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Abstract

Some axially symmetric boundary value problems of potential theory are
formulated as integral equations of the first kind. In each case the kernel
admits an expansion, for small values of a parameter of the problem, that
leads to an approximate integral equation whose solution provides a direct
asymptotic estimate for the physical quantity of primary interest. A manipula-
tion of the original and modified integral equations provides an efficient
formula for calculating higher order terms in the asymptotic expansion.

1. Introduction

A variety of methods is available for the analysis of boundary value
problems in axisymmetric potential theory (cf. Sneddon (10)), though explicit
solutions seldom result and practical objectives are met by establishing the
initial terms of series expansions for individual cases. If more than one char-
acteristic length is involved in the geometrical description of a problem,
expansions for an integrated quantity such as the total charge or flux take on
distinctive forms according as these lengths are comparable in magnitude or
not. Expansions of an irregular type, involving powers and logarithms of a
small parameter (which is related to the difference of a pair of lengths, say)
are more difficult to specify and relatively few representatives from this category
are known with any degree of completeness.

It is our intention in this paper to show that details of irregular or singular
perturbation expansions for linear boundary value problems of potential theory
are furnished without elaborate calculation if a suitable integral equation
formulation is devised at the outset; a stream function is sometimes appropriate
for the latter purpose and integral equations on infinite rather than finite
intervals may be used to advantage.

The particular integral equations which form the basis for our analysis
are all of the first kind and, despite the unavailability of exact solutions, prove
to be advantageous insofar as

(1) the quantity of interest for each problem, which is related to an integral
of the solution, appears explicitly and linearly therein, and
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(2) the kernels admit expansion for small values of the relevant parameter
so that analytic approximation can be obtained directly or the quantity of
interest estimated by comparison with a fully determinate integral equation
of independent origin.

When a first approximation to the solution of a basic integral equation is
known, with a concomitant evaluation for the quantity of interest, an efficient
representation of the difference between this estimate and the exact value,
obtained by manipulation of the original and modified integral equation,
facilitates the derivation of additional or higher order terms in the sought-for
expansion.

The technique is applied to several boundary value problems in what
follows, corroborating or extending results obtained by Spence (11, 12) through
intricate transform analysis for two planar configurations that involve an
annular disc or gap, confirming a prediction by Kirchhoff (5) for the thickness
effect in a circular disc condenser and complementing a calculation by Fock (3)
which pertains to the conductivity of a circular aperture in a transverse section
of a cylindrical tube.

2. The electrified annular disc

An annular disc of inner and outer radii a and b is held at unit potential,
and it is required to find its capacity when a and b are nearly equal. If polar
coordinates (r, 9, z) are chosen so that the disc occupies the region z = 0,
a :g r ^ b, then the symmetry of the configuration clearly implies that the
potential $(r, z) is independent of 6, and is an even function of z. Thus we
may confine our attention to the half-space z ^ 0, with <j>{r, z) specified as the
function that vanishes at infinity and satisfies the conditions

i l + i l ^ = 0, z>0
rdr 3 2 /

(2.1)
<f> = 1, z — O,a<r<b

4>z = 0, z = 0, r<a or r>b,
where the notation <f>z means d<j>/dz.

The problem can readily be reduced to that of an integral equation of the
first kind, by applying Green's theorem to the potential (f>{r, z) and a Green's
function G(r; rt) chosen to have vanishing normal derivative on the plane
z = 0. Thus

r»
rG(r,e,0;r1,91,zl)(l)z(r,0)dr, zx>0 (2.2)

where

= f2" d6 f*
Jo Ja

G= - - I - - r ^ ; *± =(r2 + r2-2rr1cos(0-01) + (z + z1)
2)*. (2.3)

4KR+ 4 R
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Formula (2.2) gives the potential at any point rx in terms of the unknown
charge density

<r) = - i - Ur, 0) (2.4)
47C

on the upper surface. In particular, if r1 lies on this surface then <j> assumes
its prescribed value unity, and we have the integral equation

1= f*X(r, ri)r<j(r)dr, a<ri<b, (2.5)
J a

for the charge a, where the kernel K(r, rt) is given by

K{r, r1) = 2\ (r2 + r\ - 2rrt cos 6)
J

(r + r,) \r + rj

in terms of the elliptic integral
fn/2

(2.6)

