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A PERIODIC WAVELET METHOD FOR THE SECOND KIND
OF THE LOGARITHMIC INTEGRAL EQUATION

JING GAO AND YAO-LIN JIANG

A periodic wavelet Galerkin method is presented in this paper to solve a weakly sin-
gular integral equations with emphasis on the second kind of Predholm integral equa-
tions. The kernel function, which includes of a smooth part and a log weakly singular
part, is discretised by the periodic Daubechies wavelets. The wavelet compression
strategy and the hyperbolic cross approximation technique are used to approximate
the weakly singular and smooth kernel functions. Meanwhile, the sparse matrix of
systems can be correspondingly obtained. The bi-conjugate gradient iterative method
is used to solve the resulting algebraic equation systems. Especially, the analytical
computational formulae are presented for the log weakly singular kernel. The com-
putational error for the representative matrix is also evaluated. The convergence
rate of this algorithm is 0(7\T~plog(iV)), where p is the vanishing moment of the
periodic Daubechies wavelets. Numerical experiments are provided to illustrate the
correctness of the theory presented here.

1. INTRODUCTION

Exterior boundary value problems for the two-dimensional Helmholtz equation are
usually solved by boundary integral methods, which lead to a second kind of the Fredholm
integral equation

(1-1) ±(I-T)f = g,

where / is the identity operator and T is an integral operator as

(1.2) Tf = f * (k(x, y) + *,(x, y))f(y)dy
Jo

in which k(x, y) has a logarithm-like singularity along the diagonal x = y but is continuous
elsewhere on the unit square, k2(x, y) is a 27r-periodic smooth function in L2([0, 2TT]
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<g>[0,2n}), g(x) is a 27r-periodic function in L2[Q, 2TT], and f(x) is the 27r-periodic unknown
function in L2[0,2n}. There have been many theoretical studies on the second kind of
the Fredholm integral equations, as well as numerical methods to solve them ([2, 9,
10, 11, 13, 18]). The traditional discretisation of integral equations suffers from the
difficulty of computing and inverting dense matrices. If iterative methods are used,
a single direct multiplication of matrix and vector requires 0{N2) operations and the
number of iterations is proportional to the condition number of the matrices. Therefore,
some more efficient methods have to be found before the boundary integral method can
be applied to practical, large scale, numerical computations.

The wavelet Galerkin method has recently been investigated by many authors; see
[1, 3, 4, 7, 12, 15, 16, 17] for details. Prom the point of view of applications, although
the three-dimensional boundary value problems are of higher interest, the development
and practical realisation of two-dimensional wavelet Galerkin methods is of importance on
its own. Two dimensional or axial symmetric boundary value problems play an important
role in practical applications. The purpose of the paper is to provide a new method to
reduce the computational complexity for the integral equation including weakly singular
and smooth parts. We formulate and analyse the periodic Daubechies wavelet method.
It combines the wavelet compression strategy and the hyperbolic cross approximation
(sparse grid approximation) for the kernel function.

We restrict the wavelet basis to [0, 2TT] for the integral equation. After the wavelet
Galerkin discretisation, the integral equation is transformed into an algebraic system
with dense matrix. The multiplication complexity of the representative matrices plays
the vital roles in the corresponding iterative method. Applying the compression trunca-
tion strategy and the hyperbolic cross approximation method to the resulting matrices,
respectively, it is proved that the computational complexity is reduced from 0{N2) to
O(N log(iV)) with the convergence order O(N~P log N), where p is the vanishing moment
of the Daubechies wavelet. The advantage of the orthogonal wavelet basis is to make the
representation of the identity operator / as an identity matrix. Furthermore, we give the
computational formulae for the weakly singular part k(x, y) which can be computed by
the filter coefficients series of the periodic Daubechies wavelets. The computational error
is also evaluated as 0(iV{"plogJVi) where Ni is the selected truncation parameter. Note
that when JV\ ~ N, the computational error does not affect the wavelet discretisation
error.

