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Abstract

In a previous paper, the potential automorphy of certain Galois representations to
GLn for n even was established, following the work of Harris, Shepherd–Barron and
Taylor and using the lifting theorems of Clozel, Harris and Taylor. In this paper, we
extend those results to n= 3 and n= 5, and conditionally to all other odd n. The
key additional tools necessary are results which give the automorphy or potential
automorphy of symmetric powers of elliptic curves, most notably those of Gelbert,
Jacquet, Kim, Shahidi and Harris.

1. Introduction

In [Bar08], it is established that certain even-dimensional Galois representations become
automorphic when one makes a suitably large totally real field extension. In this paper we have
two main aims. The first is to extend those results to three- and five-dimensional representations;
in particular, we aim to prove the following theorem, which refers to a constant C(n, N) which
will be defined in the proof.

Theorem 1. Suppose that F/F0 is a Galois extension of CM fields1 and that n= 3 or 5. Suppose
that N > n+ 6 an even integer, and suppose that l > C(n, N) is a prime which is unramified
in F and l ≡ 1 mod N . Let vq be a prime of F above a rational prime q 6= l such that q 6 |N . Let L
be a finite set of primes of F not containing primes above lq.

Suppose that we are given a representation

r : Gal(F/F )→GLn(Zl)

with the following properties (we will write r̄ for the semisimplification of the reduction of r):

(i) r ramifies only at finitely many primes;

(ii) rc ∼= r∨ε1−nl , with Bellaiche–Chenevier sign2 +1;

1 A number field is called a CM field if it may be expressed as a degree 2, totally complex extension of a totally
real field.
2 More concretely, we can think of the isomorphism rc ∼= r∨ε1−nl as giving us a pairing 〈∗, ∗〉 on (Zl)n satisfying

〈r(σ)v1, r(
cσ)v2〉= ε1−nl (σ)〈v1, v2〉 for each σ ∈Gal(F/F ) and v1, v2 ∈ (Zl)n. If r is in addition assumed to be

absolutely irreducible, this pairing will either be symmetric or antisymmetric; and whether it is symmetric or
antisymmetric turns out to only depend on r. We define the sign of r to be +1 if the pairing is symmetric and
−1 if it is antisymmetric. This is the appropriate generalization of an ‘odd’ two-dimensional Galois representation
over a totally real field; just as even representations are rather badly behaved, so are representations with sign
−1, so we would not expect to get good results for such representations.

Received 8 February 2009, accepted in final form 12 August 2009, published online 10 March 2010.
2000 Mathematics Subject Classification 11R39 (primary), 11F23 (secondary).
Keywords: Galois representation, potential automorphy, potential modularity, Dwork hypersurface.

The author was partially supported by NSF grant DMS-0600716 and by a Jean E. de Valpine Fellowship.
This journal is c© Foundation Compositio Mathematica 2010.

https://doi.org/10.1112/S0010437X09004527 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X09004527


T. Barnet-Lamb

(iii) for each prime w|l of F , r|Gal(Fw /Fw ) is crystalline with Hodge–Tate numbers {0, 1, . . . ,
n− 1};

(iv) r is unramified at all the primes of L;

(v) (det r̄)2 ∼= ε
n(1−n)
l mod l;

(vi) let r′ denote the extension of r to a continuous homomorphism Gal(F/F+)→Gn(Ql) as
described in [CHT05, § 1], then r̄′(Gal(F/F (ζl)) is ‘big’ in the sense of ‘big image’;

(vii) F
ker ad r̄

does not contain F (ζl);
(viii) r̄ satisfies, for each prime w|l of F ,

r̄|IFw ∼= 1⊕ ε−1
l ⊕ · · · ⊕ ε

1−n
l ;

(ix) r|Gal(F vq/Fvq )
ss and r̄|Gal(F vq/Fvq ) are unramified, with r|Gal(F vq/Fvq )

ss having Frobenius

eigenvalues 1, (#k(vq)), . . . , (#k(vq))n−1.

Then there exists a CM field F ′ which is Galois over F0 and linearly independent from

F
ker ad r̄

over F . Moreover, all primes of L and all primes of F above l are unramified in F ′.
Finally, there is a prime wq of F ′ over vq such that r|Gal(F/F ′) is automorphic of weight zero and

type {Spn(1)}{wq}.

The second aim is to make, conditional on some conjectures of Harris and co-workers which
are expected to become theorems by 2010, a further extension to all remaining odd n, using
the work of Harris [Har07] which establishes the potential automorphy of all odd-dimensional
symmetric powers of elliptic curves subject to these ‘expected theorems’. To properly state
these expected theorems and set them in the appropriate context takes most of the first section
of [Har07], so a restatement of them will not be given here, but simply note that they can be
found as expected Theorems 1.2, 1.4 and 1.7 there. For the remainder of this paper we shall refer
to these statements as ‘the expected theorems of [Har07]’.

We then have the following theorem.

Theorem 2. Suppose that we admit the expected theorems of [Har07], and let F/F0 be a Galois
extension of CM fields and n an odd integer. Suppose further that N > n+ 6 is an even integer,
that l > C(n, N) is a prime which is unramified in F , and that l ≡ 1 mod N . Let L be a finite
set of primes of F not containing primes above lq.

