
J. Fluid Mech. (2025), vol. 1007, A10, doi:10.1017/jfm.2024.1110

The role of polymer molecular weight
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Drag reduction induced by a polydisperse solution of polyethylene oxide is investigated by
direct numerical simulations of the Navier–Stokes equations coupled with the Lagrangian
evolution of the polymers, modelled as dumbbells. Simulation parameters are chosen
to match the experimental conditions of Berman (1977), who measured the polymer
molecular weight distribution. Drag reduction is induced only by the few high molecular
weight polymers fully stretched by the turbulent flow, whilst the hundreds of parts per
million of low molecular weight chains are ineffective.
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1. Introduction
In wall-bounded flows, the laminar–turbulent transition is responsible for a sharp increase
in drag. Therefore, a large interest has been devoted to techniques able to reduce friction
(Du & Karniadakis 2000). Among many possibilities, the addition of a few parts per
million in weight (wppm) of long linear polymers in a Newtonian solvent is known to
produce up to 80 % drag reduction (Procaccia et al. 2008). This phenomenon is due to the
mechanical interaction between polymers and turbulence (Xi 2019) and has been known
since the experimental studies of Toms (1949).

Experimental results (Virk (1975); McComb & Rabie (1982) to cite a few) have been
the main source of information for years but they did not provide in-depth details on
the polymerturbulence interaction and opened the way for different interpretations, the
most famous ones ascribed to Lumley (1969) and De Gennes (1986). The crucial point
observed by Lumley (1973) is that the polymers interact with the turbulent field when
their relaxation time τ is of the order of the turbulent smallest time scale τ∗ = ν/u2

τ , where
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ν is the kinematic viscosity and uτ is the friction velocity. When the ratio between the
two quantities, named the Weissenberg number Wiτ = τ/τ∗, exceeds order 1, polymers
undergo the coilstretch transition. Lumley’s theory predicts that the polymer molecules
expand under the turbulent fluctuating strain rate and their effect is to damp the small
eddies.

Experiments with DNA chains show that a concentration of 1 wppm is sufficient to
achieve a consistent drag reduction and Choi et al. (2002) showed that the turbulent flow
largely stretches the DNA chains. By direct numerical simulations of DNA dilute polymer
solutions, Serafini et al. (2022) showed that polymer stretching is essential for drag
reduction. In particular, only the fully stretched polymers are effective, whilst unstretched
polymers do not produce any effect.

Despite the previous examples agreeing with Lumley’s idea, there are many other
experiments where polymer stretching does not seem essential for drag reduction.
With synthetic polymers (e.g. polyethylene oxide, PEO), estimations based on average
parameters, see Sreenivasan & White (2000), suggest that drag reduction occurs even
when polymers are poorly stretched. Differently from experiments with DNA, experiments
involving synthetic polymers are generally characterised by a small value of the
Weissenberg number (even less than unity, Virk (1975)), and are thus expected to be
mildly stretched. However, drag reduction can still be achieved, but larger polymer
concentrations are required, often a hundred times larger than needed with DNA. A
qualitative explanation of these experiments where large polymer stretching is not expected
to occur can be found in the theory proposed by De Gennes (1986). The first observation
at the basis of the elastic theory of Tabor & De Gennes (1986) is that the polymers do not
produce measurable changes in viscosity if moderately stretched. Nonetheless, turbulence
can be modified if the polymer concentration is large enough that the suspension elastic
energy is comparable to the solvent kinetic energy of the smallest eddies.

At the time, no information was available from experiments to deeply understand the
role of polymer stretching and concentration in drag reduction. Significant advances
have been made thanks to direct numerical simulation (DNS) of polymeric turbulence,
mostly based on Eulerian viscoelastic constitutive models (Alves et al. 2021), which has
been an additional source of information since the late 1990s (Sureshkumar et al. 1997;
Dimitropoulos et al. 1998; De Angelis et al. 2002). Simulations provided a qualitative
understanding of polymer drag reduction in turbulent flows and different interpretations of
the phenomenon have been proposed. Drag reduction has been interpreted either in terms
of an effective viscosity induced by the polymers (Benzi et al. 2006) or as the result of a
transfer of elastic energy, stored by the polymers near the wall and released in the buffer
and logarithmic layers (Min et al. 2003). Besides the different interpretations, they could
not fully clarify the contrasting information found in the experiments, as far as the role
played by polymer stretching and concentration is concerned. The statistics provided by
those simulations, however, consider polymers that are longer than their maximum length
(Vincenzi et al. 2015) and the values of concentrations required for drag reduction exceed
by far the experimental ones (Sureshkumar et al. 1997).