K ( a ) = I"
J

(I-<x2 sin2 ey+dO. (2.7)
o

The capacity C of the annulus is equal to the total charge divided by the
potential; thus

C = 2 2nro(r)dr. (2.8)
Ji

Now the integral equation (2.5), which is valid for all values of the para-
meters a and b, is particularly well suited to the case of interest here, with
the two radii nearly equal. To exploit the fact that the pair of variables r
and Ti appearing in (2.5) differ little from a, we define the small dimensionless
parameter

e = (b/a)-l, (2.9)

and rescale the variables by the transformation

r = a(\+ex), rt = a(\+zx^), (2.10)
so that x and xt vary between 0 and 1. It is also convenient to normalise the
charge density according to the formula

V(x) = ^ ^ Mr) = ^-(a + aex)(j(a + aex). (2.11)

In terms of the function V(x), the integral equation (2.5) and the expression
(2.8) take the form

^ = | K(x, Xl)V{x)dx, 0<x1<l , (2.12)
^ Jo
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and

1 = f V(x)dx, (2.13)
Jo

where K{x, xx) denotes K(r, r t) with r = l+sx and rx = 1 + ext.
The kernel K, given by (2.6), can readily be expanded for small values of e,

using the known expansion (cf. Gradstein and Rhysik (9)) for the elliptic
integral of order close to unity; an expansion of this type is carried out in a
similar problem by Grinberg and Kuritsyn (4). It is found that, as e->0,

K(x, xt) M o g e + l o g l * X l I M * + * ) e l o g g £ e l o g l X *
o o

(2.14)

A first approximation F0(x) for the unknown function V{x), and a corre-
sponding estimate Co for the capacity, is now obtained from the governing
equations (2.12, 2.13) on replacing the exact kernel K by the first pair of terms
in the uniformly valid expansion (2.14). If we define

K0(x, *i)=--a \^g e+log * *~Xl I j , (2.15)

then V0(x) and Co satisfy the equation

p = [ l Ko{x,xl)Vo{x)dx, 0<x 1 <l , (2.16)
^0 J 0

i.e.

— + - log - = - - f' V0(x) log | x-Xl | dx, (2.17)
Co n 8 7cJ0

if V0{x) is normalised to satisfy the scaling condition (2.13).
Such an integral equation, with a logarithmic kernel, can readily be inverted:

its solution, given by several authors (cf. Cooke (2)) is

1 {-=- + M o g ^ x - * ( l - x r * , (2.18)V0(x) j J +
log 4 [Co n

whence integration between 0 and 1, and use of the condition (2.13), leads
to the results

C0-
1 = (7tfl)-Mog(32/e), (2.19)

and
V0(x) = n-1x-ia-xyi. (2.20)

An improved estimate for the function V(x), and hence for the capacity C
can in principle be obtained from the governing equations (2.12, 2.13), on the
basis of an iteration scheme using V0(x) as a first approximation. In particular,
since the kernel Kis seen from (2.14) to differ from Ko by a term of order e log e,
such a scheme readily provides the information that the next term in the
expansion of V(x) is also of the order e log e. Higher order terms are obtained
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along similar lines in a related low frequency wave problem by Grinberg and
Kuritsyn (4).

A more efficient procedure for gaining a direct improvement on our estimate
(2.19) for C is now shown to be possible, using only the first approximation
V0(x) together with the exact equations (2.12), (2.16) satisfied by V(x) and
V0(x). For if (2.16) is multiplied by V(xi) and integrated from 0 to 1, then

Co Jo Jo
K0(x, x1)V0(x)V(x1)dxdxl,

on account of the scaling condition (2.13). Similarly, if (2.12) is multiplied
by V0(Xl),

4n f1 f1

^ Jo Jo
K(x,

whence, on subtraction, the symmetry of K(x, xt) yields the formula

- - — = -/- f1 P V0(x)V(Xl){K(x, xJ-Koix, Xl)}dxdXl; (2.21)
C Co 4rcJ0 Jo

this is an exact expression for the difference between C and its estimate Co,
given by (2.19).

A first approximation for the error (2.21) is obviously obtained by replacing
V(Xi) by Voixt), and using the expansion (2.14) to estimate K—Ko. Further,
since V differs from Vo by a term of order e log e, the form of the expansion
(2.14) for K(x, x j shows that the first two terms of the integral (2.21) are
obtained by replacing V by Vo and using the two leading terms in the expan-
sion for K—Ko. Since CQ1 already contains two terms in the expansion for
the capacity, the formula (2.21) is seen to be very efficient in providing the
four leading terms for C~1 in terms of only the first approximation V0(x)
for V.

