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Uniquely D-colourable Digraphs with
Large Girth

Ararat Harutyunyan, P. Mark Kayll, Bojan Mohar, and Liam Rafferty

Abstract. Let C and D be digraphs. A mapping f : V (D) → V (C) is a C-colouring if for every arc uv

of D, either f (u) f (v) is an arc of C or f (u) = f (v), and the preimage of every vertex of C induces

an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is

uniquely C-colourable if it is surjectively C-colourable and any two C-colourings of D differ by an

automorphism of C . We prove that if a digraph D is not C-colourable, then there exist digraphs of

arbitrarily large girth that are D-colourable but not C-colourable. Moreover, for every digraph D that

is uniquely D-colourable, there exists a uniquely D-colourable digraph of arbitrarily large girth. In

particular, this implies that for every rational number r ≥ 1, there are uniquely circularly r-colourable

digraphs with arbitrarily large girth.

1 Introduction

In a seminal Canadian Journal of Mathematics article [12], Paul Erdős established,

nonconstructively, the existence of graphs with arbitrarily large girth γ and arbitrarily

large chromatic number χ. In these introductory remarks, we focus mainly on Erdős’

theorem, for the features that make it interesting are shared by its progeny (e.g., [6,

28, 31]), the first of which also appeared in the CJM.

Because graphs with similar combined properties as guaranteed by Erdős had been

constructed earlier—e.g., triangle-free plus large χ [8, 24, 34] or girth at least six plus

large χ [9, 16]—his result was not wholly unanticipated. Nevertheless, it remains

somewhat counterintuitive. Naı̈vely, one might reason that having large girth implies

edge-sparsity, while having large chromatic number entails edge-abundance, so how

could both properties coexist in one graph? Even upon closer inspection, the result

seems paradoxical. If, for a positive integer ℓ, a graph G satisfies γ > ℓ, then any

set of at most ℓ vertices induces an acyclic, hence 2-colourable, subgraph. Why is

it not possible to assemble such colourings into a proper colouring of V (G) using

few colours? The answers to these questions might be regarded as the take-home

message of Erdős’ theorem: since the chromatic number depends intrinsically upon

the graph’s global structure, local 2-colourability imparts nothing on χ.

Received by the editors April 18, 2011.
Published electronically December 6, 2011.
AH: Parts of this work appear in author’s Ph.D. dissertation [14]; research supported by FQRNT (Le
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Yet the theorem’s influence somehow manages to transcend its important message.

Every student of combinatorial probability studies Erdős’ proof (cf. [1,2,5,7,10,22]),

which employs a deterministic step after a probabilistic argument for the existence

of graphs with few short cycles and small stability number. And though constructive

proofs [18, 20, 26] of Erdős’ existence theorem eventually followed, their complexity

perhaps precludes their inclusion in ‘The Book’, generally imagined to favour the

elegance, clarity, and simplicity of Erdős’ original argument.

Aside from its beautiful proof, the theorem’s influence can also be measured by

considering its descendants. Nešetřil [25] conjectured, and Bollobás and Sauer [6]

proved, the existence of graphs as guaranteed by Erdős that are, moreover, uniquely

χ-colourable. Colourings are special cases of homomorphisms into a fixed graph,

and Zhu [31] extended both Erdős’ and Bollobás and Sauer’s results to homomor-

phisms into general graphs. Rather recently, the results of [31] were extended by

Nešetřil and Zhu [28] to give a simultaneous generalization of Zhu’s two primary

results. Without attempting to give an exhaustive list, we also note the appearance

in recent years of a host of other articles related to the interplay between girth and

colouring; see, e.g., [11,17,19,23,27,29,32]. The results of this paper extend the main

theorems of Zhu [31] to digraphs with acyclic homomorphisms.

Notation, Terminology, and Details

As much as possible, we try to follow standard terminology. See, for example, [3, 7]

for graphs and digraphs, [2, 22] for probabilistic concerns, and [15] for homomor-

phisms.

Our digraphs are simple—i.e., loopless and without multiple arcs—however, we

allow two vertices u, v to be joined by two oppositely directed arcs, uv and vu. The

girth of a graph or digraph refers to the length of a shortest cycle, which we take to

mean directed cycle in the digraph case (and infinite in either acyclic case).

Recall that a homomorphism of a graph G into a graph H is a function φ : V (G) →
V (H) such that {φ(u), φ(v)} ∈ E(H) whenever {u, v} ∈ E(G). An acyclic homomor-

phism of a digraph D into a digraph C is a function φ : V (D) → V (C) such that:

(i) for every vertex v ∈ V (C), the subdigraph of D induced by φ−1(v) is acyclic;

(ii) for every arc uv ∈ E(D), either φ(u) = φ(v), or φ(u)φ(v) is an arc of C .

If digraphs D and C are obtained from undirected graphs G and H, respectively, by

replacing every edge by two oppositely directed arcs, then acyclic homomorphisms

between D and C correspond to usual graph homomorphisms between G and H. In

this sense, acyclic homomorphisms can be viewed as a generalization of the notion

of homomorphisms of undirected graphs.

It is well known and easy to see that a graph G is (properly) r-colourable (for a

positive integer r) if and only if G admits a homomorphism to the complete graph

Kr. Thus, G is commonly called H-colourable if there is a homomorphism from G

to H. In the same way as homomorphisms generalize the notion of graph colouring,

acyclic homomorphisms generalize digraph colouring; cf. [4]. Motivated by this, we

say that a digraph D is C-colourable if there is an acyclic homomorphism from D to C .

Zhu generalized Erdős’ theorem as follows.
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Theorem 1.1 ([31]) If G and H are graphs such that G is not H-colourable, then for

every positive integer g, there exists a graph G∗ of girth at least g that is G-colourable but

not H-colourable.

To recover Erdős’ theorem, suppose that we want to arrange for γ ≥ g and χ ≥ r, for

some prescribed integers g and r; then we take G = Kr and H = Kr−1 in Theorem 1.1.

Our first main result is a digraph analogue of the preceding result.

Theorem 1.2 If D and C are digraphs such that D is not C-colourable, then for every

positive integer g, there exists a digraph D∗ of girth at least g that is D-colourable but

not C-colourable.

Just as Theorem 1.1 generalizes Erdős’ theorem, Theorem 1.2 generalizes the ana-

logue appearing in [4]. See the introduction to Section 4 for a statement of this

analogue.

A graph G is uniquely H-colourable if it is surjectively H-colourable, and for any

two H-colourings φ, ψ of G, there is an automorphism π of H such that

(1.1) φ = π ◦ ψ.