The contrasting conclusions presented above led us to suspect that different drag
reduction mechanisms may be at work, with drag reduction obtainable in two different
ways depending on the nature of the specific polymers involved. Interestingly, in his review
Lumley (1969) recognised the use of polydisperse polymers as a possible misleading
factor for the characterisation of the onset of drag reduction, as the highest molecular
weight chains may have a ‘disproportionate’ effect. A crucial difference between DNA and
PEO solutions is that the former are monodisperse while the latter typically have a broad
distribution of molecular weights (Bird et al. 1987). The experiments of Berman (1977)
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confirmed Lumley’s doubt, showing that drag reduction is strongly conditioned by
polydispersity, with the onset mainly caused by the highest molecular weight polymers
of the distribution. Indeed, the polymer relaxation time approximately grows with the
square of the molecular weight, see Doi et al. (1988). The reason for this behaviour was
not completely clarified and this uncertainty persisted over the years. Recent experimental
investigations by Brandfellner et al. (2024) reanalysed the role of the molecular weight
distribution, employing multiple linear regression to find the link between weight fractions
of polyacrylamide and drag reduction. However, according to the authors, the fitting
lacks physical meaning since some coefficients are negative, confirming that the relation
between polydispersity and drag reduction requires additional physical information to be
fully understood.

To investigate drag reduction by a polydisperse solution we exploit a recently developed
hybrid EulerianLagrangian methodology (described in § 2) for simulations of polymer
solutions, able to reproduce polymer chains with realistic parameters (Serafini et al. 2023)
and provide reliable polymer stretching statistics. The analysis, presented in § 3, aims to
explain the role of different molecular weight fractions in polymer drag reduction and to
provide a unique explanation for the conflicting behaviours of the polymers observed in
experiments and simulations.

2. Methodology
The dynamics of the polymer solution is simulated by evolving the Navier–Stokes equation
for the motion of the solvent

∇ · u = 0 ,
∂u
∂t

+ ∇ · (u ⊗ u) = −∇ p + 1
Re

∇2u + F , (2.1)

alongside the Lagrangian evolution of the polymers. Polymers and fluid exchange friction
forces that are proportional to the relative velocity between polymer beads and solvent. The
dynamics is simulated in a pipe, thus the system (2.1) is solved in cylindrical coordinates
(θ, r, z) and completed with the no-slip condition, u(t, θ, r = 1, z) = 0 at the wall. The
system is reported in dimensionless form, obtained using as reference quantities the
pipe radius �∗

0, the solvent density ρ∗, the solvent viscosity μ∗ and the bulk velocity
U∗

b,n = Q∗/(π�∗2
0 ), given the volumetric flow rate Q∗ of the Newtonian case (without

added polymers). An asterisk is used as a superscript to denote dimensional quantities.
In (2.1), u is the solvent velocity, p the hydrodynamic pressure, F the force field that
the polymers exert on the solvent. The dimensionless parameter Re = ρ∗U∗

b,n�
∗
0/μ

∗ is
the Reynolds number. The motion of the polymer solution is sustained by imposing a
constant pressure gradient. This allows us to fix the average shear stress at the wall
τ ∗
w = μ∗ ∂〈u∗

z 〉/∂r∗ (uz is the axial component of the velocity field). In dimensionless
terms, this corresponds to fixing the friction Reynolds number Reτ = ρ∗u∗

τ �
∗
0/μ

∗, where
u∗

τ = √
τ ∗
w/ρ∗ is the friction velocity.

Since the average wall shear stress is fixed, the effect induced by the polymers is
measured in terms of an increase in the bulk velocity and can be evaluated through the
variation of the friction factor f = 8τ ∗

w/(ρ∗U∗2
b ). The drag reduction is measured via the

parameter

DR = f (0) − f (p)

f (0)
= 1 −

(
Ub,n

Ub,p

)2

, (2.2)

with n and p denoting the Newtonian and the polymeric cases, respectively.