Thus from (2.20), and (2.14, 2.15), we get

T, - 7T = ^-3 P fV*(i-xr**r*(i-*!>-*
C Co 2an3 Jo Jo

\x-xi\e "I 1
+ e log ' • 1- o(e) > dxdxt = {n2e log e + £7t2 log (e/32)} + o(e).

8 J 2.Q71

Finally, from (2.19),

1 i f 32 e")
— = <21og hfiloge + elog—> +o(e), (2.22)
C 2na I e 32J

which is in agreement with the result due to Spence (11), who expresses his
result in non-dimensional form by multiplying by the known capacity
C* = 2bIn = 2a(l +e)/n for the disc of radius b. Thus

C*/C = 7r"2{-21og£ + 21og32-eloge+elog(32e) + o(£)}. (2.23)
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3. An electrified circular disc with an infinite coplanar screen

A complementary problem is that posed by Spence (12), in which a disc
of radius a, held at unit potential, is separated by an annular gap of width
b — a from an earthed screen that extends from r = b to r = oo. The symmetry
about the plane z = 0 containing the plates leads to a boundary value problem
for the axisymmetric potential function <f>(r, z) in the half-space z ^ 0. Thus

fd2 1 d d2\ )
71 + - 7 + TTJ0 = O, z > 0\dr r dr dz J —

0 = 1 , z = 0, r<a,

0Z = 0, z = 0, a<r<b,

0 = 0, z = 0, r>b,

(3.1)

and we are again concerned with finding the capacity of the system when the
gap is small, i.e. for small values of the parameter e = (b/a) — l.

Our aim is to reduce the problem (3.1) to an integral equation of the first
kind, over the region a<r<b, so that an approximate solution may be obtained
by the procedure of the previous section. Such an equation is most readily
derived by introducing a suitable stream function for the problem, in the manner
described in (7) and (8). This function 0(r, z) is defined by the formulae

T = r\j/2 and r0 z = - — (rij/),
dr

(3.2)

with 0 = 0 when r = 0, z = 0, this implying that ^(0, z) is zero for all positive z.
The boundary value problem for \j/(r, z) resulting from (3.1) and (3.2) has

the specifications

+ IJL + i i / =
» r 5r dz2 r2 ' ^

^z = 0, z = 0, r<a,

0 = C/r, z = 0, a<r<b,

\J/2 = 0, z = 0, r>b;

(3.3)

the constant C is an unknown of the problem, to be found from the scaling
condition that the potential assumes the constant value unity on the inner
disc, whence

- 1 = (3.4)

An essential feature of this formulation is that the constant C appearing
in the specifications (3.3) is the numerical value of the capacity of the system.
For the capacity, which is the total charge on the disc divided by the potential
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difference, is therefore equal to twice the charge on the upper surface r<a,
z = 0, whence

capacity = - — f <j>z{r, 0)2nrdr = \ — (r4/)dr = C. (3.5)
4rcJo J o 5 r

The stream function \p(r, z) at any point z ^ 0 can be represented in terms
of the normal derivative \j/z{r, 0) = 0rC. 0), a<r<b, through the use of Green's
theorem applied to \p(r, z) and a Green's function G{r; r t ) that has zero normal
derivative across the plane z = 0.
Thus

f2" f*
, Zy) = d9 G(r, 0, 0; ru 6U zx)i/r2(r, 0)rdr, z t > 0

Jo Jo
f6

= fif(r, 0; r1,z1)\l/z(r,0)rdr, zt>0,
where g(r, z; ru zt) is specified by the conditions

^ f2)j9 = -S(r-ri)d(z-z1), g,ir,0;ruz1) = 0. (3.6)
r dr dz2 r2/ r

In particular, if cKr^Kb and Zj-^0, then ij/ is seen from (3.3) to take the
value C/ru and the radial electric field in the gap, \j/z(r, 0) = $'(r)> satisfies the
integral equation

C= K(r, rJWdr, a<ri<b. (3.7)
Ja

The symmetric kernel K{r, rt) = rrtg(r, 0; f̂ , 0) is given in (7) by the formula