The outline of the paper is as follows. In Section 2, we review some symbols and
useful properties of the periodic Daubechies wavelets. Section 3 is devoted to our theo-
retical analysis. Applying the wavelet compression and hyperbolic cross approximation
for the whole kernel function, we analyse the resulting representation matrix. In Section
4, we compute the entries of the representative matrix for the weakly singular part. The
corresponding computational truncation error is proved. The convergence and complex-
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ity of this wavelet method are analysed. Numerical experiments are given in Section 5.
Finally, we conclude our work in Section 6.

2. DAUBECHIES P E R I O D I C WAVELETS BASIS IN L2[0, 2TT]

Due to the weakly singular integral operator Tf = / T(x,y)f(y)dy where f(x)

6 L2[0, 2TT] and k(x,y) € L2([0,2TT] ® [0, 2TT]), in the section we use the periodic

Daubechies wavelets with 2TT period as in [6, 14]. The space L2[0,2w] is equipped with
the inner product (f,g) = (1/2TT) f f(x)g{x)dx and the norm ||/||i,2[o,2»] = (/>/)1 / 2-

We respectively write the periodic scaling functions and the wavelet functions as

(2.1) < ^ ( x ) = X > M ( z + 27rZ) and t/£r(x) = $ > , • , * ( * + 2TTZ).

It is obvious that

(2.2) <j>%(x + 2n) = ] T 0 i i t (x + 27r(i + 1)) = £ * i l t ( z + 2nl) =

Thus, the following formulae are obtained,

) = 0;

(2.3)

/

where p is the wavelet vanishing moment. Thus, the basis set {^oib^oTi ••• I V ' J - I * }

forms the base of the space L2[0,2TT] in [6]. Let 0O)* = V'-i,*- For any f(x) € L2[0,27r],

we have f(x) = "^ ^£l&*i^(s) where ^ = ( / ,^>- Equally, let n = V + k,
i=-\ fc=o

we have f(x) = J3 fnipn(x). For the smooth function in L2[0,27r], using the periodic
n=l

Daubechies wavelets approximation, we have Lemma 2.1.

LEMMA 2 . 1 . Let f{x) e L2[0,2n] and the vanishing moment of the periodic
Daubechies wavelets be p, then we have

(2-4) EE^(*)->/(4 -7-*00

and

(2.5) |/(x) - S E | /

II i=-\ k=O

Next, we embark on discretising the integral equation (1.1).
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3. DISCRETISATION MATRICES ANALYSIS

To derive the system of equations from (1.1), we introduce the approximations /
and g defined by the following wavelet series:

(3.1) /(*)=£ E/m,,O), and ?(*)=£ £&*^J(*).
m=-l 9=0 j= - l *=0

The bases {V'j,*} = {V>n}£Li> " = 2j; + k, N = 2J, consist of all the scaling functions
and the wavelets used in equation (3.1). The vectors fm<q and §,-,* are the expansion
coefficients.

In equation (1.1), the replacement of / and g by / and g yields the following residual
r:

(3.2) r(x) = ±f(x) -±-

We now apply the Galerkin method to Equation (3.2). We wish to satisfy

,2»

(3.3) / r(z)<M*)dx = 0.
Vo

Then, the equation (1.1) is discretised by the wavelet Galerkin method as the algebraic
system,

J - l 2>- l ,2 m - l J-l 2-*-l,2m-l

(3-4) ? i J t -
J , m = - 1 *,<7=0 j , m = - l k,g=O

where

/ = {fjjth'xl = {/n}n=l,

This can be expressed in matrix form;

(3.5) (I-M-S)f = g;

where / is the identity matrix.

In the next section, we give the concrete analysis of the resulting matrices M and S.
The density and construction of these two matrices affect the complexity of this method.
Throughout the paper we denote by C a positive constant which may take different values
in different formulae.
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3.1. WEAKLY SINGULAR KERNEL ANALYSIS. Firstly, we define DaD? as follows

The weakly singular function k(x,y) = log (4sin2(x — y)/2) has some critical properties
for sparse representation. We have

We can easily get the evaluation of the elements urj;™ = (k(x, y),il)tf{x)it>%^q{y)) of M
by [1,5].