1007 A10-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1110


F. Serafini, F. Battista, P. Gualtieri and C.M. Casciola

The polymer chains are modelled as dumbbells, namely two beads at position x1/2
connected by a nonlinear entropic spring. The beads exchange the friction forces

D1/2 = γ

(
ǔ1/2 − dx1/2

dt

)
, (2.3)

with the solvent, given the beads’ friction coefficient γ and the undisturbed velocity of
the solvent ǔ1/2 at the position x1/2 (Maxey & Riley (1983)). Since the mass of the beads
can be safely neglected, Newton’s law for each bead reduces to the instantaneous balance
between friction forces and the entropic elastic and Brownian forces that tend to restore
the equilibrium configuration in a quiet solvent, see Bird et al. (1987),

0 = γ

(
ǔ1/2 − dx1/2

dt

)
± k

r
1 − ‖r‖2/L2 + req

√
2kγ

3
ξ1,2 , (2.4)

where r = x2 − x1 is the polymer end-to-end vector, req is the polymer equilibrium size
in a quiet solvent set by the white noise ξ1/2, k = 3kB T/r2

eq is the entropic spring stiffness
(kB is the Boltzmann constant and T the absolute temperature) and L the polymer contour
length.

For a population of N polymers, the evolution of the j th dumbbell can be conveniently
rewritten in terms of the polymer centre x( j)

c = (x( j)
1 + x( j)

2 )/2 and normalised end-to-end
vector h( j) = r( j)/L⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dx( j)
c

dt
= ǔ( j)

1 + ǔ( j)
2

2
+ req√

3 Wi

ξ
( j)
1 + ξ

( j)
2

2
dh( j)

dt
= ǔ( j)

2 − ǔ( j)
1

L
− h( j)

Wi(1 − ‖h( j)‖2)
+ req

L
√

3 Wi

(
ξ

( j)
2 − ξ

( j)
1

) . (2.5)

Despite its simplicity, the finitely extensible nonlinear elastic (FENE) dumbbell model
is known to provide an accurate description of the polymer dynamics in wall-
bounded turbulence, see Zhou & Akhavan (2003) and Serafini et al. (2024). In (2.5),
Wi = τ ∗/(�∗

0/U∗
b,n) is the Weissenberg number. It can be proved that, for dumbbells,

Wi = γ /(2k). The beads exchange the friction forces with the fluid, thus the polymer
back-reaction field on the solvent is

F = −
N∑

j=1

D( j)
1 δ

(
x − x( j)

1

)
+ D( j)

2 δ
(

x − x( j)
2

)
, (2.6)

where δ is the Dirac delta function centred at x1/2.
Equations (2.1) and (2.5), with the polymer forcing (2.6), are numerically solved (DNS)

on a staggered grid using a projection method to enforce velocity solenoidality. In the
axial direction, the periodic boundary condition is imposed. Time integration is performed
using a four-step, third-order, Runge–Kutta low-storage scheme, while second-order finite
differences are employed for the spatial discretisation. The domain dimensionless size
is (2π × 1 × 6π) and the grid points are [Nθ × Nr × Nz] = [1408 × 239 × 4224]. The
grid is non-homogeneous in the radial direction to ensure a higher resolution close to
the wall and is set to resolve the most demanding case, i.e. Reτ = 320, with a maximum
grid spacing of 1.4 wallunits. Statistics are collected once the flow rate has reached the
statistical steady state and averages have been performed on 200 uncorrelated fields. The
singular polymer forcing (2.6) is regularised according to the exact regularised point
particle method, see Gualtieri et al. (2015). The method exploits the solution of the
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unsteady Stokes equation to diffuse the reaction field on the computational grid (Gualtieri
et al. 2015; Battista et al. 2019). The Dirac delta function at time t − εR is regularised at
time t , thus the non-singular forcing

F =
N∑

j=1

− D( j)
1 (t−εR)

(4πνεR)3/2 e
−‖x − x( j)

1 (t−εR)‖2

4νεR − D( j)
2 (t−εR)

(4πνεR)3/2 e
−‖x − x( j)

2 (t−εR)‖2

4νεR ,

(2.7)

can be represented on the discrete grid. The boundary condition on the solid wall is
accounted for by using the method of images, see Battista et al. (2019) for a complete
account of the approach.