Unique D-colourability is defined analogously for digraphs D. In either case, when

(1.1) occurs, we sometimes say that φ and ψ differ by an automorphism of H. A

graph H is a core if it is uniquely H-colourable, and likewise for digraphs. To align

this formulation with the usual one (cf. [13, 15]), we offer the following observation

about the digraph version.

Lemma 1.3 A digraph D is a core if and only if every acyclic homomorphism V (D) →
V (D) is a bijection.

Proof Let φ : V (D) → V (D) be an acyclic homomorphism. If φ is not a bijection,

then φ and the identity homomorphism do not differ by an automorphism of D, so

D is not a core.

Suppose now that D is not a core, and let φ, ψ be two acyclic homomorphisms that

do not differ by an automorphism of D. If φ (or ψ) is bijective, then it is a homo-

morphism of D onto itself. This implies that it is an automorphism of D. Therefore,

φ and ψ are not both bijective.

Zhu generalized the aforementioned Bollobás–Sauer theorem [6] as follows.

Theorem 1.4 ([31]) For every graph H that is a core and every positive integer g, there

exists a graph H∗ of girth at least g that is uniquely H-colourable.

Bollobás and Sauer’s result follows from Theorem 1.4, because complete graphs are

cores, as is easily verified.

Our second main result establishes a digraph analogue of Theorem 1.4.

Theorem 1.5 For every digraph D that is a core and every positive integer g, there

exists a digraph D∗ of girth at least g that is uniquely D-colourable.
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Theorem 1.5 immediately applies to digraph colourings and digraph circular colour-

ings (see, e.g., [4, 21]) to yield our third main result, Theorem 4.4. In favour of an

abbreviated mention of this result here, we postpone until Section 4 its full statement,

the definition of ‘circular colouring’, and some related discussion.

Corollary 1.6 For every rational number r ≥ 1 and every positive integer g, there

exists a digraph of girth at least g that is uniquely circularly r-colourable.

We devote Section 2 to the proof of Theorem 1.2, while Section 3 contains the

proof of Theorem 1.5. Both proofs are probabilistic and follow the main ideas of

[6, 31], which themselves trace back to Erdős [12]. However, just as both of these

earlier refinements required new ideas to move to the next level, additional care and

some inspiration are needed to extend the proofs to the digraph setting.

2 Proof of Theorem 1.2

We begin by setting up a suitable random digraph model. Suppose that V (D) =

{1, 2, . . . , k} and that q = |E(D)|. Let n be a (large) positive integer, and let Dn be the

digraph obtained from D as follows: replace every vertex i with a (temporarily) stable

set Vi of n ordered vertices v1, v2, . . . , vn, and replace each arc i j of D by the set of

all possible n2 arcs from Vi to V j ; additionally, add each arc vrvs such that vr, vs ∈ Vi

and r < s. Clearly, |V (Dn)| = kn and |E(Dn)| = qn2 + k
(

n
2

)
.

Now fix a positive ε < 1/(4g). Our random digraph model D = D(Dn, p) con-

sists of those spanning subdigraphs of Dn in which the arcs of Dn are chosen ran-

domly and independently with probability p = nε−1.

As usual in nonconstructive probabilistic proofs of results of this nature (cf. [6,28,

31]), the idea is to show that most digraphs in D have only a few short cycles, and for

most digraphs H ∈ D, the subdigraph of H obtained by removing an arbitrary yet

small set of arcs is not C-colourable. Choosing an H ∈ D with both these properties,

we can force the girth to be large by deleting an arc from each short cycle. Since

the set A0 of deleted arcs is small, the resulting digraph H − A0 satisfies the desired

conclusion of Theorem 1.2.

To make this description more precise, let D1 denote the set of digraphs in D

containing at most ⌈ngε⌉ cycles of length less than g, and let D2 be the set of digraphs

H ∈ D that have the property that H − A0 is not C-colourable for any set A0 of at

most ⌈ngε⌉ arcs. We will show that

|D1| >
(

1 − n−ε/2
)
|D|(2.1)

and

|D2| >
(

1 − e−n
)
|D|.(2.2)

Since (2.1) and (2.2) imply that D1 ∩ D2 6= ∅ (for sufficiently large n), there exists

a digraph H ∈ D1 ∩D2. Now H ∈ D1 implies that there is a set A0 of at most ⌈ngε⌉
arcs whose removal leaves a digraph D∗ := H − A0 of girth at least g, while H ∈ D2

means that D∗ is not C-colourable. Thus, it remains to establish (2.1) and (2.2).
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Proof of (2.1) The expected number Nℓ of cycles of length ℓ in a digraph H ∈ D is

at most

(2.3)

(
kn

ℓ

)
(ℓ− 1)! pℓ,

since there are
(

kn
ℓ

)
(ℓ − 1)! ways of choosing a cyclic sequence of ℓ vertices as a can-

didate for a cycle, and such an ℓ-cycle occurs in D with probability either 0 or pℓ. It

is easy to see that the product of the first two factors in (2.3) is smaller than (kn)ℓ/ℓ.
Therefore, if n is large enough, then

g−1∑

ℓ=2

Nℓ ≤

g−1∑

ℓ=2

(knε)ℓ

ℓ
< kg−1n(g−1)ε < n−ε/2ngε.

Now (2.1) follows easily from Markov’s Inequality.

Proof of (2.2) We shall argue that |DrD2| < e−n|D|. If H ∈ DrD2, then there is

a set A0 of at most ⌈ngε⌉ arcs of H so that H − A0 admits an acyclic homomorphism

h to C . Let k ′
= |V (C)|. By the pigeonhole principle, for each i ∈ V (D), there exists

a vertex xi ∈ V (C) such that |Vi ∩ h−1(xi)| ≥ n/k ′. Define φ : V (D) → V (C) by

setting φ(i) = xi . Since n/k ′ ≫ ngε, the set Vi ∩ h−1(xi) contains a subset Wi of

cardinality w := ⌈n/(2k ′)⌉ such that no arc in A0 has an end vertex in Wi .

Since D is not C-colourable, the function φ is not an acyclic homomorphism.

Therefore, either there is an arc i j ∈ E(D) such that φ(i) 6= φ( j) and φ(i)φ( j) is not

an arc of C , or there is a vertex v ∈ V (C) such that the subdigraph of D induced on

φ−1(v) contains a cycle.

We first consider the case when i j is an arc of D such thatφ(i) 6= φ( j) andφ(i)φ( j)

is not an arc of C . Since h is an acyclic homomorphism, there are no arcs from Wi to

W j in H − A0. By the definition of Wi and W j , neither are there such arcs in H.

Let us now estimate the expected number M of pairs of sets A ⊆ Vi , B ⊆ V j , with

|A| = |B| = w, such that i j ∈ E(D) and such that there is no arc from A to B in

H ∈ D (we call such a pair A,B a bad pair). By the linearity of expectation, we have

(2.4) M = q

(
n

w

)2

(1 − p)w2

< q
( nw

w!