LEMMA 3 . 1 . Let p be the vanishing moment of the periodic Daubechies wavelets.
u '̂™ is t ie entries of the matrix M, then we have

~(j+m)(p+1/2) -
|2_>Jfc _ 2

By Lemma 3.1, we know that if |2~Jfc — 2~mg| > 5 when 5 is the selected hard
threshold, that is, the elemets are far from the diagonal line, their values are very small.
In other words, most of their entries are so small that they can be neglected without
producing the larger error. The corresponding truncation strategy is

otherwise.

So, we get the compressed matrix Mc o m p = ^
Note that the use of the bi-orthogonal wavelet gives optimal complexity. However

the bi-orthogonal wavelet can not be extended to the wavelet packet method due to
instability. Here we only develop the orthogonal wavelet method which facilitate the
orthogonal wavelet packet method. Let p j°m p be the compression operator of the operator
Pj. By [1], we have

(3.10) ||{K - P?mvK)fj\\ < CJ2-J".

The non-zero entries of Mcomp are O(N log N) with the convergence rate O (N~p log(N)).

3.2. SMOOTH KERNEL ANALYSIS. In this part, we study the properties of the matrix 5
by the hyperbolic cross approximation. If the vanishing moment is p, then the support
interval of rpj£{x) is /,-,* = (2- J ( l - p + k) - 2irl, 2~j{jp + k) - 2nl). According to the
smoothness of the function kz(x,y), we can obtain the following element value estimate.

THEOREM 3 . 1 Denote by p the vanishing moment of the periodic Daubechies
wavelets. Let k2(x,y) 6 H*"'* [(0,2n) ® (0,2*-)], r,r' € (0,p], then we have

(3.11) |s*T|
(r - 1)! (r* - 1)!rr'^(2r' + 3)(2r + 3)
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PROOF: Let x<j and y<> be the midpoints of the interval /,,* and Imjt, respectively.
By the Taylor expansion, for (x,y) € /,,* x Imq we have

- ± - fVkio'r)(x,yQ+e(y-yo))(y-yoy(i-ey-ld9,
'" " ' W o

where

r'- l

Because

f (x-
im,,

C,

we have

f
Jo Jo

-U.
*(F^t/>--r<1-^-

((TivJjy^1-
Especially, it follows that

lj,k \Jxo

= \f (x-xoy'+1\rP%(x)\dx
' 0
f

• 0 , *

I Q T ^ ((x - xo)r'+1)2dx)1/2(jf |̂

= 0,
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= (2m - 1)^3/2

rV2r' + 3

Finally, we obtain

I J.-I < C (2m - iy'+r+3
 ( n .< y + 1fflwl,-B(r+ifli |

' * * ' ^ (r - 1)! (r* - 1)! rr'y/(2r> + 3)(2r + 3)V A rj

Because of the good smoothness property of £2(1, y). w e introduce the hyperbolic
cross approximation to reduce the computational complexity without affecting the con-
vergence rate. We give the definition of the n-dimensional Sobolev space H^ix(f2

n) where
n

Q, denotes the spatial domain such that, for j = {juj2, • • •, in} , \j\i = X) K, \j\oo =

By using the vanishing moment p, the hyperbolic cross approximation rate can be

obtained. Denote by PjJJJ" the operator that maps functions of interest to the space Vf"

whose base satisfies the index set Aj .

LEMMA 3 . 2 . Let k2{x,y) € «*&([(),2TT] X [0,2*]), f(y) € HpJx([0,2w}), then

(312) < majc

P R O O F : The proof process can be deduced from [8] similarly. D

If A = {max(j, m) < J } , we call it the full grid approximation with the approxi-

mation order O(2~Jp). Using the sparse grid approximation, for fc2(x,y), we can select

the small index Aj = {—(j + 2m)p ^ -pJ}- This sparse grid approximation also can

preserve the approximation order of the full grid approximation. So we can obtain the

standard index set is Aj = {(j, k)(m,q) : j + 2m < j}. And we know that when the

level J is odd, the non-zero elements number is 5 x 2J - 3 x 2 ( J + 1 ) / 2 . When the level J

is even, the number is 5 x 2J — 4 x 2JI2. The number of non-zero entries of 5 by sparse

grid approximation is O(2J) ~ O(N).