K{r, r j = - r> I E ̂  - K (r-A\ (3.8)
where r< and r> denote the lesser and greater of the variables r and rx; E
and K are complete elliptic integrals, K being given by (2.7) and

E(a)= p (l-a2si
Jo

(3.9)

Equation (3.7) and the scaling condition (3.4) are of the same type as the
corresponding pair (2.12, 2.13) discussed in section 2, and can be dealt with by
exactly the same procedure for small values of e = (b/a) — 1. Thus if the re-
scaled variables {x, xt) of (2.10) are used in place of (r, rt), and if we define

U(x) = -ae4>'(a+aex), (3.10)

then the governing equations (3.7, 3.4) become

-c= f'xc*,
Jo

Xl)U(x)dx, 0<Xi<l, (3.11)

https://doi.org/10.1017/S0013091500026158 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026158


62

with

F. G. LEPPINGTON AND H. LEVINE

1
Jo

U(x)dx. (3.12)

The kernel K(x, Xj), which means K(r, rt) written in terms of {x, x j , can
easily be expanded for small values of e, making use of the known results (cf.
Gradstein and Rhysik (9)) for the elliptic integrals.

It is found that

= K0+ —
2 8

(3.13)

(3.14)

where

JC0 = - l o g — + - l o g | x - * 1 | .
7t 8 n

Proceeding as in section 2, a first approximation U0(x), and Co, is obtained
by replacing K by Ko in the integral equation (3.11). Thus

- C o = \ K0(x, Xl)Uo(x)dx

1 = U0(x)dx,
Jo

and

with the solution

log 4 I a % 8 n
* (3.16)

and

n ( e
An improved estimate follows, as in section 2, from the exact formula

(3.17)

C-Co=- \ \ l (K-Ko
Jo Jo

hence from (3.13) and (3.16),

- c 0 = - -̂ 3 f1 f *-*(i-x)-*xr*(i-
271 Jo Jo

(3.18)

(x + *!> log

Finally then, from (3.17) and (3.19), we get

C= -I-log

+o(e)idxdx1. (3.19)
J

^ - i£ log£- i£ log— +o(s)\ (3.20)
e 32 J

in which the first two terms are those obtained by Spence (12).
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4. A condenser with parallel circular discs of finite thickness

Two identical circular discs, each of unit radius and thickness h, are held
at equal and opposite potentials +1 and — 1, and form a condenser whose
capacity C is to be found when the separation 2e and thickness h are small com-
pared with the radius.

An earlier analysis (7), dealing with the case of zero thickness, h = 0, has
provided the first few terms of the asymptotic expansion for C, in agreement
with results obtained by Kirchhoff (5) and others. The approach developed
in (7), which is now extended to include finite thickness, is to exploit the fact
that the potential <j) near the end faces closely resembles that of the corresponding
two-dimensional problem involving a pair of semi-infinite plates. An exact
integral equation formulation, to determine the potential, is derived and
compared with the corresponding equations for the analogous two-dimensional
problem; a direct comparison of the respective equations is sufficient to
determine the capacity to a high degree of accuracy.

The symmetry of the problem implies that the potential <f> is zero over the
plane midway between the discs, so that we may confine our attention to the
half-space above this plane. A polar coordinate system (r, 6, z) is chosen so
that the symmetry plane is z = — e, with the disc at potential +1 occupying
the region r ^ I, 0 ^ z ^ h. The boundary value problem to determine the
potential 4>(r, z) is now reduced to that of a pair of coupled integral equations
over the domains z = 0, r> 1 and z = h, r>\, again by introducing a suitable
stream function for the problem.

Working in the half-space z ^ — e, it is convenient to subdivide into the
three regions z ^ h, 0 ^ z ^h, and — e gj z :g 0, these being denoted respec-
tively by the subscripts 1, 2 and 3 (Fig. 1). The stream function \j/(r, z) is defined
by the formulae

r^ = n/,2> r4>z=-~{rn (4.1)

dr

with constants of integration chosen so that

1/̂ (0, h) = 0, 1^(0, 0) = 0, and lim r\j/2(j, z) = 0. (4.2)
r-* oo

The boundary value problem for \ji{r, z) is given by

i l + IJL -1 + i l
Kdr2 r dr r2 dz2

\j/z = 0, r ^ 1, z = 0 or z = h,

<Az = 0 , z = - e ,

- (n/0 = 0, r = 1, 0 ^ z ^ h.
dr

(4.3)
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The choice of constants of integration defined by (4.2) implies that r\ji is dis-
continuous across the planes z = h and z = 0,

i.e. ipt-il/2 = A/r, z = h, r Z I, (4.4)

and 1^2-<As = B/r, z = 0, r ^ 1. (4.5)

region 1

region 2

region 3

FIG. 1

The constants A and 5 are to be found, and are related to the capacity C
of the system. For the total charge on the upper surface is