) 2

(1 − p)w2

=
q(n2(1 − p)w)w

(w!)2
.

Since w grows no more (or less) than linearly with n, for sufficiently large n we have

n2(1 − p)w < e−2k ′

and
q

(w!)2
<

1

2
.

Therefore, Markov’s Inequality and (2.4) yield

(2.5) Pr(∃ a bad pair) <
e−n

2
.

Suppose now that there is a vertex v ∈ V (C) such that D contains a cycle Q whose

vertices are all in φ−1(v). Suppose that Q = i1i2 · · · it . Observe that 2 ≤ t ≤ k. Since
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φ(Q) = {v}, we conclude that h(Wi1
) = h(Wi2

) = · · · = h(Wit
) = {v}. Since h is

an acyclic homomorphism, the subdigraph of H induced on Wi1
∪Wi2

∪ · · · ∪Wit
is

acyclic.

Let us consider all sequences of sets U j1
,U j2

, . . . ,U jℓ such that, for r = 1, 2, . . . , ℓ,
we have U jr

⊆ V jr
and |U jr

| = w, and the vertex sequence j1 j2 · · · jℓ is a cycle in D.

Let U (ℓ) denote the subdigraph of H induced on U j1
∪ U j2

∪ · · · ∪ U jℓ , and let

Pℓ := Pr(U (ℓ) is acyclic). We call this sequence of sets bad if U (ℓ) is acyclic. Since the

expected number N of bad sequences is the sum of the corresponding expectations

over all possible cycle lengths, we have

(2.6) N ≤

k∑

ℓ=2

(
k

ℓ

)
(ℓ− 1)!

(
n

w

)ℓ

Pℓ.

In order to bound N, we first bound the probabilities Pℓ.

Lemma 2.1 There exists a constant γ > 0 (not depending on n) such that Pℓ ≤

e−γn1+ε

for every integer ℓ ∈ {2, 3, . . . , k}.

We present two proofs of Lemma 2.1. The second invokes the Janson Inequalities

(see, e.g., [2, Chapter 8]). The first uses only elementary methods and relies in the

beginning on the following observation.

Lemma 2.2 A digraph D is acyclic if and only if every induced subdigraph contains a

vertex of outdegree 0.

Proof If D is acyclic, then every induced subdigraph of D must be acyclic and there-

fore must contain a vertex of outdegree 0. If D is not acyclic, then it must contain

a cycle, the vertex set of which induces a subdigraph containing no vertex of outde-

gree 0.

Proof 1 of Lemma 2.1 Let E0 be certain (Pr(E0) = 1), and let E j be the event that

all induced subdigraphs of U (ℓ) with more than ℓw − j vertices have a vertex of

outdegree 0 (the outdegree in the induced subdigraph). Lemma 2.2 shows that

(2.7) Pℓ = Pr
( ℓw⋂

j=0

E j

)
=

ℓw−1∏
j=0

Pr(E j+1|E j) ≤
w−1∏
j=0

Pr(E j+1|E j).

We will call a set S ⊆ V (U (ℓ)) an acyclic-sink set if the induced subdigraph U (ℓ)[S]

is acyclic and there are no arcs in U (ℓ) from S to V (U (ℓ)) r S (so S acts as a sink in

U (ℓ)).

Claim 1 The union of two acyclic-sink sets in U (ℓ) is an acyclic-sink set in U (ℓ).

Proof of claim Let A and B be two acyclic-sink sets in a digraph U (ℓ). Since A and

B are both sinks in U (ℓ), their union A ∪ B is a sink, because there are no arcs from

A ∪ B to V (U (ℓ)) r (A ∪ B). Consider the three sets A r B, B r A, and A ∩ B; each is

a subset of an acyclic-sink set, so each induces an acyclic digraph. Since A is a sink in

U (ℓ), there can be no arcs from A ∩ B to B r A. Likewise B is a sink in U (ℓ), so there

can be no arcs from A ∩ B to A r B. Therefore, A ∪ B induces an acyclic digraph and

is consequently an acyclic-sink set in U (ℓ).
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Claim 2 There exists an acyclic-sink set S ⊆ V (U (ℓ)) of cardinality j if and only if

E j occurs.

Proof of claim If there exists an acyclic-sink set of cardinality j, then a subdigraph

of U (ℓ) with more than ℓw − j vertices must have a nonempty intersection with it.

Any subdigraph that has nonempty intersection with an acyclic-sink set induces a

subdigraph containing a vertex of outdegree zero.

If there is no acyclic-sink set of cardinality j, then the largest acyclic-sink set is

an S ′ ⊆ V (U (ℓ)) such that |S ′| < j. Then U (ℓ) − S ′ is a subdigraph of U (ℓ) with

cardinality greater than ℓw − j and with no vertices of outdegree 0 (otherwise we

could have added them to S ′ and had a larger acyclic-sink set).

Claim 3 If U (ℓ) has an acyclic-sink set of cardinality j, then it has an acyclic-sink set

of cardinality j − 1.

Proof of claim Suppose that S is an acyclic-sink set in U (ℓ) of cardinality j. Then the

subdigraph U (ℓ)[S] is acyclic, so there must be a vertex v with indegree 0 in U (ℓ)[S].

Consider the set S r {v}; this induces an acyclic subdigraph of U (ℓ) because it is a

subdigraph of an acyclic digraph. There were no arcs from S to V (U (ℓ)) r S, and

there are no arcs from S r {v} to v, so S r {v} is a sink in U (ℓ). Therefore, there

exists an acyclic-sink set in U (ℓ) of cardinality j − 1.

We now fix j in order to estimate Pr(E j+1|E j). Let I = {1, 2, . . . ,
(
ℓw

j

)
} and let

{Si}i∈I be the j-subsets of the ℓw vertices of U (ℓ) (in some fixed order). Let Bi be the

event that Si is an acyclic-sink set in U (ℓ). By Claim 1, if more than one Bi occurs,

there must be an acyclic-sink set of cardinality at least j + 1, and so by Claim 3, there

exists one of cardinality exactly j + 1. Therefore by Claim 2,

(2.8) Pr
(

E j+1|
⋂

i∈Y

Bi

)
= 1 whenever Y ⊆ I and |Y | ≥ 2.

Now additionally fix a Bi , and we will estimate Pr(E j+1|Bi). Let F be the event that

U (ℓ) − Si contains a vertex of outdegree 0. Then

(2.9) Pr(E j+1|Bi) = Pr(E j+1|F ∩ Bi) Pr(F|Bi) + Pr(E j+1|F
C ∩ Bi) Pr(FC |Bi).