Simulation parameters are chosen to match the one used by Berman (1977) in his
experimental campaign. Concerning the fluid, the parameters to be matched are the
kind of solvent (water in this case) with its density ρ∗ and dynamic viscosity µ∗, the
pipe radius (�∗

0 = 2.77 mm in the experiment) and the friction Reynolds number Reτ

(and the corresponding bulk Reynolds number Re of the Newtonian case). To solve the
NavierStokes equation, only the Reynolds number is needed, while the other mentioned
dimensional parameters are required to derive the polymer dimensionless quantities.
Berman (1977) analysed the drag reduction of a dilute aqueous solution (400 wppm) of
PEO (Polyox N-80) for friction Reynolds numbers in the range 150 − 800 and estimated
the molecular weight distribution by gel chromatography. The procedure he used could
not characterise the molecular weight below 2.5 × 105, thus only the tail of the molecular
weight distribution is available. Nevertheless, the experimental data show that only this tail
is relevant for drag reduction, at least at the moderate Reynolds numbers at which the onset
occurs. The measured tail (M∗ > 2.5 × 105) amounts to a concentration of 17.5 wppm
compared with an overall concentration of 400 wppm. To reproduce the molecular weight
distribution we selected ten different values of the contour length and computed the
polymer concentration needed to replicate the experimental sample. Finally, we performed
DNSs in the numerically achievable range of friction Reynolds number 180 − 320.
As reference data for PEO, we use the information from Virk’s experimental review,
which reports a contour length of L∗

0 ≈ 6 µm and a relaxation time of approximately
τ ∗

0 = 3 × 10−4 s for a PEO sample with average molecular weight M∗
0 ≈ 5.7 ×

105 g mol−1. Contour length and relaxation time of the polymers with different molecular
weights M∗ can be estimated according to the Rouse scaling (Doi et al. 1988), namely
L∗ = L∗

0(M∗/M∗
0 ) and τ ∗ = τ ∗

0 (M∗/M∗
0 )2. In Berman’s paper, the tail of the molecular

weight distribution used in the experiment is reported in terms of cumulative mass (in
grams) and molecular weight. For convenience, we report the experimental distribution
in figure 1(a) using the cumulative concentration in wppm. The blue dots denote the
concentration of the selected ten polymer populations.

The friction coefficient γ ∗, although not directly measurable, is related to the polymer
relaxation time τ ∗ and the polymer equilibrium size r∗

eq , which can be experimentally
measured, see Virk (1975). For a dumbbell, γ ∗ = 6τ ∗k∗

B T ∗/r∗2
eq . However, the bead

friction coefficient is not the relevant quantity that characterises the dynamics of the
polymer solution. The polymer effect on the solvent depends on the quantity μ∗

p =
c∗

oγ
∗L∗2, rather than the concentration or the bead friction coefficient alone (Serafini et al.

2023). For convenience, we recall that the feedback-forcing field, which can be written in
terms of the end-to-end vector using (2.4), can be recast as the divergence of an extra-stress
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Figure 1. Panel (a) shows the tail of the molecular weight distribution in terms of cumulative concentration
(wppm). Panel (b) shows the ratio between the polymer and solvent viscosities for the different polymer
populations. Panel (c) shows the ratio of the Weissenberg number and the Reynolds number for the different
polymer populations.

tensor, F = ∇ · Tp, whose leading order reads

Tp 	 β

2 Wi Re

N∑
j=1

h( j) ⊗ h( j)