Si = - P -/- ^ (r, /i)2nn/r = * f' | (i^iMr = # x ( l , A),
Jo 4 j t oz Jo or

and the charge on the lower surface is given similarly as

E3 = - # 3 ( 1 , 0),

while the curved surface, r = 1, 0 ^ z ^A, carries a charge

= - 2 B [* -L ̂  (1,
Jo 4rc 5r

(l, ft)-^2(1, 0)}.

is related to the constants AIt follows that the capacity C = i(
and B by the formula

C = ±(A+B). (4.6)
Integral equation formulation. A representation for the stream function

^i(r1, Zj), for any point in region 1, (zx ^ A) is obtained by choosing a Green's
function gt(r, z; ru zy) that vanishes at infinity and has zero normal derivative
on the plane z = h. Specifically,

r, h; ru z1)r<^r(r, h)dr, (4.7)
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where gx is such that

Ql(r, h;ruh)=-2-|E (*-A -KfcU (4.8)| (

with details given in (7).
A similar analysis for region 3 (—s g zx ^ 0) requires a Green's function

that has vanishing normal derivative on each of the planes z = 0 and z = — e,
whence

•AsO-i, z i ) = - g3(r, 0; ru zJrtfrXr, 0)dr, - e g z ^ O , (4.9)

where the Green's function,

i s 1 r< 2 ^ nnz nnz, . /n7ir<\ Tjr /«7ir>\
g3(r, z; n, zt)= - — — £ cos cos ! J J K J - ,

2e r> e I e e \ 6 / \ e /
(4.10)

expressed in terms of the modified Bessel functions It and Ku is the same as
that appearing in the analysis (7) for discs of zero thickness.

The corresponding formula for the region 2 requires a Green's function
g2(r, z; ru zt) specified by the conditions

d2 1 8 1 d2 \ 1 .. . . . ,
T l + - 7 5 + T ^ U'2=-<5('--r1)5(z-z1)>3rz r dr r2 dz2j r

with (gz)z = 0 when r ^ 1, z = 0 or A, and r(g2)r+g2 = 0 when r = 1,
0 ^ z ^ A. Thus we find, for 0 ^ z, ^ A,

• / ^ i . Zi) = - 02(r, h; r,, z ^ r ^ r , /j)rfr+ gf2(r, 0; ru zjrfar, 0)dr,

(4.11)
with g2 given by

1 r< 2

nn

E rin.*. rmz, \ n i h \ h i „ / nnr \
cos — cos —-i W y ^ ^ -— X!. —-

—) + —K' | — |

(4.12)
Finally, the discontinuity conditions (4.4, 4.5) are applied, using the three

formulae (4.7), (4.9) and (4.11), and the problem is reduced to the following
pair of coupled integral equations for the radial fields 0fC, 0) and (j)r(r, h):
Ceo fa,
I <f>r(r, h)rri(gi+g2Xr, h; ru h)dr- <£/r, 0)rr,^2(r, 0; ru h)dr = A

(4.13)
E.M.S.—E
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and

far, h)rrlg2(r, h; ru O)dr+ <j>r(r, 0)rrl(g2+g3)(r, 0; r , , O)dr = B,

(4.14)

for r, ^ 1, with the constants A and B determined from the requirement that
<£ = 1 on the disc, whence

f" W, fc)dr = T (4.15)

Approximation near the edges. The coupled equations (4.13) and (4.14),
which are, in principle, sufficient to determine the solution for any values of
the parameters e and h, are now shown to be particularly useful for the case
of interest here, when e and h are small. For although their exact solution is
not possible, some information regarding the desired constants A and B can
be obtained by simply comparing (4.13) and (4.14) with the corresponding
equations for a pair of semi-infinite plates of the same thickness and separation.
The argument is that, for points sufficiently close to the end faces (i.e. rt close
to unity), the potential will be insensitive to the small curvature of the discs,
as was found to be the case in the earlier work (7) on the problem of discs with
zero thickness.