The event E j+1 occurs when all subsets of V (U (ℓ)) of cardinality greater than ℓw −
( j +1) induce a subdigraph in U (ℓ) that has a vertex of outdegree 0. Clearly U (ℓ)−Si

has cardinality ℓw− j, while FC is the event that this set induces a subdigraph with no

vertex of outdegree zero. Thus Pr(E j+1|F
C ∩Bi) = 0. All sets of cardinality exceeding

ℓw − ( j + 1) that are distinct from V (U (ℓ)) r Si have a nonempty intersection with

Si , which (given Bi) is an acyclic-sink set in U (ℓ). Therefore, subdigraphs of U (ℓ)
induced on these sets have a vertex of outdegree 0, so that Pr(E j+1|Bi ∩ F) = 1.

Using these observations, (2.9) reduces to Pr(E j+1|Bi) = Pr(F|Bi). The event F is

independent of the event Bi since the vertices in Si do not affect the outdegree of

vertices in the subdigraph induced by V (U (ℓ)) r Si . Therefore, Pr(E j+1|Bi) = Pr(F).

https://doi.org/10.4153/CJM-2011-084-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-084-9


Uniquely D-colourable Digraphs with Large Girth 1317

Now we estimate the probability of F. The probability that any particular vertex

of U (ℓ) − Si has outdegree 0 in the induced subdigraph is bounded from above by

(1 − p)(w− j). Since these outdegree computations are independent for each vertex,

the probability that all vertices have outdegree greater than 0 is bounded from below

by (1 − (1 − p)(w− j))(ℓw− j), so that

Pr(E j+1|Bi) = Pr(F) ≤ 1 −
((

1 − (1 − p)(w− j)
) (ℓw− j)

)

< (ℓw − j)(1 − p)(w− j)
=: p j .

(2.10)

We also need to estimate Pr(E j+1|E j). By Claim 2, E j occurs if and only if
⋃

i∈I Bi

occurs. Thus we may rewrite Pr(E j+1|E j) using inclusion-exclusion:

Pr(E j+1|E j) = Pr
(

E j+1

∣∣ ⋃
i∈I

Bi

)
=

Pr
(

E j+1 ∩
( ⋃

i∈I

Bi

))

Pr
( ⋃

i∈I

Bi

) =

Pr
( ⋃

i∈I

(E j+1 ∩ Bi)
)

Pr
( ⋃

i∈I

Bi

)

=

∑

∅ 6=Y⊆I

(−1)|Y |+1

Pr
(

E j+1 ∩
( ⋂

y∈Y

By

))

Pr
( ⋃

i∈I

Bi

)

=

∑

∅ 6=Y⊆I

(−1)|Y |+1

Pr
(

E j+1 ∩
( ⋂

y∈Y

By

))

Pr
( ⋂

y∈Y

By

)
Pr

( ⋂
y∈Y

By

)

Pr
( ⋃

i∈I

Bi

)

=

∑

∅ 6=Y⊆I

(−1)|Y |+1 Pr
(

E j+1

∣∣ ⋂
y∈Y

By

)
Pr

( ⋂
y∈Y

By

∣∣ ⋃
i∈I

Bi

)

=

∑

y∈I

Pr(E j+1|By) Pr
(

By

∣∣ ⋃
i∈I

Bi

)

+
∑

Y⊆I
|Y |≥2

(−1)|Y |+1 Pr
(

E j+1

∣∣ ⋂
y∈Y

By

)
Pr

( ⋂
y∈Y

By

∣∣ ⋃
i∈I

Bi

)
.

Using (2.8) and (2.10) in the last expression for Pr(E j+1|E j) gives

Pr(E j+1|E j) ≤ p j

∑

y∈I

Pr
(

By

∣∣ ⋃
i∈I

Bi

)
+

∑

Y⊆I
|Y |≥2

(−1)|Y |+1 Pr
( ⋂

y∈Y

By

∣∣ ⋃
i∈I

Bi

)

= p j

∑

y∈I

Pr
(

By

∣∣ ⋃
i∈I

Bi

)
+

[
Pr

( ⋃
i∈I

Bi

∣∣ ⋃
i∈I

Bi

)
−

∑

y∈I

Pr
(

By

∣∣ ⋃
i∈I

Bi

)]

= p j

∑

y∈I

Pr
(

By

∣∣ ⋃
i∈I

Bi

)
+

[
1 −

∑

y∈I

Pr
(

By

∣∣ ⋃
i∈I

Bi

)]
.
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Since
∑

y∈I Pr
(

By |
⋃

i∈I Bi

)
≥ 1 and p j − 1 < 0, we have

Pr(E j+1|E j) ≤ 1 +
∑

y∈I

Pr
(

By

∣∣ ⋃
i∈I

Bi

)
(p j − 1) < p j .

Applying this last estimate to (2.7) yields

Pℓ ≤
w−1∏
j=0

p j =

w−1∏
j=0

(ℓw − j)(1 − p)(w− j) < (ℓw)w(1 − p)w(w+1)/2

≤ (ℓw)w(1 − p)w2/2 ≤ (ℓw)we−pw2/2 ≤
(
ℓwe−pw/2

)w

≤
(
ℓwe−nε/(4k ′)

)w
(2.11)

≤
(

e−nε/(5k ′)
)w

(2.12)

≤ e−n1+ε/(10(k ′)2).(2.13)

In passing from (2.11) to (2.13), the reader may find it helpful to recall that n = |Vi |
(for 1 ≤ i ≤ k), k ′

= |V (C)|, ℓ is between 2 and k, w = ⌈n/(2k ′)⌉, and p = nε−1,

and that these estimates are valid for fixed k ′ and sufficiently large n. Of course,

Lemma 2.1 follows if we take γ = 1/(10(k ′)2).

Proof 2 of Lemma 2.1 We use the Janson Inequalities, (mainly) follow the notation

of [2, Chapter 8], and assume familiarity on the readers’ part. Here, Ω denotes the

set of all potential arcs (in Dn, as defined at the start of Section 2) between the sets

U ji
, for i = 1, 2, . . . , ℓ, (introduced just prior to our statement of Lemma 2.1); each

arc in Ω appears with probability p.