1 − ‖h‖( j)2

δ
(

x − x( j)
c

)
co

, (2.8)

where β = µ∗
p/µ

∗. It is proved in Serafini et al. (2023) that, provided there are a
sufficiently high number of polymers, the dynamics of a polymer suspension for given
Weissenberg and Reynolds numbers only depends on β and not on the singular parameters
c∗

o , γ ∗ and L∗. The same dynamics can be thus reproduced by a simulation with a lower c∗
o

and a larger γ ∗, such that β remains constant, to contain the computational cost. This point
is crucial since the actual number of polymer chains cannot be computationally afforded.
For instance, the population with the smallest molecular weight would require a number
of polymers of approximately 1013, an unaffordable number with current (and to come!)
computational resources. Here, each population has 108 dumbbells, for an overall number
of polymers of 109, and the friction coefficient is selected to obtain the desired value of
µ∗

p. Figure 1(b) reports the ratio β between polymer viscosity µ∗
p and solvent viscosity µ∗

for the ten different polymer populations parametrised in terms of their contour length L∗.
Given the varying molecular weight, the different polymer populations have different

Weissenberg numbers. To account for the varying Reynolds number in the simulations,
the dependence of the Weissenberg number on the polymer contour length is reported
in figure 1(c) in terms of the ratio Wi/Re. This ratio is nothing but the relaxation time
τ ∗ normalised with the viscous time scale �∗2

0 /ν∗. For each simulation, the Weissenberg
number Wi of the polymer populations can be derived by multiplying this quantity by
the Reynolds number, while the Weissenberg number in internal units Wiτ is obtained by
multiplication with the square of the friction Reynolds number.

The strong computational demand of the simulations can be nowadays afforded thanks
to massive parallelisation on graphics processing units available on modern pre-exascale
high performance computing architectures (Leonardo supercomputer facility @ Cineca
(Turisini et al. 2023).

3. Results
Figure 2(a) reports the molecular weight distribution used in the simulations. In particular,
the black-filled circles denote the concentrations (in wppm) of the selected contour lengths
L needed to reproduce the experimental distribution. In the experiment, where different
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Figure 2. Panel (a) shows the concentration of different contour length polymers to replicate the experimental
distribution measured by Berman (1977). Panel (b) shows the inverse of the square root of the friction factor f
vs friction Reynolds number Reτ ; different colours and symbols refer to the different fractions in terms of the
polymer population marked by the same colour and symbol in panel (a) (different symbol size is only used for
visualisation purposes). The solid grey line is the experimental curve of Berman (1977) and the dashed black
line is the Prandtl–Karman Newtonian law.

molecular weight polymers are mixed, the Weissenberg number ranges between 0 and 100,
see figure 1(c). Given the huge amount of low molecular weight polymers, the resulting
average Weissenberg number is below 1. Thus, a characterisation of the polymer solution
with an average Weissenberg number cannot reveal the relation between drag reduction
and polymer stretching.

Figure 2(b) reports the friction factor f measured by simulating Berman’s molecular
weight distribution. The comparison with the experimental results (black circles vs solid
grey line) shows excellent quantitative agreement. Consistently with the experimental
data, no drag reduction is measured at Reτ = 180 and 15 % drag reduction is obtained
at Reτ = 320. The green, violet and sky blue rings refer to simulations with only fractions
of the polymer population: the green rings refer to the entire population deprived of
the subpopulation of the longest polymers, the violet ones account for the first four
shortest polymer subpopulations and the sky blue rings involve only the two shortest
subpopulations. Drag reduction is largely associated with the longest population alone,
while the two shortest subpopulations do not produce any effect. This confirms that the
shortest polymers in the experimental distribution can be safely neglected as ineffective.
This result is consistent with Lumley’s intuition on the effect of polydispersity, given the
‘disproportionate’ effect of the highest molecular weight sample.

The numerical data allow for quantification of the elongation of the polymer molecules,
information not available in the experiments with polydisperse polymers. Figure 3 reports
the amount of polymers, in terms of concentration in wppm, with extension H = ‖h‖
above H0 for the ten selected polymer contour lengths (see legend)

c∗
H≥H0

(L∗) = c∗
o(L∗)

∫ 1

H0

p(σ )dσ , (3.1)

where p denotes the probability density function of the end-to-end distance. Panel (a)
shows that, at Reτ = 320, the polymer solution contains highly extended polymers, i.e.
characterised by a finite probability of finding polymers with H close to 1. The size of
the fully extended population increases with the Reynolds number (see the two panels
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Figure 3. Cumulative distribution of normalised polymer extension H for the selected contour length L at
friction Reynolds numbers Reτ = 320 (a) and Reτ = 180 (b).

