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Abstract The purpose of this paper is to derive an integral representation of the Drazin inverse of an
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Keywords: Banach algebra; Drazin inverse; integral representation

AMS 2000 Mathematics subject classification: Primary 46H05; 46L05

1. Introduction

Let A be a complex unital Banach algebra with unit e. In [4], a generalized Drazin inverse
of an element a ∈ A was defined as b ∈ A such that

ab = ba, b2a = b, a2b = a + u, (1.1)

where u ∈ A is quasinilpotent, that is, limn→∞ ‖un‖1/n = 0 [4, Definition 4.1] (see also
[3]). This definition subsumes (for Banach algebras) the pseudo-inverse defined originally
for elements of semigroups and rings [2], which arises when u is nilpotent. The Drazin
inverse b of a is unique when it exists, and is denoted aD. The Drazin index i(a) of a is
defined to be 0 if a is invertible, k if the element u in (1.1) is nilpotent of order k, and
∞ otherwise.

According to [4], an element a ∈ A is Drazin invertible if and only if 0 is not an
accumulation point of σ(a). This occurs if and only if there exists an idempotent p ∈ A
such that [4, Theorem 4.2]

ap = pa is quasinilpotent, a + p is invertible; (1.2)
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p is the spectral idempotent of a denoted by aπ. We have

aD = (a + aπ)−1(e − aπ) and aπ = e − aDa. (1.3)

We also need the core-quasinilpotent decomposition of a Drazin invertible element
a ∈ A introduced in [4] in the form a = x + y, where xy = yx = 0, x is of the Drazin
index not exceeding 1, and y is quasinilpotent; x is called the core of a. Explicitly,
x = a(e − aπ). The importance of the core of a is reflected in the equations

i(x) � 1, σ(x) = σ(a), xD = aD. (1.4)

Various representations of the Drazin inverse, mostly for matrices, appear in the liter-
ature (see, for example, [8,10,11]).

In [4], an integral representation was given for an element a ∈ A for which exp(ta)
converges as t → ∞. This representation turned out to be a useful tool in the the-
ory of singular differential equations, where it was applied to derive conditions for the
asymptotic convergence of solutions both in the setting of matrices [6] and semigroups
of operators [1,7].

The purpose of the present paper is to derive an integral representation of the Drazin
inverse in a more general situation than in [4] and give an application to the Moore–
Penrose inverse in a C∗-algebra.

2. The integral representation

We say that a ∈ A is semistable if a is Drazin invertible with ind(a) � 1 and the non-
zero spectrum of a lies in the open left half of the complex plane. The following result
is [4, Theorem 6.3].

Proposition 2.1. Let a ∈ A be semistable with the spectral idempotent aπ. Then

aD = −
∫ ∞

0
exp(ta)(e − aπ) dt. (2.1)

In our first main result we show that the integral representation remains true for a

with an arbitrary Drazin index.

Theorem 2.2. Let a ∈ A be a Drazin invertible element with a finite or infinite Drazin
index such that the non-zero spectrum of a lies in the open left half of the complex plane.
Then equation (2.1) holds.

Proof. The hypothesis of the Drazin invertibility of a implies that 0 is a resolvent
point or an isolated spectral point of a. Let p = aπ and let x = a(e − p) be the core of a.
In view of (1.4), x is semistable, and xD = −

∫ ∞
0 exp(tx)(e − p) dt by Proposition 2.1.

Furthermore,

exp(tx)(e − p) = exp(ta(e − p))(e − p) = (p + exp(ta)(e − p))(e − p)

= exp(ta)(e − p),
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and
aD = xD = −

∫ ∞

0
exp(tx)(e − p) dt = −

∫ ∞

0
exp(ta)(e − p) dt.

�

The following representation is valid for elements of finite Drazin index.