Let s be a (large) multiple of ℓ; the value of s will be independent of n and spec-

ified below. Now, let us enumerate those cycles of Dn that are of length s and that

cyclically traverse U j1
,U j2

, . . . ,U jℓ s/ℓ times. For j ≥ 1, denote by S j the arc set of

the j-th such cycle and by B j the event that the arcs in S j all appear in H (i.e., the

cycle determined by S j is present in H). Let the random variable X count those B j

that occur. Since Pr(X = 0) (the probability that there is no such cycle of length s) is

an upper bound for Pℓ (the chance that U (ℓ) is acyclic), we can bound Pℓ by bound-

ing Pr(X = 0), and estimating the latter quantity is exactly the purpose of Janson’s

Inequalities. In the Janson paradigm, the value of ∆ is defined by

(2.14) ∆ :=
∑

Si∼S j

Pr(Bi ∩B j),

where Si ∼ S j if the two cycles determined by Si and S j have at least one arc in

common.

First, we find an upper bound for ∆. Letting i remain fixed, we (rather crudely)

obtain

(2.15) ∆ ≤ ns
∑

j:Si∼S j

Pr(Bi ∩B j),
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since each |Ur| ≤ n and each |Si | = s. The sum on the right side satisfies

(2.16)
∑

j:Si∼S j

Pr(Bi ∩B j) ≤
s−1∑

r=1

(
s

r

)
p2s−rws−(r+1).

The binomial coefficient in (2.16) accounts for the number of ways to choose the arcs

of Si ∩ S j , the power of p is Pr(B j |Bi) Pr(Bi), and finally, the power of w reflects the

facts that each U -set has cardinality w and, with i fixed, there are at most s − (r + 1)

vertices in the S j-cycle not already in the Si-cycle. Recalling that w = ⌈n/(2k ′)⌉ (so

that w < n), using the gross bound
(

s
r

)
< 2s, and replacing p with nε−1, we find that

∑

j:Si∼S j

Pr(Bi ∩B j) < 2s

s−1∑

r=1

p2s−rns−(r+1)
= 2s

s−1∑

r=1

n2εs−s−rε−1 < 2ssn2εs−s−ε−1.

With (2.15), the last estimate yields

(2.17) ∆ < 2ssn2εs−ε−1.

Next, we find a lower bound for µ := E[X]. Since there are ℓU -sets, each contain-

ing w vertices, and each ordered choice of s/ℓ vertices from each (up to the choice of

the first vertex) contributes 1 to X with probability at least ps, we have

µ ≥
1

s

(
w

s/ℓ

)ℓ[( s

ℓ

)
!
] ℓ

ps.

Therefore,

(2.18) µ ≥
1

s

( w!

(w − s/ℓ)!

) ℓ

ps ≥
1

s

(
w −

s

ℓ

) s

ps ≥
1

s

( n

4k ′

) s

nεs−s
=

nεs

s(4k ′)s
.

We distinguish two cases.

Case 1: ∆ ≥ µ.

Here, we have the hypotheses of the Extended Janson Inequality ([2, Theorem 8.1.2]),

which, along with our bounds (2.17), (2.18) gives

Pr(X = 0) ≤ e−µ
2/(2∆) < e−n1+ε/(2s3(32k ′2)s).

Case 2: ∆ < µ.

Now we have the hypotheses of the basic Janson Inequality ([2, Theorem 8.1.1]),

which together with (2.18) gives

Pr(X = 0) ≤ e−µ+∆/2 < e−µ/2 ≤ e−nεs/(2s(4k ′)s).

Let s > 1 + (1 + ε)/ε be a multiple of ℓ. Then the last bound shows that

Pr(X = 0) ≤ e−n1+ε(nε/(2s(4k ′)s)) ≤ e−n1+ε

.
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Since s and k ′ are constants (not depending on n), as is the number 1 (the coeffi-

cient of n1+ǫ in the last expression), in either case we see that

Pℓ ≤ Pr(X = 0) ≤ e−γn1+ε

for some constant γ > 0. This gives us Lemma 2.1.

We return to our estimate of the expected number N of bad sequences in (2.6),

repeated here for convenience:

N ≤
k∑

ℓ=2

(
k

ℓ

)
(ℓ− 1)!

(
n

w

)ℓ

Pℓ.

Using Lemma 2.1 to bound the factors Pℓ in this sum shows that for n large enough,

(2.19) N ≤

k∑

ℓ=2

(
k

ℓ

)
(ℓ− 1)!

(
n

w

)ℓ

e−γn1+ε

<

k∑

ℓ=2

e−n

2k
<

e−n

2
.

From (2.19) and Markov’s Inequality, we conclude that

(2.20) Pr(∃ a bad sequence) <
e−n

2
.

Since φ fails to be an acyclic homomorphism exactly when there exists a bad pair or

there exists a bad sequence, (2.5) and (2.20) now show that

|DrD2| ≤
(

Pr(∃ bad pair) + Pr(∃ bad sequence)
)
|D| < e−n|D|,

which yields (2.2).

3 Proof of Theorem 1.5

To obtain the conclusion of Theorem 1.5 (unique D-colourability), we shall need to

refine the deletion method employed in the proof of Theorem 1.2. We preserve the

earlier notation. Let D3 be the set of digraphs H ∈ D1, in which any two cycles of

length less than g are disjoint. Let D4 denote the set of those H ∈ D with the property

that H − A1 is uniquely D-colourable for any set A1 of at most ⌈ngε⌉ independent

arcs. (Here, we call a set S ⊆ E(H) independent if no two arcs in S have a vertex in

common.) Now we will show that

|D3| > (1 − n−ε/3)|D|(3.1)

and

|D4| > (1 − e−nε/6)|D|.(3.2)

Since (3.1) and (3.2) imply that D3 ∩D4 6= ∅ (for large enough n), we can choose a

digraph H ∈ D3 ∩D4. As H ∈ D3 ⊆ D1, we can delete a set A1 of at most ⌈ngε⌉ in-

dependent arcs from H so that D∗ := H−A1 has girth at least g, and H ∈ D4 ensures

that D∗ is uniquely D-colourable. Hence, to complete the proof of Theorem 1.5, it

suffices to establish (3.1) and (3.2).
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Proof of (3.1) For integers ℓ1, ℓ2 < g, we follow [31] and call a digraph an

(ℓ1, ℓ2)-double cycle if it consists of a directed cycle Cℓ1
of length ℓ1 and a directed

path of length ℓ2 joining two (not necessarily distinct) vertices of Cℓ1
; such a digraph

contains ℓ1 + ℓ2 − 1 vertices and ℓ1 + ℓ2 arcs. Let D ′ denote the set of digraphs in D

containing an (ℓ1, ℓ2)-double cycle for some ℓ1, ℓ2 < g. Notice that D1 rD3 ⊆ D
′,

whence

(3.3) |D1 rD3| ≤ |D ′|,

so we can obtain a lower estimate for |D3| by estimating |D ′|.
For fixed ℓ1, ℓ2 < g, the expected number N(ℓ1, ℓ2) of (ℓ1, ℓ2)-double cycles

in a digraph H ∈ D is less than ℓ1(kn)ℓ1 (kn)ℓ2−1 pℓ1+ℓ2 since there are fewer than

ℓ1(kn)ℓ1 (kn)ℓ2−1 ways of choosing such a double cycle Y with V (Y ) ⊆ V , and each

such Y exists with probability 0 or pℓ1+ℓ2 . Since p = nε−1, we have

N(ℓ1, ℓ2) < ℓ1kℓ1+ℓ2 nε(ℓ1+ℓ2)n−1.