corresponding to Reτ = 320 and Reτ = 180) and with the polymer contour (see different
colours). Indeed, the Weissenberg number increases with both Wiτ ∝ Reτ and Wiτ ∝ L2.
At Reτ = 180, shown in panel (b), the number of fully stretched polymers is insignificant
and no drag reduction is observed. For instance, the longest population (L∗ = 47 µm)
shows a number of polymers stretched beyond H0 = 0.8 at Reτ = 180 that is approximately
three orders of magnitude smaller than that at Reτ = 320. At Reτ = 320 the two shortest
populations (black and purple lines in panel a) show a negligible number of fully elongated
polymers and do not contribute to drag reduction. Indeed, the polymer population with
L∗ < 18 µm shows an amount of polymer stretched beyond H0 = 0.8 that is approximately
four orders of magnitude smaller than the populations longer than L∗ = 30 µm.

Drag reduction is due to the highly extended polymers also in the case of polydisperse
solutions of synthetic polymers, even if the Weissenberg number is significantly smaller
than the case of monodisperse DNA. Indeed, the two shortest subpopulations can
be removed with no harm from the suspension, despite exceeding by two orders of
magnitude in concentration all of the other subpoulations. Quantitatively, an approximate
concentration of 3 wppm of polymers longer than 20 µm is responsible for the entire drag
reduction at Reτ = 320, a very small amount if compared with the 400 wppm of the full
experimental sample. It is crucial to note that, when the irrelevant low molecular weight
polymers are neglected, the concentration of the effective polymers is consistent with the
typical concentration used in experiments with monodisperse DNA (few wppm).

The remaining issue concerns the role played by the polymer viscosity μ∗
p in the onset of

drag reduction. For this purpose, additional simulations with varying concentration were
run, which considered only the longest population, the one with the largest probability
of getting stretched. The open squares in figure 2(b) correspond the friction measured
by considering 0.12 wppm (β = 22) of the 47 µm long polymers at three different
Reynolds numbers, Reτ = 210, 260, 290. Such a small quantity of polymers is not able to
generate any drag reduction. At Reτ = 290 we also considered three additional solutions
with concentration co = 0.25, 0.5, 0.65 wppm (β = 44, 88, 115), marked with an open
triangle, an open diamond and an open star, respectively. Data show that the increase
in concentration provides a remarkable effect on drag reduction (DR), measured at
approximately 5%, 10% and 13%, respectively, corresponding to an almost linear increase,
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in agreement with Berman’s measurement with fractions of high molecular weight
polymers.

In conclusion, very large polymer stretching is the essential ingredient to explain
the onset of drag reduction, even in the case of polydisperse solutions for which a
characterisation in terms of bulk parameters (concentration and Weissenberg number)
would have suggested mild elongation. This brought De Gennes (1986) to propose two
different scenarios to explain the modification of turbulence depending on polymer
concentration and molecular weight: a first occurring when the polymers are still far from
full extension and large concentrations are required, a second occurring when the polymers
may be fully elongated. Here, we show that the first scenario is not realised, even for a
polymer solution of 400 wppm of PEO with a relatively small average molecular weight,
because of polydispersity. Consistently with the experimental observation of Berman,
we showed that most of the polymers are ineffective and just a spoonful with high
molecular weight induces drag reduction. The highest molecular weight polymers of the
distribution exhibit large stretching, eventually realising the second scenario. Consistently
with the idea of Lumley (1969), we try to relate the drag reduction to the increase of
extensional viscosity. An attempt was also made by Berman (1977) and a correlation
between extensional viscosity and drag reduction is reported in the experiments (Escudier
et al. 1999) and also observed in numerical simulations (Dimitropoulos et al. 1998;
Serafini et al. 2022). Starting from the polymer stress defined in (2.8), the dimensionless
increment of extensional viscosity can be derived from its definition