Thus we write
r = l+x, rx = \+Xi, (4.16)

and expand the kernels of the equations (4.13) and (4.14) for small values of
JC and xt. This is a simple procedure since the Bessel functions It and K,,
that appear in g2 and g3, have uniformly large arguments and may be replaced
by their asymptotic forms in terms of exponentials, and the sums can readily
be performed. Denoting the approximate solution so obtained by the suffix 0,
the integral equations (4.13) and (4.14) reduce to the form

f°
Jo

<j>Ox(x, ft){(x~X<) + - l o g [ | x -

- f
Jo

<t>Ox(x, 0 ) { ( x ~ X < ) + - log [(1 + e~"' *-Xl ""XI + e~"'X+Xl l / h )] l dx
I h n J

= X 0 + - l o g ^ , (4.17)
n 8

- f" 4>o*(*. h)VX~X<) + - log [(1 + e~n I x~Xl l/h)(l + e~''X+Xl " * ) ] ! dx
Jo I h n J

Jo
*-x,|/t)i £<jd ; c = Bo_ J_f (4 1 8 )

£ J 2e
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for *!>(), where use has been made of the additional scaling conditions that

4»Ox{x, h)dx =
Jo Jo

, h)dx = <f>Ox(x, 0)dx = - 1 . (4.19)
Jo Jo

Although the approximate equations (4.17, 4.18) still look difficult to deal
with, it is to be noted that they are derived only for comparison with those
appropriate to the corresponding two-dimensional configuration, for which a
solution can be obtained by conformal mapping. It will now be shown that
the two-dimensional equations differ from (4.17, 4.18) only in that definite
constants appear on the right-hand sides: a direct comparison is therefore
sufficient to determine Ao and Bo without the need to solve the equations.

Two-dimensional problem. The corresponding two-dimensional problem,
whose solution leads to a first approximation Ao, Bo for the constants A, B,
is that of a pair of semi-infinite plates of thickness h and separation 2e, main-
tained at potentials + 1 . Exploiting the symmetry about the mid-plane, we
have to find a harmonic function <&(x, y) that vanishes on the plane y = — e,
and takes the value unity on the three surfaces (x ^ 0, y = h), {x ^ 0, y = 0)
and (x = 0, 0 g y g h).

This problem is readily solved by means of the following conformal trans-
formation from the complex plane z = x + iy to ( = £, + ir\:

z = a)*+(j?+ia) cosh"1 f-C +l) -j?*(a + /J)* cosh-' (1+2/?/«)C + /?

-i7i)3*(a+/?)*, (4.20)
(cf. Kober (6)), where the constants a and P are given in terms of e and h by
the formulae

np*(a + P)* = e, n(P + i<x) = e + h. (4.21)
The transformation (4.20) is found to map the plate ABCD and the line EF
on to the real £-axis (Fig. 2).

z-plane
A y = h 0) = 1 B

C-plane

D

— a P
y = -e 0 = 0 F

FIG. 2
B DE
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The required complex potential Q = O + i*¥ is easily calculated in terms of C,
and is found to be

^ fc£ \ (4.22)
An explicit solution in terms of x and y is not possible, since the trans-

formation (4.20) cannot be inverted in a simple form; but the solution (4.22),
together with (4.20), can be used to infer the limiting form of the solution at
large distance from the origin, for points both between and outside the plates.
For points between the plates, it is found that

W(x, y)~ -x/e+P as | z |->oo, through DE, (4.23)
where

P = —<lH—I-—-—T cosh"1 I — + 1 ) —log -(u + P)>. (4.24)
n I j?*(a + /?)* \ a / a J

For points outside the plates, on the other hand,

V(x, y)~~- log (x2 + y2)* + - log P as \z \-> oo, through AF. (4.25)
n n

A pair of coupled integral equations for Ox(x, 0) and 0>x(x, h), corresponding
to (4.13, 4.14) for the discs, can readily be derived by a similar procedure.
Using the asymptotics (4.23, 4.25) to calculate the contributions from arcs at
infinity, it is found that the equations for 0>x(x, 0) and <$>x{x, h) are exactly like
(4.17) and (4.18), with the constants on the right replaced by