Since ε(ℓ1 + ℓ2) ≤ 2gε < 1/2, for large enough n we have

∑

2≤ℓ1<g
1≤ℓ2<g

N(ℓ1, ℓ2) < n−1/2.

Markov’s Inequality now shows that |D ′| < n−1/2|D|, so from (3.3) we obtain

|D3| > |D1| − n−1/2|D|, and (2.1) gives (3.1).

Proof of (3.2) We will argue that |DrD4| < e−nε/6|D|. If H ∈ DrD4, then there

is a set A1 of at most ⌈ngε⌉ independent arcs of H so that H−A1 admits an acyclic ho-

momorphism h to D that is not the composition σ ◦ c of the natural homomorphism

c : H − A1 → D (sending Vi to i) with an automorphism σ of D. As in the proof of

(2.2), we can define a function φ : V (D) → V (D) such that
∣∣Vi ∩ h−1(φ(i))

∣∣ ≥ n/k

for each i ∈ V (D).

Let us first suppose that φ is not an automorphism of D. By hypothesis, D is

a core, so any acyclic homomorphism of D to itself must be an automorphism. It

follows that φ is not an acyclic homomorphism. Therefore, there is an arc i j ∈ E(D)

such that φ(i)φ( j) 6∈ E(D), or there is a vertex i ∈ V (D) such that φ−1(i) is not

acyclic. Notice that the current arrangement is analogous to the one in the second

paragraph in the proof of (2.2). Repeating the earlier argument, with D in the place

of C and k in the role of k ′, we find that most H ∈ D do not fall into the present case.

More precisely, we reach the following conclusion:

At least (1 − e−n)|D| digraphs H ∈ D have the property that for any set A1 of

at most ⌈ngε⌉ arcs (independent or otherwise), the digraph H − A1 cannot be

D-coloured in such a way that φ is not an automorphism of D.

Thus, in this case, |DrD4| < e−n|D| < e−nε/6|D|, and (3.2) is proved.
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From now on, we treat the case when φ is an automorphism of D. Without loss of

generality, we may assume that φ is the identity, i.e., that

(3.4)
∣∣Vi ∩ h−1(i)

∣∣ ≥ n/k for each i ∈ V (D).

We may assume further that

(3.5)
∣∣V j ∩ h−1(i)

∣∣ < n/k for all j 6= i.

(Otherwise, we can redefine φ(i) to be equal to j and fall into the case where φ is not

an automorphism.)

Since h is not the composition σ◦c of the natural homomorphism c : H−A1 → D

(sending Vi to i) with an automorphism σ of D, there must be a pair {i, j} of distinct

vertices of D such that V j ∩ h−1(i) 6= ∅. Let {i0, j0} be such a pair that maximizes

|V j0
∩ h−1(i0)|. Consider the map φ ′ : V (D) → V (D) such that

φ ′(x) :=

{
x (= φ(x)) if x 6= j0,

i0 if x = j0.

Clearly φ ′ is not a bijection, and since D is a core, it cannot be an acyclic homomor-

phism. There are two possibilities.

Case 1 Both j0i0 and i0 j0 are arcs of D (so φ ′−1(i0) is not acyclic).

Case 2 There exists v ∈ V (D) such that v j0 is an arc of D but vi0 is not, or j0v is an

arc of D but i0v is not.

We will show that in either case, |DrD4| < e−nε/6|D|.

Case 1: Our choice of {i0, j0} ensures that h−1(i0)∩V j0
6= ∅. Let x ∈ h−1(i0)∩V j0

,

and consider the (nonrandom) subdigraph D̂n of Dn induced by {x}∪(h−1(i0)∩Vi0
).

As Vi0
induces no cycles, all cycles of D̂n must include x, and since the arcs of A1 are

independent, at most one such arc is incident with x. Furthermore, the constraint on

the size of A1 and our choice of ε (smaller than 1/4g) give

|A1| ≤ ⌈ngε⌉ < ⌈n1/4⌉ ≪
n

k
.

Because |h−1(i0)∩Vi0
| ≥ n/k (cf. (3.4)), there must be a subset U ⊆ h−1(i0)∩Vi0

of

cardinality ⌊n/2k⌋ such that the (random) subdigraph induced by {x} ∪ U contains

no arcs of A1 and moreover is acyclic (since h−1(i0) is acyclic). To show that this is

unlikely, we first estimate the expected number M of ways to select a vertex x ∈ V j0

and a subset U ⊆ Vi0
of cardinality ⌊n/2k⌋ so that the subdigraph Hx,U of H that

they induce is acyclic and no arc of A1 is incident with a vertex in U . If Px,U denotes

the probability that Hx,U is acyclic, then

(3.6) M ≤ n

(
n

⌊n/2k⌋

)
Px,U < nnPx,U .
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In order to estimate Px,U , we again employ the Janson Inequalities (cf. [2, Chap-

ter 8]). Now Ω denotes the set of all potential arcs in the subdigraph D ′
x,U of Dn in-

duced by {x}∪U ; each arc in Ω appears in Hx,U with probability p. Let ℓ > (2 +ε)/ε
be a fixed integer. Let us index those cycles of D ′

x,U (with the positive integers) that

are of length ℓ + 1 in D ′
x,U . For j ≥ 1, let S j be the arc-set of the j-th such cycle

and B j be the event that the arcs in S j all appear (i.e., the cycle determined by S j is

present in Hx,U ). Let X count the B j that occur; since Pr(X = 0) is an upper bound

for Px,U , we can bound Px,U by bounding Pr(X = 0).

As in (2.14), Janson’s ∆ is given by

∆ :=
∑

Si∼S j

Pr(Bi ∩B j).

Since there are at most
(
⌊n/2k⌋
ℓ

)
< nℓ cycles S j , if we fix an Si to maximize

∑

j:S j∼Si

Pr(Bi ∩B j),

then

(3.7) ∆ ≤ nℓ
∑

j:S j∼Si

Pr(Bi ∩B j).

Now we sum over the number r of common arcs an S j can have with Si ; this fixes at

least r + 1 vertices of S j . Thus,

∑

j:S j∼Si

Pr(Bi ∩B j) ≤

ℓ∑

r=1

(
ℓ + 1

r

)⌊ n

2k

⌋ℓ−r−1

p2(ℓ+1)−r.

