) = z a.e. on Ω2. In other words, g(z) = (z, ψ(z)) for
some measurable function ψ : (0, 1) → (0, 1). The set G := graphφ then has Lebesgue
measure zero in Ω1, but g−1(G) = Ω2, hence contradicting (2.1).

We now extend the above example to the more general situation.

Proposition 5.3. Let (Ω1, Σ
′
1, µ1) be a standard measure space and Σ̃1 �∈ Ω(Σ̃′

1).
Then there exists a σ-homomorphism F : Σ̃1 → Σ̃2 which admits no extension to a σ-
homomorphism F ′ : Σ̃′

1 → Σ̃2.
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Proof. We take (Ω2, Σ2, µ2) = (Ω1, Σ
′
1, µ1). There are two possibilities: either

Σ̃1 = g−1(Σ̃′
1) for some measurable function g : Ω2 → Ω1 satisfying (2.1), or else

Σ̃1 is not generated by any function. In the latter case it is enough to take the identity
σ-homomorphism for F . In fact, if it were extendable to the whole Σ̃′

1, then by Theo-
rem 32.3 in [8] one would have F (ẽ1) = [g−1(e1)] for some measurable g : Ω2 → Ω1

satisfying (2.1), and, hence, Σ̃1 = g−1(Σ̃′
1), contradicting the assumption. We concen-

trate therefore on the former case, namely, when Σ̃1 = g−1(Σ̃′
1). Let us remark that the

function g cannot be piecewise injective, since otherwise Σ1 would clearly satisfy the Ω-
condition according to Proposition 4.3. Restricting, if necessary, to a set of full measure
in Ω2, we may suppose that g is Borel measurable. Let E′

2 ⊂ Ω2, µ2(E′
2) > 0 be such

that the restriction of g to E′
2 is anti-injective, that is, for every e2 ⊂ E′

2, e2 ∈ Σ2 one
has µ2(e2) = 0 whenever g|e2 is injective. Suppose also without loss of generality that
µ2(E′

2) = 1 (otherwise just re-norm the measure). By Proposition 2.2 from [6], which is
a consequence of the Maharam Theorem on homogeneous measure algebras, there then
exist a Borel set E2 ⊂ E′

2, µ2(E2) = µ2(E′
2) = 1, a compact metric space M , a non-

atomic Borel probability measure P on M , and a Borel-measurable map τ : E2 → M

such that the following conditions hold:

(a) the map g × τ : E2 → Ω1 × M defined by

(g × τ)(x) := (g(x), τ(x))

is invertible;

(b) the image measure µ′ over Ω1 × M defined by

µ′(B) := µ2((g × τ)−1(B))

for all Borel sets B ⊂ Ω × M satisfies

µ′ = µg ⊗ P, where µg(e1) := µ2(g−1(e1)).

For the moment we identify g with its restriction to E2, so that g : E2 → Ω1. It is easy
to see that

g(x) = pΩ1((g × τ)(x)), (5.1)

where pΩ1 : Ω1 × M → Ω1 is the projection map. Now set F ([g−1(e1)]) := ẽ1 for e1 ∈ Σ′
1.

Defined in this way, F : Σ̃1 ∩ E2 → Σ̃2 is a σ-homomorphism in view of (5.1). Denote by
Σ̂′

1 the completion with respect to µ′ of the Borel σ-algebra of Ω1 × M , and by Σ̂1 the
σ-algebra of subsets of Ω1 × M of the form e1 × M , e1 ∈ Σ1. We note that F induces a
σ-homomorphism

F̂ : ˜̂
Σ1 → Σ̃2

according to the formula
F̂ (ê1) := F ((g × τ)−1(ê1)).
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In fact, F̂ : p−1
Ω1

(e1) 
→ e1. Suppose that F can be extended to F ′ defined over the whole
Σ̃′

1 ∩ E2. Then F̂ would be extendable to an

F̂ ′ : ˜̂
Σ′

1 → Σ̃2

according to the formula
F̂ (ê′

1) := F ((g × τ)−1(ê′
1)),

and the reasoning of Example 5.2 shows that this is impossible. �

6. Characterization of the Ω-condition

Proposition 5.1 has an interesting consequence which extends the famous theorem of
von Neumann on the representation of σ-homomorphisms (see [5,10] or Theorem 32.3
in [8]).