The Figure shows such a representation matrices for the smooth kernel by using

the Daubechies-2 wavelets with the level J = 5. It also displays the location of the

nonzero entries of 5 under the hyperbolic cross approximation. The hyperbolic cross

approximation produces a sparse matrix with the non-zero ratio 13.28%.

4. COMPUTATION O F M AND E R R O R ANALYSIS FOR T H I S M E T H O D

4.1. COMPUTATION O F REPRESENTATIVE MATRIX M. We compute the values v%™ of

the matrix M by using the filter coefficients of the Daubechies wavelets. Let the Fourier
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the matrix S under full grid the matrix S under sparse grid

i

lyiiiiiiiiiii
J5S

10 20
nz-1024

10 20
nz- 136

30 0

Compared maps of smooth kernel k2(x, y) matrix £32*32-

expansion of the periodic Daubechies wavelet functions be V*T = $3
eez

Fourier expansion of the periodic Daubechies scaling functions be </>?!' =

the

Based on the Yu's way in [19], we have
vez

1 + 0 ° 1
in?) = o E M6^-(4.1)

Further, we can get the computational formula of the entries toj'J of the representative
matrix M.

For toj™, 0 < j , m ^ J - 1,0 < k < 2j' - 1,0 s£ q < 2m - 1, we have

(4.2)

o Jo
r2ir r2*

- / /
Jo Jo

+00 1

" E i7i

t^o,t=-oo fez

i
t^o,t=-oo' ' fez fez

+00 ,

/

where
2ir

(ez

2*
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=
 ~2TT

2-j/2 r+oo

i:

2TT

r+oo
: I V*(J/)
J-oo

in which the mark A denotes the Fourier transform of function. Similarly, the values of
JJ,* _ (2-J/2)/(2ir)e-it2~ik<i>{t/2>) can be obtained. Also, we have

w

+oo
- 1 , - 1

For j ; = —1, m = 0 , . . . , J — 1, we know

+0O

6=w^'m = ~t=^J\bzlt'0^-
Denote by hi the filter coefficients of the Daubechies wavelets. Thus, we have

+00

? M = I I ™o(w/2"), ^(w) = -e""
n=l

(4.3) \£

The values of &£* and d̂ 1* can be expressed in terms of the filter coefficients hi. Thus, the
entries of M are calculated by some discrete series without the analysis of the concrete
expression form on the wavelets.

The function k[x, y) = log (4sin2(x - j/)/2) is represented by

Let uJJ'™ = - 52 (i/I^D^t'C' '7- Denote the computed matrix with truncation series

by M n u m = {«5fc'™}- Now we give the computational error evaluation of \w]^ - w^V

THEOREM 4 . 1 . Assume the vanisbing moment of the Daubecbies wavelets func-
tions be p and Ni be the truncation parameter. Based on tbe definitions of the matrices
M and Mnum, we have

(4.4) K£ - v?£\
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PROOF: Due to the definitions of the matrices M and Mnum, we have
r2ir

u_ I A o;~2 /„ ,.\ /o\-/.Per/~\./.per i.,\ J _ J . ./ log (4 sin2 ( z -
, Jo

/ " /" Iog(4sin2(i-
Jo Jo

r7.it flu Nl i N\ Ni

- Y -ie"(l-v) Y" A*ew* Y

log (4 sin2 (i -

r /-2ir

Jo

f f

- E <#'v' dxdy

O JO

•Ni — 1 +00 \ t

K
—Ni-l +00 v

E + E y^>y
t"=-oo t"=JVi+l'

dxdj/.

+0°

Now we show the evaluation of the corresponding items, respectively.
Firstly, we have

T i - l + o o

and

lL3[0,2ir]

Secondly, because p is the vanishing moment of the functions ipf%{x) and
scaling and wavelet functions satisfy

, | dxdy

1 II I f ^ 1 v -^ \ 1
1*1 M£,J[0,2ir] IVt=-oo t=Ni+l' '*'

Z^ 171

these

Ke;(x)| < (i + Mr1"'* ^ c, |
By the analysis of the Fourier series, we have

< (i + a

ICE + f y^i
11 Vf=-0O f=Nl+l/ "
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Similarly,

H' — — r^ *" — V . - L l ' llL2[0,27rl P#«I^A7.«"=-oo t"=Ni+l' IIL2[0,2TT]

Finally, we have

K? - ̂ 1 < ^ { i - C + Clog M
~O(logAT1iV1-''). Q

Based on the approximation and computation error, we analyse the error and com-
plexity of the whole periodic Daubechies wavelet method.