Suppose that we are given a representation

r : Gal(F/F )→GLn(Zl)

with the following properties:

(i) r ramifies only at finitely many primes;

(ii) rc ∼= r∨ε1−nl , with Bellaiche–Chenevier sign +1;

(iii) for each prime w|l of F , r|Gal(Fw /Fw ) is crystalline with Hodge–Tate numbers {0, 1, . . . ,
n− 1};

(iv) r is unramified at all the primes of L;

(v) (det r̄)2 ∼= ε
n(1−n)
l mod l;

(vi) let r′ denote the extension of r to a continuous homomorphism Gal(F/F+)→Gn(Ql) as
described in [CHT05, § 1], then r̄′(Gal(F/F (ζl)) is ‘big’ in the sense of ‘big image’;

(vii) F
ker ad r̄

does not contain F (ζl);
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Potential automorphy of odd-dimensional Galois representations

(viii) r̄ satisfies, for each prime w|l of F ,

r̄|IFw ∼= 1⊕ ε−1
l ⊕ · · · ⊕ ε

1−n
l .

Then there exists a CM field F ′ which is Galois over F0 and linearly independent from

F
ker ad r̄

over F . Moreover, all primes of L and all primes of F above l are unramified in F ′.
Finally, r|Gal(F/F ′) is automorphic of weight zero.

It is also worth noting that it is possible to use the freedom to vary N to deduce corollaries
where the congruence condition on l is removed and replaced with a condition that l avoid a
certain set of primes of Dirichlet density zero. See Appendix A for the details. While these are
strict weakenings of the theorems above, they may be useful for applications.

Corollary 3. Suppose that n is 3 or 5. There is a set Λ of rational primes whose complement
has Dirichlet density zero and a function N : Λ→ Z with the following property. Suppose that
F/F0 is a Galois extension of CM fields and l ∈ Λ is a prime which is unramified in F . Let vq be
a prime of F above a rational prime q 6= l, and q 6 |N(l). Let L be a finite set of primes of F not
containing primes above lq.

Finally, suppose that we are given a representation r : Gal(F/F )→GLn(Zl) enjoying the
properties (i)–(ix) of Theorem 1, and such that property (vi) is ‘robust’ in the sense that it
remains true when r̄ is restricted to any subgroup of Gal(F/F ) with cyclic quotient.

Then there is a totally real field F ′ which is Galois over F0 and linearly independent from

F
ker ad r̄

over F . Moreover, all primes of L and all primes of F above l are unramified in F ′.
Finally, there is a prime wq of F ′ over vq such that r|Gal(F/F ′) is automorphic of weight zero and

type {Spn(1)}{wq}.

Corollary 4. Suppose that we admit the expected theorems of [Har07], and let n be an integer.
There is a set Λ of rational primes whose complement has Dirichlet density zero and a function
N : Λ→ Z with the following property. Suppose that F/F0 is a Galois extension of CM fields
and l ∈ Λ is a prime which is unramified in F . Let L be a finite set of primes of F not containing
primes above l.

Finally, suppose that we are given a representation r : Gal(F/F )→GLn(Zl) enjoying the
properties (i)–(viii) of Theorem 2, and such that property (vi) is ‘robust’ in the sense that it
remains true when r̄ is restricted to any subgroup of Gal(F/F ) with cyclic quotient.

Then there is a totally real field F ′ which is Galois over F0 and linearly independent from

F
ker ad r̄

over F . Moreover, all primes of L and all primes of F above l are unramified in F ′.
Finally, r|Gal(F/F ′) is automorphic of weight zero.

We close the introduction with a simplified overview of the methods necessary to prove
the two theorems above, with particular attention given to what is novel in the proofs. The
basic structure of all potential automorphy proofs follows the seminal work of Taylor [Tay03].
Two main ingredients are necessary. The first is a good supply of representations with certain
properties, most notably that they are known a priori to be automorphic. The second is a
family F of varieties whose cohomology is ‘very flexible’. By very flexible, we mean that given
specified l-adic and l′-adic representations r and r′, and subject to certain conditions, we can find
(over some suitably large totally real field) an element V of the family whose mod l cohomology
looks like the residual representation of r, and whose mod l′ cohomology looks like the residual
representation of r′.
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These two ingredients are then applied to prove the theorem as follows. We then apply the
very flexible cohomology property taking r to be the Galois representation which we would like
to show is potentially modular and r′ to be one of our good supply of representations that are
already known to be modular. Over the field of definition of this variety (which may well be a
very large extension of the field we started with) r and the cohomology of V (respectively r′

and the cohomology of V ) agree mod l (respectively l′). We can then apply a modularity lifting
theorem twice: once, to deduce that the cohomology of V is modular (since it agrees mod l′

with r′), then again to deduce that r is modular (since it agrees mod l with the cohomology
of V ).

In practice, the actual argument involves a few more steps, since one has to accommodate
various conditions that the lifting theorems have, most notably conditions that the
representations we work with must be Steinberg at certain places. (We say that an n
dimensional automorphic representation π of GLn(AK) is Steinberg at a finite place v if the
local representation πv is an unramified twist of the Steinberg representation of GLn(Kv).) For
an overview explaining slightly more of the details, we refer the reader to the introduction
to [Bar08]; this, however, is more-or-less the flavor of the argument.