Corollary 6.1. Let Σ̃1 ∈ Ω(Σ̃′
1), while (Ω1, Σ

′
1, µ1) is a standard measure space. Then

every σ-homomorphism F : Σ̃1 → Σ̃2 is generated by a measurable map g : Ω2 → Ω1

satisfying (2.1), namely,
[g−1(e1)] = F (ẽ1)

for all e1 ∈ Σ1. In particular, there is a measurable map h : Ω1 → Ω1 satisfying (2.1)
such that Σ̃1 = h−1(Σ̃′

1).

Proof. Every σ-homomorphism F : Σ̃1 → Σ̃2 can be extended by Proposition 5.1 to
a σ-homomorphism F ′ : Σ̃′

1 → Σ̃2. It is enough to apply the representation Theorem 32.3
of [8] to the latter to conclude the proof of the first assertion. To prove the existence of
the map h which generates the measure algebra Σ̃′

1, one applies the representation result
to the identity σ-homomorphism. �

Now we can completely characterize the Ω-condition on σ-subalgebras in standard
measure spaces. In fact, the theorem below gives the desired result on characterization of
the Ω-condition on σ-algebras in terms of the existence of a generating function satisfying
the ω-condition.

Theorem 6.2. Let (Ω, Σ′, µ) be a standard measure space with non-atomic measure
and Σ ⊂ Σ′. Then Σ̃ ∈ Ω(Σ̃′) if and only if there is a function h : Ω → Ω satisfying the
ω-condition, such that Σ̃ = h−1(Σ̃′). Moreover, every measurable function h : Ω → Ω

satisfying (2.1) such that Σ̃ = h−1(Σ̃′) also satisfies the ω-condition.

Proof. If h : Ω → Ω satisfies the ω-condition, then according to Proposition 4.3
one has h−1(Σ̃′) ∈ Ω(Σ̃′). We prove therefore the reverse statement. Namely, suppose
that Σ̃ ∈ Ω(Σ̃′). Then according to Corollary 6.1 there is a measurable h : Ω → Ω

satisfying (2.1) such that Σ̃ = h−1(Σ̃′). On the other hand, the Ω-condition implies the
existence of an at-most-countable cover Ω =

⊔
j Ωj consisting of sets Ωj ∈ Σ′ of positive

measure such that

h−1(Σ′) ∩ Ωj/Σ0 = Σ′ ∩ Ωj/Σ0 for all j ∈ N,
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where Σ0 ⊂ Σ′ stands for the σ-ideal of µ-nullsets. In other words, for all e ∈ Σ′, e ⊂ Ωj

(with j ∈ N fixed) there is an e′ ∈ Σ′ such that h−1(e′) ∩ Ωj = e modulo a µ-nullset.
In order to prove that h satisfies the ω-condition, it suffices to show that so does its
restriction to each Ωj . Suppose that the latter is not true for some j ∈ N. In view of
Proposition 3.1 from [9], there is then a set E ⊂ Ωj with µ(E) > 0 and a non-atomic
σ-algebra Σ̂ of subsets of E such that h−1(Σ′) ∩ E and Σ̂ are independent, that is, for
all e1 ∈ h−1(Σ′) ∩ E and e2 ∈ Σ̂ one has

µE(e1 ∩ e2) = µE(e1)µE(e2), where µE(e) := µ(e)/µ(E).

Taking an arbitrary e ∈ Σ̂, one has for the respective e′ satisfying h−1(e′) ∩ E = e the
relationship

µE(e) = µE(e ∩ (h−1(e′) ∩ E)) = µE(e)µE(h−1(e′) ∩ E) = µE(e)2,

which implies that either µE(e) = 0 or µE(e) = 1, contradicting the non-atomicity
of Σ̂. �

Clearly, the requirement of non-atomicity of the measure µ is essential in the above
theorem. In fact, consider the following example.

Example 6.3. Let Ω = (0, 1), Σ′ be the Lebesgue σ-algebra of Ω and let µ be the
point measure defined by

µ(e) :=

{
1, x0 ∈ e,

0, x0 �∈ e,

for a given x0 ∈ Ω. Then clearly Σ̃′ = {∅̃, Ω̃}. We consider Σ := Σ′. Then the function
g : Ω → Ω defined by g(x) := x0 for all x ∈ Ω generates Σ̃ = Σ̃′ but is not piecewise
injective.
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