Theorem 2.3. Let a ∈ A be a Drazin invertible element with a finite Drazin index
k � 1 such that for some n � 1 the non-zero spectrum of an lies in the open left half of
the complex plane. Then, for any m � k,

−
∫ ∞

0
exp(tan)am dt = (aD)nam =




(aD)n−m if m < n,

e − aπ if m = n,

xm−n if m > n.

(2.2)

Proof. Let a ∈ A be a Drazin invertible element with p = aπ. Then an is also Drazin
invertible, and (an)D = (aD)n [4, Theorem 5.4]. In view of (1.3), the spectral idempotent
of an is also equal to p:

e − (an)Dan = e − (aDa)n = e − aDa = p.

Applying Theorem 2.2 to an in place of a and using equation pam = 0, we get∫ ∞

0
exp(tan)am dt =

∫ ∞

0
exp(tan)(e − p)am dt = −(an)Dam. (2.3)

By (1.3) again,

(aD)nam = (a + p)−n(e − p)(a + p)m = (a + p)m−n(e − p),

from which (2.2) follows when we observe that xr = ar(e − p) for any r > 0. �

Specializing the preceding theorem, we get a new integral representation for the Drazin
inverse.

Theorem 2.4. Let a ∈ A be a Drazin invertible element of a finite Drazin index k � 1
such that the non-zero spectrum of am+1 lies in the open left half of the complex plane
for some m � k. Then

aD = −
∫ ∞

0
exp(tam+1)am dt. (2.4)

The condition that the non-zero spectrum of am+1 lies in the open left half of the
complex plane is equivalent to the condition that the non-zero spectrum of a lies in the
union of m + 1 angular regions

4j + 1
2(m + 1)

π < θ <
4j + 3

2(m + 1)
π, j = 0, 1, . . . , m.

(Divide the unit ‘pie’ into 2(m + 1) equal slices starting at θ = π/(2(m + 1)) and keep
every second slice starting with π/(2(m + 1)) < θ < 3π/(2(m + 1)).)

There is also a ‘right half-plane’ version of Theorem 2.4.
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Corollary 2.5. Let a ∈ A be a Drazin invertible element of a finite Drazin index
k � 1 such that the non-zero spectrum of am+1 lies in the open right half of the complex
plane for some m � k. Then

aD =
∫ ∞

0
exp(−tam+1)am dt. (2.5)

3. Application to Moore–Penrose inverse

Let A be a unital C∗-algebra. According to [5, Theorem 2.5], a ∈ A is Moore–Penrose
invertible if and only if a∗a (respectively, aa∗) is Drazin invertible with the Drazin index
not exceeding 1. We observe that

ap = 0 = pa, (3.1)

where p is the (self-adjoint) spectral idempotent of a∗a (and also of aa∗):

‖ap‖2 = ‖(ap)∗
ap‖ = ‖pa∗ap‖ = 0, ‖pa‖2 = ‖pa(pa)∗‖ = ‖paa∗p‖ = 0.

The Moore–Penrose inverse of a can be then defined by

a† = (a∗a)Da∗ = a∗(aa∗)D. (3.2)

Since the non-zero spectrum of a∗a always lies in the open right half of the complex
plane and the Drazin index of a∗a does not exceed 1, Proposition 2.1 and Corollary 2.5
apply to give the following representation of the Moore–Penrose inverse.

Theorem 3.1. Let a ∈ A be a Moore–Penrose invertible element of a C∗-algebra A.
Then, for each m � 0,

a† =
∫ ∞

0
exp(−t(a∗a)m+1)(a∗a)ma∗ dt =

∫ ∞

0
a∗ exp(−t(aa∗)m+1)(aa∗)m dt. (3.3)

Proof. Equation (3.3) with m = 0 is obtained when we apply Proposition 2.1 to the
formula (3.2) for the Moore–Penrose inverse, taking into account that a∗p = pa∗ = 0 in
view of (3.1). We have thus obtained Showalter’s representation [9] by a different method.

The case m > 0 follows from Corollary 2.5. �
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