4.2. ERROR ANALYSIS AND COMPLEXITY OF THIS METHOD. We can prove the con-
vergence rate of the periodic Daubechies wavelet method.

THEOREM 4 . 2 . Let J be the wavelet decomposition level. The resultant matrix

dimension is TV2, where TV = 2J. Denote fj = Pjf, gj = Pjg, the operator T = K 4- K2,

where Kf(x) = / k(x,y)f(y)dy and K2f(x) = / fc2(i, y)f{y)dy. Then we have
Jo Jo

(4.5) | | / - fj\\ < CJ2-J".

PROOF: Since (I - K - K2)f = g and (J - P?mpK + P*TK2)fj = gJt we have

f-fj = (I- T)"1 [(9J -g) + (K- Pf^K)fj + (K2 -

where

(K - P?mpK)fj + (K2 - P?aiK2)fJ\\ = \\Kfj - P?mpKfj\\ + \\K2fj -

^\\{K- P?mpK)fj\\ + \\(K2 - Py"K2)fj

The error relies, therefore, on the fidelity of the operators pympK, Pf"K2 and gj.

It holds that | | (3 j -Py5) | | ^ C2~Jp. From Theorem 3.2, the formula \\{K2-P^parK2)fj\\

< C2-J" holds. On the other hand, we have \\{K - P?mvK)fj\\ ^ CJ2-J". Let | | ( / -
T)\\~ < B, where B is the bounded number, we can estimate the total error of the
algorithm as

11/ - M| < en-". D
For the resultant matrix B = I — M — S, the number of nonzero elements affect the

complexity of the algorithm. The numbers of nonzero elements of M and 5 are respec-
tively O(Nlog{N)) and 0{N). So, the complexity of the algorithm is O(Nlog(JV)).

The computational error of the matrix 5 is easy to keep smaller than the discreti-
sation error. By Theorem 4.1, note that the computational error of the matrix M is
O(iV1~

plog(7V*i)). To preserve the computational error in accord with the discretisation
error, the truncation parameter N\ should be selected to satisfy N\ ~ N, where N = 2J.
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5. NUMERICAL EXPERIMENTS

The numerical example we consider here has the form of (1.1) where

ka(x, y) = log(a2 + b2- (a2 - b2) cos(x + y)) + 1,

g(x) = exp(cos(i)) (cos(t) cos(sin(i)) - sin(t) sin(sin(t)) J - 2 + exp(cos(f)) cos(sin(i))

+ exp(ccos(t)) cos(csin(£))

in which a = 1, b = 0.5, and c = (a — b)/(a + b).

We solve this example by using our wavelet method and the traditional Nystrom
method, respectively. For the log kernel, we firstly use the common Nystrom method
[10] to discretise the test example.

± £" log (4 sin2 (£ZJt)) f(y)dy »

where the selected equidistant nodes are tj — nj/n for j = 0 , 1 , . . . , 2n — 1,

^ H ) ^ ( )} ' J ' = 0,1, • • .,2n - 1.

The smooth part is discretised by the formula

1 2 n - l•t Pi

5/ 2n *-
.7=0

Thus, the discretisation formula of the test example is

//"' " £ {flIWI + £*>(**• ^)}/jn) = flW.<.i = 0,1,..., 2n - 1.

Both of the system matrices of the log kernel M and the smooth kernel 5 are dense
with 0{N2) nonzero elements by the Nystrom method.

Now, we turn our attention to the wavelet method. By the periodic Daubechies
wavelet, we discretise the test example to get a system matrix. After obtaining the
system matrix, the bi-conjugate gradient iterative method can be applied to solve the
unknown. By the periodic wavelet transform, the approximation fj(x) will be obtained.
We use the bi-conjugate gradient method to solve the resultant equation Bf = 5, where
B = I-M-S.