1 e2)
(1 — log P)/n instead of Ao H— log —

, * 8 L (4.26)
and '
P- 1/TC instead of Bo - l/2e

Approximate evaluation of the capacity. Since the governing equations for
<j>0 and <D differ only by the scaling constants on the right, and since each
function has the same scaling condition (4.19), the pair must be identically
equal. Thus the constant terms of their integral equations can be equated,
and the constants Ao and Bo are seen from (4.26) to have the values

Ao = log — H log/9
71 8 n % I. (4.27)

and ' v '

DQ = jL/z.c-r/'—1/TI J

Finally, the capacity C = $(A+B) takes the approximate form
•• 4 f 7• n\

Se 4n

1 1 . [8TE/. hXl , 1 h . ( 2e\ , . , „
= - + — log<— 1+ — ) \ + — - log 1+ — , (4.28)

8e 47i I ee \ 2eJ) 8n e \ h
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from (4.24), and using (4.21) to express the answer in terms of e and h. The
result (4.28) is precisely that proposed by Kirchhoff (5).

The infinite range of integration in the exact formulae (4.13, 4.14) implies
that the asymptotic approximation of the kernels leading to (4.17, 4.18) is not
uniform, therefore not strictly valid. The justification for this step is that
for values of r significantly greater than unity, for which the asymptotics are
not valid, the functions <f>r(

r> h) and <j)r(r, 0) are very small on account of the
dipole nature of the field away from the discs. This point is discussed more
fully in the analysis (7) for discs of zero thickness, for which an improved
estimate for the capacity is derived. It is likely that the next term in the expan-
sion for C could be obtained similarly here, by manipulating the exact equations
(4.13, 4.14) and the approximate equations (4.17, 4.18) to provide efficient
formulae for A and B, analogous to (2.21) and (3.18) in the earlier sections.

5. Steady flow through a constricted circular tube

A problem investigated by Fock (3) concerns the steady flow of current down
a circular tube, of radius b, across which is placed a plane screen containing
a circular aperture, of radius a, whose centre is on the axis of the tube. Fock
deals with the case when the aperture radius a is small compared with b, while
the present investigation concerns the complementary problem when the two
radii are nearly equal.

Cylindrical polar coordinates (r, 6, z) are chosen so that the tube is given
by r = b, — oo<z<oo, with the screen occupying the region a<r<b, z = 0.
The scalar potential <f>(r, z) is a harmonic function whose asymptotic form
(j)~Az, for large \z\, corresponds to the free flow down the tube with no
constriction, where A is a constant proportional to the total current / . The
symmetry of the problem implies that <j>(r, z) is an odd function of z, so that
we may consider only the region z ^ 0, in which <j) is specified by the conditions

(5.1)
0 = 0, z = 0, r<a,

<j)z = 0, z = 0, a<r<b,

0, = 0, z^0,r = b

(j>~Az + B as z-*oo,

where A is given and B is an unknown constant to be found.
In order to obtain an integral equation representation over the region

z = 0, a ^ r ^ b, we follow the lead given in sections 3 and 4 by defining the
stream function \p(r, z):

r<f>, = ri]/2 and r<j>z= - - (pjr), (5.2)
dr

E.M.S.—E2
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with the condition that \j/(0, 0) = 0. This implies that ip(Q, z) = 0 along the
whole z-axis, whence on taking the limit r-*0 in the second of formulae (5.2)
we have

<£z(0, z) = - 2 ^ ( 0 , z), z S 0. (5.3)

The boundary value problem for \ji{r, z) is found from (5.1) and (5.2) to be:

rdr

= 0,

\]/=-iAb,

i/r \Ar,

z = 0, r<a

z = 0,

z ^ 0 , r

asz-»oo.

(5.4)

The total current / flowing down the tube is given from conditions at
large | z | as

I = a ^ Inrdr = anb2A, (5.5)
Jo Sz

where a is the conductivity of the medium. Fock (3) defines the conductivity
of the aperture as

C = IlloB, (5.6)

where B is the unknown constant appearing in the specifications (5.1), and our
aim is to calculate this number, hence the conductivity C, in the limit when
5 = 1— (a/b) is small.

Integral equation formulation. The problem (5.4) is reduced to an integral
equation, through the use of a Green's function g{r, z; ru zt), described in
the appendix, that is chosen to vanish when r = b and to have zero normal
derivative when z = 0. It is found that \p(ru z^) has the representation

r, 0)rdr~iAb f" % (6, z; ru
Jo Sr

zjbdz,

i.e.