Using the crude upper estimates
(
ℓ+1

r

)
< 2ℓ+1 and ⌊n/2k⌋ < n and replacing p with

nε−1, we obtain

∑

j:S j∼Si

Pr(Bi ∩B j) < 2ℓ+1
ℓ∑

r=1

(np)ℓ−r−1 pℓ+3 < 2ℓ+1ℓ(np)ℓ−2 pℓ+3
= 2ℓ+1ℓn2εℓ+ε−ℓ−3.

This and (3.7) now give

(3.8) ∆ ≤ 2ℓ+1ℓn2εℓ+ε−3.

We also need to find a lower bound for µ := E[X]. Since the arcs of D ′
x,U within

U are acyclically oriented, each choice of ℓ vertices within U determines exactly one

potential (ℓ + 1)-cycle (viz., through x). It follows that

(3.9) µ =

(
⌊n/2k⌋

ℓ

)
pℓ+1 >

( ⌊n/2k⌋

ℓ

) ℓ

pℓ+1 >
nεℓ+ε−1

(4kℓ)ℓ
.
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As in the proof of Theorem 1.2, we have two subcases.

Subcase 1(i): ∆ ≥ µ.

Again, we have the hypotheses of the Extended Janson Inequality [2, Theorem 8.1.2],

which, along with (3.8) and (3.9), gives

Pr(X = 0) ≤ e−µ
2/(2∆) < e−n1+ε/(ℓ2ℓ+2(4kℓ)2ℓ)

=: e−βn1+ε

,

where β is the (positive) constant (not depending on n) absorbing the denominator

in the preceding exponent.

Subcase 1(ii): ∆ < µ.

Here we have the hypotheses of the Janson Inequality ([2, Theorem 8.1.1]), which,

with the help of (3.9), gives

Pr(X = 0) ≤ e−µ+∆/2 < e−µ/2 < e−nεℓ+ε−1/(2(4kℓ)ℓ).

Recalling our choice of ℓ > (2 + ε)/ε, we see that

Pr(X = 0) < e−n1+2ε/(2(4kℓ)ℓ) < e−n1+ε

.

In either subcase, we have that Px,U ≤ Pr(X = 0) < e−βn1+ε

(since β < 1), and

returning to (3.6), we have

M < nnPx,U < nne−βn1+ε

=
(

ne−βnε
) n
< e−βn1+ε/2.

By Markov’s Inequality, the probability that there exists such an {x}∪U (that induces

an acyclic subdigraph) is less than e−βn1+ε/2 < e−nε/6, and so in Case 1, |D rD4| <
e−nε/6|D|, as desired.

Case 2: By the hypothesis of this case, there is a vertex v such that either v j0 ∈ E(D)

and vi0 6∈ E(D), or j0v ∈ E(D) and i0v 6∈ E(D). We will consider the first of these;

the second one yields to similar reasoning. Let us recall that we chose a pair {i0, j0}
of distinct vertices of D so as to maximize b := |V j0

∩ h−1(i0)| 6= 0.

Claim: Every vertex z ∈ V (D) r {i0} satisfies
∣∣Vz ∩ h−1(z)

∣∣ ≥ n − (k − 1)b.

Proof of claim Otherwise, some z 6= i0 satisfies
∣∣Vz ∩ h−1(z)

∣∣ < n − (k − 1)b. By

the pigeonhole principle, there is some u 6= z such that |Vz ∩ h−1(u)| > b, but this

contradicts our choice of {i0, j0}.

Using the claim, we see that there are sets Uv ⊆ Vv ∩ h−1(v) and U j0
= V j0

∩
h−1(i0) with |Uv| = n − (k − 1)b and |U j0

| = b. Since h : H − A1 → D is an acyclic

homomorphism and vi0 6∈ E(D), there are at most min{b, ⌈ngε⌉} independent arcs

from a vertex in Uv to one in U j0
. We now estimate the expected number L(b) of

pairs U ′
v ⊆ Vv, U ′

j0
⊆ V j0

with |U ′
v | = n − (k − 1)b = n − (k − 1)|U ′

j0
|, and at most

min{b, ⌈ngε⌉} arcs from U ′
v to U ′

j0
.
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For b < n/k (cf. (3.5)) and s ≤ min{b, ⌈ngε⌉}, denote by L(b, s) the expected

number of pairs U ′
v ⊆ Vv, U ′

j0
⊆ V j0

, |U ′
v | = n − (k − 1)b = n − (k − 1)|U ′

j0
|, and

exactly s arcs joining a vertex in U ′
v to one in U ′

j0
. Then

L(b, s) <

(
n

n − (k − 1)b

)(
n

b

)(
(n − (k − 1)b)b

s

)
ps(1 − p)(n−(k−1)b)b−s

< n(k−1)bnb(nb)sns(ε−1)e−bnε+nε−1((k−1)b2+s) < bsnεsnkbe−(bnε)/2

= bsnεs(nke−nε/2)b < bsnεse−(bnε)/3 < e−nε/4.

Letting L(b) =
∑

s≤min{b,⌈ngε⌉} L(b, s) < ⌈ngε⌉e−nε/4 < e−nε/5, we find that

∑

1≤b<n/k

L(b) < (n/k)e−nε/5 < e−nε/6.

This completes the discussion for the case when v j0 ∈ E(D) and vi0 6∈ E(D); an

identical argument gives the same upper bound in the case when j0v ∈ E(D) and

i0v 6∈ E(D). Thus in Case 2, we also arrive at |DrD4| < e−nε/6|D|.
Combining the estimates obtained above and applying Markov’s Inequality finally

yields (3.2) and therefore completes the proof of Theorem 1.5.

4 The Circular Chromatic Number

We turn now to the implications of Theorem 1.5 for circular colouring digraphs. The

concept of the digraph circular chromatic number χc, defined below, generalizes the

circular chromatic number for undirected graphs. The theory of the graph invari-

ant, as of 2001, was surveyed in [33]. The digraph version was introduced in [4],

where it was proved, via Lemma 4.2, that χc assumes all rational values at least one.

(Note that the digraphs of Lemma 4.2 do not generally have large girth.) The same

article also established the following analogue of the Erdős’ theorem introducing this

paper: there exist digraphs with arbitrarily large girth and arbitrarily large circular

chromatic number (this is the result to which we alluded immediately following the

statement of Theorem 1.2). Our main result here, Theorem 4.4, provides a common

generalization and strengthening of these basic results. It shows that the ‘all conceiv-

able rationals’ property of χc holds even for digraphs of arbitrarily large girth and

even demanding a certain uniqueness of the colouring.