The reason that the earlier paper had to restrict itself to even-dimensional representations was
not a restriction in the part of the proof constructing the family with very flexible cohomology,
but rather in the supply of ‘good’ Galois representations r′ already known to be modular. In
particular, [Bar08] followed the paper [HST06] in taking these r′ to be induced from a character
of a CM extension of Q. Such an r′ must necessarily be even-dimensional, and so the results are
automatically restricted to even-dimensional representations.

The principal new idea in the present paper is to use a different source of ‘already
automorphic’ Galois representations; in particular, we will use the symmetric powers of the
cohomology of a suitably chosen elliptic curve. For n= 3 and n= 5, we will be able to take
the symmetric square and fourth power, which are known unconditionally to be automorphic,
and cuspidal in the appropriate cases, through work of Gelbert and Jacquet and Kim and Shahidi
respectively [GJ78, Kim02, KS02]. For larger odd n, we use the result of [Har07] which, as has
already been mentioned, proves, subject to the expected theorems, that all remaining symmetric
powers are potentially automorphic. (Potential automorphy, rather than true automorphy, is
good enough for our purposes.)

The organization of the remainder of this paper is as follows. In § 2 we explain the very
simple modifications to the arguments of [Bar08] that are necessary to extend the construction
of motives with very flexible cohomology to the odd-dimensional case. In § 3 we briefly review the
literature [GJ78, Kim02, KS02] on symmetric powers of two-dimensional Galois representations
and the results of Harris in [Har07], and use these results to construct the supply of ‘good’
representations which we need. Finally, in § 4 we put these pieces together to get a proof of the
main theorem.

2. Extending the analysis of the Dwork family

In this section we describe how the geometric arguments in [Bar08, § 2] can be extended to cover
the case of odd n. The changes necessary are very straightforward. We follow the first page
of [Bar08, § 2], which sets up the notation, completely unaltered. The first difference between the
analysis here and that in [Bar08] comes when we reach the point just before Proposition 4 where
a choice of a certain even-dimensional piece of the cohomology Priml,[v] is made, corresponding
to a choice of an element [v] ∈ (Z/NZ)0/〈W 〉. At this point, we assume that we have an odd
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number n, n > 1; we then write n= 2k + 1 and we choose a different v, viz

v = (0, 0, . . . , 0, 1, k + 2, k + 3, . . . , N/2− 2, N/2, N/2 + 1, . . . , N − k − 3, N − k − 2, N − 2),

where we include every number once, except that we omit the ranges 2, 3, . . . , k + 1 and
N − k − 1, . . . , N − 3, together with the singletons N/2− 1 and N − 1, and where the number
of zeroes at the beginning is n+ 1, calculated to ensure that there are N numbers in total.
Note that these numbers add up to 0 mod N . Note also that the ranges ‘make sense’ as long as
N > n+ 3; for instance, if n= 3, N = 8, we take v = (0, 0, 0, 0, 1, 4, 5, 6).

We then have the following analogues of [Bar08, Proposition 3, Corollary 4 and Lemma 6].
(As usual, we write Priml,[v],t for the stalk of Priml,[v] at t, etc.)

Proposition 5. We have the following facts about the varieties Yt and the sheaves Prim[l][v],

Priml,[v] and F i[l]. Let F be a number field. Recall that we are assuming that l ≡ 1 mod N
throughout.

(i) If t ∈ T (l)
0 (F ) and q is a place of F such that vq (1− tN ) = 0, then Yt has good reduction

at q.

(ii) Suppose that t ∈ T (l)
0 (F ). The Galois representation

Priml,[v],t : Gal(F/F )→GLn(Ql)

satisfies Primc
l,[v],t

∼= Prim∨l,[v],tε
2−N
l . Similarly, Prim[l]c[v],t

∼= Prim[l]∨[v],tε
2−N
l . (Indeed these

isomorphisms patch for different t to give a sheaf isomorphism.)

(iii) The sheaf Priml,[v] has rank n. There is a tuple ~h= (h(σ))σ∈Hom(F,Ql) such that the Hodge–

Tate numbers of Priml,[v] at the embedding σ are {h(σ), h(σ) + 1, . . . , h(σ) + n− 1}.

(iv) Let ~h continue to denote the tuple defined in the previous part. Suppose w|l, and let
σ ∈Hom(F,Ql) denote the corresponding embedding. Then

Priml,[v],0|Iw ∼= ε
−h(σ)
l ⊕ ε−h(σ)−1

l ⊕ · · · ⊕ ε1−h(σ)−n
l ,

and

Prim[l][v],0|Iw ∼= ε
−h(σ)
l ⊕ ε−h(σ)−1

l ⊕ · · · ⊕ ε1−h(σ)−n
l .

(v) Let q be a prime of F above a rational prime which does not divide N . If λq ∈ T (l)
0 (Fq ) has

vq (λq )< 0, then (Priml,[v],λq
)ss is unramified, and (Priml,[v],λq

)ss(Frobq ) has eigenvalues

{α, α#k(q), α(#k(q))2, . . . , α(#k(q))n−1}

for some α.