We show the compression of the matrix Mcamv in Table 1. Denote the threshold by
e. The symbol "nnz" stands for "(the number of non-zero entries of the matrix)/(all the
entries of the matrix)". And, "cond' is the condition number of M00™".
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Table 1: Properties of the compressed matrix M

level size threshold number of nonzeros condition number

J N = 2J e nnz cond

1
2
3
4

2
4
8
16

l.Oe - 14
l.Oe - 14

2.2000e - 014
6.6000e - 015

0.5
0.5000
0.4375
0.3203

4.0741
4.1342
5.7956
572.5716

Table 2: Numerical results of the system matrix B = I - M — S

level size threshold number of nonzeros condition number

J N = 2J e nnz cond

2 4 l.OOOOe - 014 I 1.35545980764243
3 8 2.7900e-014 0.70312500000000 1.35546030752614
4 16 6.6000e-015 0.50781250000000 1.35545975008947

In Table 2, for B = I — M — S, we give the property of the system matrix B. With
increasing the numbers of wavelet basis, the system matrix has a stable condition number
which is about 1.35546.

Table 3 compares the iterative error of the bi-conjugate gradient iterative method
en = ||rn|| = \\g — Bfn\\ between our wavelet method and the Nystrom method. When
the iterations number n increases, the wavelet method converges very rapidly. When
N = 8, the condition number of B by the wavelet method is 1.35546030752614 which is
compared with 19.81745055354439 by the traditional Nystrom method.

A main advantage of wavelets is the reduction of the nonzero entries of matrices.
It significantly reduces the time required by the iterative method. For the bi-conjugate
gradient iterative method, each iteration requires two matrix multiplications, which take
a time proportional to the number of nonzero elements of the matrix. The other major
source of computational effort is to construct and store the matrices. For the result-
ing sparse linear systems by the wavelet method, it only takes 5% - 10% of the total
computational time.

Table 4 displays the experimental accuracies. The errors are obtained by using the
wavelet method with the true solution at the different level J. The computed result
corroborates the theoretical analysis on the convergence rate O(N~plog(N)) where N =
2J for our wavelet method.

6. CONCLUSIONS

We have shown that it is possible to use the periodic Daubechies wavelets to solve
the weakly singular integral equations with log and smooth kernels. The algorithm leads

https://doi.org/10.1017/S0004972700039721 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039721


334 J. Gao and Y-L. Jiang [14]

Table 3: Iterative error of the bi-conjugate gradient method
number of iterations error of the wavelet method error of the Nystrom method

n En £n
1 1.41981583488315 5.83502366943766
2 0.02688971889605 1.13970208509284
3 1.282844345898094e - 006 0.08607546684821
4 1.699156985238018e-011 0.00311810828786
5 1.972132533753210e-017 8.815650367406799e - 004
6 1.355252715606881e - 019 2.366416351984084e - 014
7 8.131516293641283e - 020 4.215924841687874e - 015
8 2.710505431213761e - 020 1.395528702594244e - 015
9 2.710505431213761e - 020 1.087791964408415e - 015
10 2.710505431213761e - 020 1.185393811112968e - 015
11 2.710505431213761e - 020 4.710277376051325e - 016
16 2.710505431213761e - 020 1.047382306668854e - 015
18 2.710505431213761e - 020 1.047382306668854e - 015

Table 4: Computed error of solutions
level size error of the wavelet method

J N 11/-Mk
1
2
3
4

2
4
8
16

2.60887262610224
1.67636915514826e - 01
6.38325521955033e - 02
1.69717428982700e - 02

to sparse matrices which can be efficiently realised by the bi-conjugate gradient iterative
method. Application of the compression strategy and the hyperbolic cross approximation
are shown to be necessary to achieve less complexity. Particularly, we study the properties
of the resulting matrices M and 5 for the weakly singular and smooth parts. The
traditional Nystrom method typically produce dense matrices that require a large amount
of storage cost and time to invert.

The method of the log integral kernel by the periodic Daubechies wavelets can be
applied to calculate other integral kernels. The application of the hyperbolic cross ap-
proximation for the smooth kernel can help reducing the nonzero elements of the system
matrix and accelerating the convergence of the method.
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