�η = Re
Tp11 − Tp33

E11
=

N∑
j=1

β

2 Wi
‖h( j)‖2

1 − ‖h( j)‖2

r ( j)2
1 − r ( j)2

3

E ( j)
11

δ(x − x( j)
c )

co
, (3.2)

where r ( j)
α = (h( j) · êα)/‖h( j)‖, E11 is the largest eigenvalue of E = (∇u + ∇uT )/2 and

êα (α = 1, 2, 3) are the corresponding eigenvectors. In an purely extensional flow, the
polymers are aligned with the extensional direction, i.e. r2

1 	 1 and r2
3 	 0, and stretched

by the extensional velocity gradient, thus

1
Wi

‖h‖2

1 − ‖h‖2 	 E11 . (3.3)

In a pipe flow, the topology can be different and the polymers are not generally aligned
with the extensional direction, thus the difference r ( j)2

1 − r ( j)2
3 is less than 1. Nonetheless,

the effect is caused by large polymer extension, thus the extensional viscosity provided by
Next extended polymers (the ones with H > Hext ≈ 1) can be estimated as

�η 	 β

2

Next∑
j=1

δ
(

x − x( j)
c

)
co

. (3.4)

Averaging over the domain, it follows that

�η ∝ β
cext

co
= β

cH>Hext

co
, (3.5)

where the quantity cH>Hext /co is the fraction of the polymers extended beyond Hext .
This quantity is a function of Wiτ and is computed from a set of simulations with
monodisperse solutions with β = 60 at Reτ = 180, fixing Hext = 0.8. It is shown in figure 4
using blue dots, alongside the drag reduction measured (red dots). The two curves display a
similar trend: both the number of extended polymers and drag reduction starts increasing
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Figure 4. Fraction of polymers extended beyond He = 0.8 (blue symbols) and drag reduction (DR, red
symbols) versus the Weissenberg number Wiτ .

above a threshold (approximately Wiτ = 50) and are asymptotic with the Weissenberg
number. The existence of a threshold explains why, in the polydisperse solution, the
low molecular weight polymers have zero effect, despite the polymer concentration, and
thus the polymer viscosity β, being significantly higher compared with the few high
molecular weight polymers, see figure 1(b). Considering the linear dependence between
drag reduction after onset and β, the analysis leads to the conclusion that there exists a
proportionality between the amount of drag reduction and the increased viscosity

DR ∝ �η ∝ β
cext

co
. (3.6)

A small discrepancy between the number of extended polymers and drag reduction appears
at Weissenberg numbers very close to the onset, at which the number of extended polymers
is not very large. The difference can be significantly reduced if the extended polymers’
statistics are restricted to the buffer zone, where turbulent velocity gradients are higher
and polymers are most likely to be stretched. The difference between local and global
averages reduces as the Weissenberg number increases since smaller velocity gradients
are needed to stretch the polymers.

To conclude, we remark that the relation (3.6) is expected to be valid for moderate drag
reduction, as the linear dependence on β cannot in fact explain the saturation at maximum
drag reduction.

4. Conclusions
By DNSs of a polydisperse polymer solution, we showed that drag reduction is obtained
when the turbulent velocity field fully extends a sufficient number of polymers. Simulation
results show excellent quantitative agreement with the experiment of Berman (1977).
In a monodisperse DNA solution, the polymers are easily extended to full length and,
being unable to elongate more, strongly alter the turbulent flow by locally modifying
the viscosity field (Serafini et al. 2022). In a polydisperse solution, the role of fully
elongated polymers remains crucial. When the longest polymers of the distribution have a
Weissenberg number that is large enough to allow for a sufficient number of fully stretched
polymers, the onset of drag reduction occurs.
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The conclusion is that full elongation is the essential ingredient to explain the onset of
drag reduction, even in the case of polydisperse solutions for which a characterisation in
terms of bulk parameters (concentration and Weissenberg number) is meaningless.

An interpretation of our results is possible in terms of a time criterion, similar to
the one proposed by Lumley (1969). In particular, we observe drag reduction when
the Weissenberg number is large enough such that fully stretched polymers appear in
the suspension. This scenario is realised when the Weissenberg number of the highest
molecular weight polymers is approximately Wiτ = 50 and their concentration is order
1 wppm. In most of the experiments, concentrations hundreds of times larger are needed
to compensate for the small occurrence of fully stretched polymers.
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