(vi) Let q be a prime of F above a rational prime which does not divide N . If λq ∈
T

(l)
0 (Fq ) has vq (λq )< 0 and l|vq (λq ), then (Prim[l][v],λq

) is unramified (even without
semisimplification).

(vii) The monodromy of Priml,[v] is Zariski dense in {A ∈GLn | det A=±1}.

Proof. The proof of the corresponding proposition of [Bar08] only depends on v insofar as it
requires v to possess the following properties:

– v satisfies point (1) of the equivalent conditions in [Kat07, Lemma 10.1], viz that the value 0
occurs more than once and no other value does;

– −v is not a permutation of v;
– v omits precisely n congruence classes mod N .
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Since our new v is readily seen to possess these properties too, we can carry over the proof
unchanged. 2

Corollary 6. There is a constant C(n, N) such that if M is an integer divisible only by primes

p > C(n, N) and if t ∈ T (M)
0 , then the map

π1(T (M)
0 , t)→GLn(Prim[M ][v],t)

surjects onto SL±n (Prim[M ][v],t). (Here SL±n (Prim[M ][v],t) denotes the group of automorphisms of
Prim[M ][v],t with determinant ±1.) (We may, and shall, additionally assume that C(n, N)> n.)

Proof. The argument is identical to the proof of [Bar08, Corollary 4] or [HST06, Lemma 1.11],
deducing the result from part (7) of the previous proposition and from [MVW84, Theorem 7.5
and Lemma 8.4] (or [Nor87, Theorem 5.1]). 2

Lemma 7. Define a character GQ(µN )→Q×l :

φl := Λv,W
∏
i

(λcan
GQ(µN )

({χi}, {1}))2

(where Λv,W is the Galois character defined in [Kat07, Theorem 5.3] and the χi are the maps
µN → µN naturally associated to the elements vi ∈ Z/N/Z); we have that

(det Priml,[v],t=2)2 = φ2n
l ε

n(1−n)
l .

Proof. The proof is exactly as for [Bar08, Lemma 7]. 2

We can use this result to define a notation which will be useful to us in the remainder of
this paper. Looking at the Hodge–Tate number of either side of the equation above at a prime l
over l, and writing HTl (φl) for the Hodge–Tate number of φl at that place, we get

2× (~h(l) + (~h(l) + 1) + · · ·+ (~h(l) + n− 1)) = 2nHTl (φl) + n(n− 1),

(2~h(l) + n− 1)n= 2nHTl (φl) + n(n− 1),

(2~h(l))n= 2nHTl (φl),

and we deduce that HTl (φl) = ~h(l). Thus we can use twisting by φl to shift the Hodge–Tate
numbers of an arbitrary representation by ~h.

Definition 8. Given an l-adic Galois representation r, we will write r(−~h) for the twist of r
by the character φl introduced above, and r(~h) for the twist by the inverse. (Thus, for example,
the Hodge–Tate numbers of r(~h) are those of r shifted by minus ~h.)

We can finally deduce an analogue of [Bar08, Proposition 7]. (We have slightly changed the
notation.)

Proposition 9. The family Yt and the piece of its cohomology corresponding to Priml,[v],t have
the following property.

Suppose K ′/K is a Galois extension of CM fields, with totally real subfields K ′+, K+, n is a
positive odd integer, l1, l2 . . . lr are distinct primes which are unramified in K, and that we are
given residual representations

ρ̄i : Gal(K/K)→GLn(Fli).
Suppose further that we are given q1, q2, . . . , qs, distinct primes of K above rational primes
q1, . . . , qs respectively, and L a set of primes of F not including the qj or any primes above
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the li. Suppose that each qj satisfies qj 6 |N . Finally, suppose that the following conditions are
satisfied for each i.

(i) li >C(n, N).
(ii) li ≡ 1 mod N .

(iii) ρ̄i is unramified at each prime of L and the lk, k 6= i.

(iv) For each prime w above li, we have that

ρ̄i|Iw ∼= 1⊕ ε−1
li
⊕ · · · ⊕ ε1−nli

.

(v) We have that there exists a polarization ρ̄ci
∼= ρ̄∨i ε

1−n
li

; given this, we can associate to ρ̄i a
sign in the sense of Bellaiche–Chenevier and we require that this sign is +1. Finally, we

require that (det ρ̄i)2 ∼= ε
n(1−n)
li

.

Then we can find a CM field F/K, linearly disjoint from K ′/K, a finite-order character
χi : Gal(Q/F )→Qli for each i, and a t ∈ F such that:

(i) all primes of K above the {li}i=1,...,r and all the L are unramified in F ;

(ii) for all i, Yt has good reduction at each prime lying above li, and each prime above the
primes of L;

(iii) for all i and w|li, Primw ,t(~h)⊗ χi is crystalline with Hodge–Tate numbers {0, 1, . . . , n− 1};
(iv) for each Q above some qj , we have that (Primli,[v],t)ss and χi are unramified at Q, with

(Primss
li,[v],t(~h)⊗ χ)(FrobQ ) having eigenvalues

{1,#k(Q),#k(Q)2, . . . ,#k(Q)n−1};

(v) Prim[li][v],t(~h)⊗ χ̄i = ρ̄i for all i.