Let d ≥ 1 and k ≥ d be integers. Let C(k, d) be the digraph with vertex set

Zk = {0, 1, . . . , k − 1} and arcs

E(C(k, d)) =
{

i j | j − i ∈ {d, d + 1, . . . , k − 1}
}
,

where the subtraction is considered in the cyclic group Zk of integers modulo k.

Acyclic homomorphisms into C(k, d) are an important concept because of their

relation to the circular chromatic number of digraphs; cf. [4]. An acyclic homomor-

phism of a digraph D into C(k, d) is called a (k, d)-colouring of D. It is shown in
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[4,21] that there is a rational number q ∈ Q such that D has a (k, d)-colouring if and

only if k/d ≥ q. This value q is denoted by χc(D) and called the circular chromatic

number of D. For q ∈ Q+, let Sq denote the circle of perimeter q (centred, say, at the

origin of R2). We define a circular q-colouring of D to be a map φ : V (D) → Sq such

that for every xy ∈ E(D), with φ(x) 6= φ(y), the distance dS(φ(x), φ(y)) from φ(x)

to φ(y) in the clockwise direction around Sq is at least 1, and for every p ∈ Sq, the

preimage φ−1(p) induces an acyclic subdigraph of D. If φ is a circular q-colouring,

we say that the arc xy ∈ E(D) is tight whenever dS(φ(x), φ(y)) ≤ 1 (in which case

this distance is either 1 or 0). A cycle in D consisting of tight arcs is called a tight cycle

for the circular q-colouring φ. Note that every tight cycle contains an arc xy such that

dS(φ(x), φ(y)) = 1. We will use the following results, respectively from [21] and [4].

Lemma 4.1 If χc(D) = q, then every circular q-colouring of D has a tight cycle.

Lemma 4.2 χc(C(k, d)) = k/d.

Lemmas 4.1 and 4.2 imply the following fact.

Proposition 4.3 If k and d are integers with 1 ≤ d ≤ k, then C(k, d) is a core if and

only if k and d are relatively prime.

Proof Let C = C(k, d) and V = V (C). If r := gcd(k, d) > 1, then the mapping

φ : V → V given by φ(i) := r⌊i/r⌋ is easily seen to be an acyclic homomorphism

C → C that is not surjective. By Lemma 1.3, C(k, d) is not a core.

For the converse, assume that k and d are relatively prime, and let φ : V → V be

an acyclic homomorphism. Define a map ϕ : V → Sk/d as follows. Let s0, s1, . . . , sk−1

be points on Sk/d that appear on the circle consecutively at distance 1/d apart. For

0 ≤ i ≤ k − 1, we set ϕ(i) := sφ(i). Since φ is an acyclic homomorphism, it is easily

verified that ϕ is a circular k
d

-colouring of C(k, d). By Lemmas 4.1 and 4.2, ϕ has

a tight cycle C0 = v1v2 · · · vℓv1 in C(k, d). We may assume that ϕ(v1) = s0. The

images ϕ(v1), ϕ(v2), . . . , ϕ(vℓ), ϕ(v1) must take consecutive values s0, sd, s2d, s3d, . . .
(each possibly repeated several times), with the indices taken modulo k, and end up

at s0. Since k and d are relatively prime, the sequence s0, sd, s2d, . . . must exhaust all

the elements in the set {s0, s1, . . . , sk−1}. This shows that φ is surjective; whence, by

Lemma 1.3, C(k, d) is a core.

Proposition 4.3 and Theorem 1.5 together yield Corollary 1.6 as an immediate

consequence, which we now state in a slightly expanded (and more precise) form.

Theorem 4.4 If k and d are relatively prime integers with 1 ≤ d ≤ k, then for every

positive integer g, there exists a uniquely C(k, d)-colourable digraph of girth at least g

(and with circular chromatic number equal to k/d).

The last claim of Theorem 4.4 follows from the next result, an analogue of [31, The-

orem 3].

Theorem 4.5 If D is a uniquely C(k, d)-colourable digraph, then χc(D) = k/d.
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Proof Since D is C(k, d)-colourable, we have χc(D) ≤ k/d. Suppose, for a contra-

diction, that χc(D) = k ′/d ′ < k/d. Define d∗ := dd ′, m := kd ′, and m ′ := k ′d so

that m ′/d∗
= k ′/d ′ < k/d = m/d∗. Now, let φ ′ be an (m ′, d∗)-colouring of D.

Using the idea in the proof of Proposition 4.3, we can define a circular m ′

d∗
-colouring

ϕ of C(m ′, d∗) so that ϕ◦φ ′ is such a colouring of D. Since χc(D) = k ′/d ′
= m ′/d∗,

Lemma 4.1 implies that ϕ ◦ φ ′ has a tight cycle in D. Choosing a tight arc xy ∈ E(D)

for ϕ ◦ φ ′ yields an arc xy of D such that φ ′(x) and φ ′(y) are separated by d∗ units

in the clockwise direction around C(m ′, d∗). Without loss of generality, we may as-

sume that φ ′(y) = 0 and φ ′(x) = m ′ − d∗. We define an (m, d∗)-colouring ψ
as follows: ψ(v) := φ ′(v) if φ ′(v) < m ′ − d∗ and ψ(v) := φ ′(v) + m − m ′ oth-

erwise. It is easily verified that ψ is indeed an (m, d∗)-colouring of D. Next, we

define ψ : V (D) → V (C(k, d)) by ψ(v) := ⌊ψ(v)/d ′⌋. (In this formula and here-

after we view the vertices ψ(v) of C(m, d∗) as integers between 0 and m − 1.) Since

⌊ · /d ′⌋ : V (C(m, d∗)) → V (C(k, d)) defines an acyclic homomorphism, and such

maps compose (cf. [4]), it is not hard to check that ψ is a (k, d)-colouring of D. Sim-

ilarly, we define φ : V (D) → V (C(k, d)) by φ(v) := ⌊φ ′(v)/d ′⌋. As in the case of ψ, it

is easy to check that φ is a (k, d)-colouring of D. We claim that φ and ψ do not differ

by an automorphism of C(k, d). Note that φ(y) = ψ(y) = 0; therefore, it suffices to

show that φ(x) 6= ψ(x). Now,

φ(x) =
⌊ m ′ − d∗

d ′

⌋
=

⌊ d(k ′ − d ′)

d ′

⌋
while ψ(x) =

⌊ m − d∗

d ′

⌋
= k − d.

Since k ′/d ′ < k/d, we have d(k ′ − d ′)/d ′ < k − d, and it follows that φ(x) < ψ(x).

This implies that φ and ψ are (k, d)-colourings of D that do not differ by an automor-

phism of C(k, d). Hence, D is not uniquely C(k, d)-colourable, a contradiction.
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