Proof. The proof is identical to that of [Bar08, Proposition 7], except that all concerns about the
sign of the pairing determinant are eliminated, since for odd-dimensional representations one can
turn a pairing with square determinant into one with non-square determinant, and vice versa,
by multiplying the whole pairing by a non-square. 2

3. Review of certain automorphy and potential automorphy theorems

As was mentioned in the introduction, the key difficulty in proving a potential automorphy
theorem for odd-dimensional representations is finding a good starting point: a supply of odd-
dimensional representations known to be (at least potentially) modular. We will use two sources
here. On the one hand, we have the functoriality theorems for the symmetric square and fourth
power of a two-dimensional representation, as proved by Gelbert, Jacquet, Shahidi and Kim.
(The symmetric square will be three-dimensional and the fourth power will be five-dimensional.)
Let us review these theorems.

Theorem 10 (Gelbert and Jacquet; [GJ78, part of Theorem 9.3]). Let F be a number field,
and let π be a unitary irreducible representation of GL2(AF ) which is automorphic cuspidal.
Assume that for any character χ of A×/F×, χ 6= 1, we have that π and π ⊗ χ are inequivalent.
Then Sym2π is automorphic cuspidal.3

3 Sym2π may be defined by putting together local pieces; the local definition comes from the local Langlands
correspondence of [HT01].
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Theorem 11 (Kim [Kim02, Theorem B]). Suppose that F is a number field, and π is a cuspidal
automorphic representation of GL2(AF ). Then Sym4π is an automorphic representation4 of
GL5(AF ). If Sym3(π) is cuspidal, then Sym4(π) is either cuspidal or induced from cuspidal
representations of GL2(AF ) and GL3(AF ).

Theorem 12 (Kim and Shahidi [KS02, Theorem 3.3.7]). Suppose that F is a number field, and π
is a cuspidal representation of GL2(AF ). Then Sym4π is a cuspidal automorphic representation
of GL5(AF ), unless:

– π is monomial (this is equivalent to π being of dihedral type);

– π is not monomial and Sym3π is not cuspidal; this occurs when there exists a non-trivial
grössencharacter µ such that Ad(π)∼Ad(π)⊗ µ (this is equivalent to π being of tetrahedral
type);

– Sym3π is cuspidal, but there exists a non-trivial quadratic character η such that Sym3(π)∼
Sym3(π)⊗ η (this is equivalent to π being of octahedral type).

Since a representation corresponding to a Galois representation with distinct Hodge–Tate
weights will never be dihedral, tetrahedral or octahedral, we may conclude the following.

Corollary 13. Suppose that F is a CM or totally real field, and π is a cuspidal automorphic
representation of GL2(AF ) corresponding to an irreducible Galois representation r with Hodge–
Tate numbers {0, 1} (for example, the cohomology of an elliptic curve), and such that there
exists some place vq of F such that π has type {Sp(1)}{vq}.

Then Sym2r and Sym4r are automorphic of type {Sp(1)}{vq}; that is, there are RAESDC

representations,5 Steinberg at vq, viz. Sym2π and Sym4π, to which the Galois representations
Sym2r and Sym4r are attached by the procedure of Harris and Taylor (see [CHT05,
Proposition 4.3.1], which is based closely on [HT01, Theorem VII.1.9]).

Proof. Given the theorems above, we merely check the trivialities that π being regular, being
algebraic, being essentially self-dual, and being Steinberg at vq, imply the same for Sym2π and
Sym4π. 2

This is our first source of ‘starting points’ for proving odd-dimensional cases of potential
automorphy. The second source is potential automorphy theorems for odd-dimensional symmetric
powers of elliptic curves, as proved by Harris.

Theorem 14 (Harris [Har07, Theorem 4.4]). Let n be an odd positive integer. Assume the
expected theorems of [Har07]. Let F ∗,+/F+ be an extension of totally real fields, L a quadratic
imaginary field, and L a finite set of places of F+. There is a field M which depends only
on L and n such that whenever l > C ′(n) is a rational prime unramified in F+ and split
in M , and E an elliptic curve over F+ with good reduction at l and the primes of L, then
there is a finite totally real Galois extension F ′,+/F+, linearly disjoint from F ∗,+/F+ and
unramified at primes of L, and a RAESDC automorphic representation π of GLn(F ′,+), whose
associated Galois representation is isomorphic to (SymnH1(E, Zl))|Gal(Q/F ′,+). In other words,

SymnH1(E, Zl)|Gal(Q/F ′,+) is automorphic.

(Here C ′(n) is a constant depending only on n.)

4 Sym4π is defined by putting together local pieces; the local definition comes from local Langlands.
5 RAESDC stands for regular algebraic, essentially self dual, and cuspidal (for a full definition, see [CHT05, § 4.3,
p. 125]).
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Remark 15. The field L and the conditions on l do not occur in the statement of [Har07,
Theorem 4.4], since they reflect ongoing assumptions throughout that paper. For the convenience
of the reader, we will point out exactly where the assumptions on l arise. In the ‘set up’ in § 2.3,
we assume that l splits in L and a certain field Q(χ) depending only on L, and assume that
l > 2n+ 1. Then, in applying Corollary 2.5, we additionally require that l is larger than some
C(n) and that it splits in a certain cyclotomic extension. Finally, in applying Lemma 3.2 we
assume that l > 4n− 1. These conditions can be combined, as we do above, by saying that l
exceeds some C ′(n) and splits in some M .

Remark 16. The set L of places does not appear in the statement of [Har07, Theorem 4.4], but
the field F ′,+ is chosen by an application of Theorem 2.1 of that paper; this theorem allows us to
ensure that the field we choose does not ramify at some finite set of primes. The condition that E
must have good reduction at the primes of L means we can just add the primes of L to that set.6

Similarly, the field F ∗,+ does not occur in the statement of Theorem 4.4, but Theorem 2.1 allows
us to avoid any fixed field; see Harris’ remarks immediately after the statement of Theorem 2.1.

We are now in a position to address the main theorems.

4. Arguments for the main theorems

We will give a proof of both of our main theorems simultaneously; let us restate them in a
convenient form to do so. (We have also relabelled the set L of primes as L′; this will avoid
confusion from a clash of notation with the different L that arise in the statements of the
propositions and theorems which we will apply in the proof.)

Theorem (Restatement of Theorems 1 and 2). Suppose that F/F0 is a Galois extension of CM
fields and that n is an odd integer. Suppose N > n+ 6 an even integer. Suppose that l > C(n, N)
is a prime which is unramified in F and l ≡ 1 mod N . Let L′ be a finite set of primes of F not
containing primes above lq.

Suppose that we are given a representation

r : Gal(F/F )→GLn(Zl)

with the following properties (we will write r̄ for the semisimplification of the reduction of r):

(i) r ramifies only at finitely many primes;

(ii) rc ∼= r∨ε1−nl , with sign +1;

(iii) r is unramified at all the primes of L′;
(iv) (det r̄)2 ∼= ε

n(1−n)
l mod l;

(v) let r′ denote the extension of r to a continuous homomorphism

Gal(F/F+)→Gn(Ql)

as described in [CHT05, § 1], then r̄′(Gal(F/F (ζl)) is ‘big’ in the sense of ‘big image’;

(vi) F
ker ad r̄

does not contain F (ζl);
(vii) for each prime w|l of F , r|Gal(Fw/Fw) is crystalline with Hodge–Tate numbers {0, 1, . . . ,

n− 1}; also

r̄|IFw ∼= 1⊕ ε−1
l ⊕ · · · ⊕ ε

1−n
l .

6 We might also have to be careful in our choice of the character χ, so that it is unramified at the primes of L,
but this is also easily achieved.

615

https://doi.org/10.1112/S0010437X09004527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004527


T. Barnet-Lamb

Suppose further that one of the following holds.

Case X. We have that n= 3 or n= 5. Moreover, there exists vq, a prime of F above a rational
prime q 6= l such that q 6 |N , such that (r|Gal(F vq/Fvq ))

ss and r̄|Gal(F vq/Fvq ) are unramified and

(r|Gal(F vq/Fvq ))
ss has Frobenius eigenvalues 1, (#k(vq)), . . . , (#k(vq))n−1.

Case Y. We admit the expected theorems of [Har07].

Then there is a CM field F ′ which is Galois over F0 and linearly independent from F
ker ad r̄

over F . Moreover, all primes of L′ and all primes of F above l are unramified in F ′. Finally,
there is a prime wq of F ′ over vq such that r|Gal(F/F ′) is automorphic of weight zero and type

{Spn(1)}{wq}.

Proof. Step A. We begin by choosing a quadratic imaginary field L linearly disjoint from F
over Q. Let M be the field given in Theorem 14. We then choose a prime l′ with the following
properties, which is clearly possible:

(A1) l′ is unramified in F ;
(A2x) l′ >C(2) (this is the constant C(n) defined in [HST06, Theorem 3.2]);
(A2y) l′ >C ′(n) (the constant from Theorem 14);
(A3) l′ >C(n, N) (the constant from Proposition 9);
(A4) l′ splits in Q(ζN ) and in M ;
(A5) r is unramified at l′, l′ 6= l and l′ 6= q.

Step B. Choose an elliptic curve E over Q with the following properties:

(B1) E has good ordinary reduction at l′, with H1(E ×Q, Zl′) semisimple (or, in other words,
tamely ramified);

(B2) E has good ordinary reduction at l and the primes of L′;
(B3) (if we are in case X) E has multiplicative reduction at q;
(B4) the Galois representation coming from the cohomology H1(E ×Q, Zl′) is surjective.

It is possible to do this using the form of Hilbert irreducibility with weak approximation
(see [Eke90]). We can impose the condition over q by insisting that the j invariant satisfies
vq(j)< 0; we can impose the condition at the prime l′ by taking the Serre–Tate canonical lift of
an ordinary elliptic curve.

We will write rE for the n-dimensional Galois representation given by Symn−1H1(E ×Q, Zl′).

Step C. We now apply Proposition 9 with K = F , r = 2, l1 = l, l2 = l′, K ′ = F
ker ad r̄∩ker ad r̄E ,

ρ̄1 = r mod l, ρ̄2 = rE |GF mod l′, and L= L′. In case X we take s= 1 and q1 = vq; in case Y we
take s= 0. Let us verify the conditions of this proposition in turn.

(i) The li are large enough. For l, this is a hypothesis of the theorem. For l′, it is point
(A3) above.

(ii) The li split in Q(ζN ). Again, for l this is a hypothesis of the theorem; for l′ it is point (A4)
above.

(iii) The ρ̄i are unramified at the primes of L′ and the li. This follows from point (B2), hypothesis
(vi), and point (A5).

(iv) The ρ̄i have the right restriction to inertia. For ρ̄1 this is hypothesis (vii) of our theorem;
for ρ̄2 it follows from point (B1) above.
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(v) Essentially self-dual with correct determinant and sign. For ρ̄1 this is hypotheses (i) and
(ii) of the theorem being proved; for ρ̄2 it follows from the fact that rE is symplectic with
multiplier ε1−nl′ and rE = rcE .

This constructs a CM field F0/F , characters χ1 :GF →Ql and χ2 :GF →Ql′ , and a t ∈ F0

such that:

(C1) all primes of F above l, l′ and all the primes of L′ are unramified in the field F0;

(C2) Yt has good reduction at all primes of F0 above l, l′ and all the primes of L′;
(C3) for all w|ll′, Primw ,t(~h)⊗ χi is crystalline with Hodge–Tate numbers {0, 1, . . . , n− 1};
(C4) (if we are in case X) For each Q above vq, we have that (Primli,[v],t)ss and χi are unramified

at Q, with (Primss
li,[v],t(~h)⊗ χ)(FrobQ ) having eigenvalues

{1,#k(Q),#k(Q)2, . . . ,#k(Q)n−1};

(C5) we have that Prim[l][v],t(~h)⊗ χ̄i = r|GF0
mod l;

(C6) we have that Prim[l′][v],t(~h)⊗ χ̄i = rE |GF0
mod l′;

(C7) F0 is linearly disjoint from F
ker ad r̄∩ker ad r̄E over F .

Step D. The objective of this step is to find a totally real Galois field extension F+
1 /F

+
0 , with

the following properties:

(D1) rE |G
F+
1

is automorphic (in case X, automorphic of type {Spn(1)}{w|vq});

(D2) none of the primes of L′ ramify in F1;

(D3) l does not ramify in F1;

(D4) F+
1 is linearly disjoint from (F ker ad r̄∩ker ad r̄E )+ over F+.

We will use slightly different arguments in case X and case Y.

Case X. We apply Theorem 14, taking L= L′ ∪ {l}, F ∗,+ = (F ker ad r̄∩ker ad r̄E )+ and
with the l in the theorem being our l′. We observe that l′ is split in M (by condition
(A4)), and that E has good reduction at l, l′ and the primes of L′ (by conditions (B1), (B2)
above), that l′ is large enough (by point (A2x)), and finally that the primes of L′, l and l′

do not ramify in F+
1 by conditions (C1), (A1) above. Thus we meet the conditions of the

theorem, which immediately gives us what we want.

Case Y. We apply [HST06, Theorem 3.2], in the case n= 2, to the two-dimensional Galois
representation H1(E ×Q, Zl′). In fact, we will apply a modified version of the theorem with
a collection L of primes which may be chosen not to ramify in the field extension the theorem
will produce, and where we are allowed to assume that this extension is linearly disjoint
from any other fixed extension F ∗,+; the requisite arguments are just as in Remark 16
above. We will take L= L′ ∪ {l}, F ∗,+ = (F ker ad r̄∩ker ad r̄E )+, and the l in the theorem is
our l′.

It is immediate that the representation H1(E ×Q, Zl′) is odd and that it has Hodge–
Tate numbers {0, 1}. It is also surjective (by condition (B4)) and Steinberg at primes above q
(by condition (B3)). Finally, note that the primes of L′, l and l′ do not ramify in F+

1 by
conditions (C1), (A1) above and l′ is large enough to apply the theorem by condition (A2y).
Whence we satisfy the conditions of the theorem, and we can construct a field F+

1 /F
+
0
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with H1(E ×Q, Zl′)|G
F+
1

automorphic of type {Spn(1)}{w|vq}. Applying Corollary 13, and

the fact that n= 3 or n= 5, we deduce that rE |G
F+
1

(= Symn−1H1(E ×Q, Zl′)|G
F+
1

) is

automorphic of type {Spn(1)}{w|vq}.

Step E. Define F1 = F0F
+
1 , a CM field with totally real subfield F+

1 . We now apply a modularity
lifting theorem to deduce that the Galois representation (Priml′,[v],t(~h)⊗ χ1)|GF1

is automorphic
(in case X, automorphic of type {Spn(1)}{w|vq}.) In case X, the theorem we apply is [Tay06,
Theorem 5.2]; in case Y we apply the strengthening of that theorem made possible by admitting
the expected theorems of [Har07] and given as Theorem 1.7 of that paper, in which the Steinberg
condition is removed. Let us check the conditions of these theorems (following the numbering
in [Tay06]) in turn.

(i) Priml′,[v],t(~h)⊗ χ1|GF1
is conjugate self-dual. This is immediate from Proposition 5, part 2.

(ii) Priml′,[v],t(~h)⊗ χ1|GF1
is unramified almost everywhere. This is trivial.

(iii) Priml′,[v],t(~h)⊗ χ1|GF1
is crystalline at all places above l′. This is from point (C3) above.

(iv) Priml′,[v],t(~h)⊗ χ1|GF1
has the right Hodge–Tate numbers all places above l′. This is true

for the same reason as the previous point.
(v) Priml′,[v],t(~h)⊗ χ1|GF1

is Steinberg at places above vq. (This condition is only present in
case X.) This is point (C4) above.

(vi) Priml′,[v],t(~h)⊗ χ1|GF1
has big image. By point (C6), it suffices to show that r̄E |GF1

has
big image; by points (C7) and (D4) it then suffices to show that r̄E has big image. For
this we use the simplicity of PSL2(Fl) for l > 3, [CHT05, Corollary 2.5.4], and point (B4)
above.

(vii) Let M ′ = ker ad Prim[l′][v],t(~h)⊗ χ1|GF1
; then FM

′
does not contain F (ζl). Same argument

as previous point.
(viii) Priml′,[v],t(~h)⊗ χ1|GF1

is residually automorphic. (In case X we must additionally have
‘automorphic of type {Spn(1)}{w|vq}’.) By point (D1) above, we have that rE |G

F+
1

is

automorphic; by abelian base change, we therefore have that rE |GF1
is automorphic. By

point (C6) above, this gives us what we need.

Step F. We now apply a modularity lifting theorem to deduce that r|Gal(F̄ /F1) is automorphic
(in case X, automorphic of type {Spn(1)}{w|vq}.) Again we use [Tay06, Theorem 5.2] in case X
and [Har07, Theorem 2.7] otherwise. Let us check the conditions.

(i) r|GF1
is conjugate self-dual. This is condition (ii) of the theorem currently being proved.

(ii) r|GF1
is unramified almost everywhere. This is condition (i) of the theorem currently being

proved.
(iii) r|GF1

is crystalline at all places above l. This is by condition (vii) of the theorem currently
being proved.

(iv) r|GF1
has the right Hodge–Tate numbers at all places above l. This is also by condition

(vii) of the theorem currently being proved.
(v) r|GF1

is Steinberg at places above vq. (This condition is only present in case X.) This is
one of the hypotheses in case X.

(vi) r̄|GF1
has big image. Condition (v) of the theorem currently being proved gives that this is

true before restriction to GF1 ; points (C7) and (D4) then show it remains true after this
restriction.
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(vii) F
ker ad r̄|GF1 does not contain F (ζl). This is condition (vi) of the theorem currently being

proved.

(viii) r|GF1
is residually automorphic. (In case X we must additionally have ‘automorphic

of type {Spn(1)}{w|vq}’.) By point (C5) above, Prim[l][v],t(~h)⊗ χ1 = r̄, so certainly
Prim[l][v],t(~h)|GF1

⊗ χ1 = r̄|GF1
and it suffices to show that Priml,[v],t(~h)|GF1

is
automorphic. For this, note that we concluded in step E that (Priml′,[v],t(~h)⊗ χ1)|GF1

is automorphic. Additionally, we know that Yt has good reduction at l, l′, by point (C2)
above. Thus we can deduce that (Priml,[v],t(~h)⊗ χ1)|GF1

is also automorphic.

This concludes the proof of the theorem, since we can take F ′ = F2. (Note that the primes of L′ are
unramified in F2 by condition (D2), and the primes above l are unramified by condition (D3).) 2
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Appendix A. Some simple analysis

The purpose of this section is to do some very simple analysis to allow the deduction of
Corollaries 3 and 4 from our main theorems. It is trivial that it suffices to prove the following
statement.

Proposition 17. Fix an integer n. Let Λ be a set of rational primes such that for all even
N > n there exists a constant C(N) such that all primes l congruent to 1 mod N and larger
than C(N) lie in Λ. Then Λ has Dirichlet density one.

Proof. Let ε > 0 be given. Then we can find a finite list of even integers N1, . . . , Nk each of which
is greater than n such that the set of primes congruent to 1 mod at least one Ni has Dirichlet
density greater than 1− ε. (For instance we could take the Ni to simply be twice an increasing
list of consecutive primes above n; then the fact that

∏
(1− (1/p)) diverges to 0 gives us what

we want.)

Then, writingD+(S) (respectivelyD−(S)) for the upper (respectively lower) Dirichlet density
of a set of primes S, D(S) for the Dirichlet density if it exists, S1 for the set of primes congruent
to 1 mod at least one Ni, and S0 for the set of primes congruent to 1 mod at least one Ni and
larger than the maximum of the C(Ni), we have

1 > D+(Λ) >D−(Λ)
= D−(S0) (since S0 ⊂ Λ)
= D−(S1) (finite sets do not affect density)
= D(S1) (since S1 has a density)
> 1− ε.

Since ε was arbitrary, we have that 1 >D+(Λ) >D−(Λ) > 1, whence we are done. 2
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