= | g(r, 0; rlt z^J^r,
Ja

0)rdr, (5.7)

using equation (A7) of the appendix. In particular, if zt-»0 and a<rt<b, then
(5.4) shows that \p assumes the value —Ab2j2r1, and we are led to the integral
equation

( ± r \ f" b, (5.8)-\Ab (±-r-±\= f" g{r, 0; ru 0)<M>, 0)rdr,

for the function i^z(r, 0).

https://doi.org/10.1017/S0013091500026158 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026158


SOME AXIALLY SYMMETRIC POTENTIAL PROBLEMS 71

It remains to express the constant B in terms of the function ^z(r, 0), and
this is achieved as follows. Since <j>~Az+B for large z, we have

B= [" {fc,(0, z1)-A}dz1
Jo

= - 2 [°° {^,(0, z1) + iA}dzl, from (5.3),
Jo

= - 2 P nk(r, 0)dr | " <?„(/•, 0; 0, zjdz,, from (5.7),
Jo Jo

i.e.

using formula (AS) of the appendix. Thus if we define

WM=-^(--T
bB \r b)

and

K(r, r,) = ( ; - ^ ) 1 ( 7 - T ) d(r, 0; ru 0), (5.10)

then equations (5.8) and (5.9) take the normalised form
fb

K(r,r1)W1(r)dr= -C/nb2, a<r^<b, (5.11)
Ja

with
fb

Wi(r)dr = 1. (5.12)f
The equations (5.11, 5.12), which together determine the potential field,

and in particular the conductivity C, are of exactly the same type as have
appeared in the earlier sections 2 and 3, and can be solved by the same
procedure.

Approximate solution. An approximate solution for Wt(r), and the constant
C, is sought for small values of the parameter

5 = l-(a/b). (5.13)

The variables r, rt and W^r) are rescaled according to the transformations

r = b(\-dx), rl=b(l-8xl), (5.14)
and

W(x) = b5 Wx(r) = hb W^b - bdx). (5.15)
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The governing equations (5.11, 5.12) then become

f
Jo

K{x,xl)W(x)dx = -C/nb2,

f
Jo

W(x)dx = 1,

(5.16)

(5.17)

and are solved approximately by expanding the kernel K(x, xy) for small 5.
It is shown in the appendix that

K(x, 1

4nbd2
log x —x<

I6nb
log 8, (5.18)

whence a first approximation W0(x), and Co, is defined by the integral equation

f
Jo

K0(x, xi)W0(x)dx = -C0jnb2,

i.e.

- - log
/0

X — X ,

x Inb 4n

where use has been made of the scaling condition
•i

f
Jo

W0(x)dx = 1.

(5.19)

l, (5.20)

(5.21)

The integral equation (5.20) is a familiar one whose solution is known
(cf. Cooke (2)). It can also be solved from first principles, since the approximate
formula (5.19) corresponds to the two-dimensional problem of a steady flow
past a plane with a strip of unit length protruding at right angles; this can
easily be solved by conformal transformation and leads to the solution

* ( 1 - X 2 ) * 1 T C & 4TT B J

The constant Co is then found from condition (5.20), whence

4x2

W0{x) =

and

To improve this estimate, the exact formula

C-Co= -nb2 I \ (K-K0)W(x1)WQ(x)dxdx1
Jo Jo

~-nb2 f1 ^ (K-K0)W0(x1)W0(x)dxdxl
Jo Jo

(5.22)

(5.23)

(5.24)

(5.25)
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is obtained from (5.16) and (5.19). An estimate for (5.25) requires a further
expansion of the kernel K(x, xx), and is not pursued here since the next term,
of order <52, is found to have a coeflBcient that is expressed only in the form
of a complicated definite integral involving modified Bessel functions.

Formula (5.23) complements the results of Fock (3) who deals with the
regular limit of small a/b, and obtains a power series expansion for C~l up
to terms of order {alb)12. The value obtained from (5.23) agrees well with
Fock's prediction when alb = 9/10.

Appendix. Properties of a Green's function

The Green's function g(r, z; ru zx) of section 5 is specified by

dr2 r dr rz 3z y

with
g2 = 0 when z = 0, 3 = 0 when r = b. (A2)

Writing g in the form of a Fourier integral,

1 r°°

0(r, z; rls z i ) = — ^(r,r , ; 5){c"'*"! l ) + e"i s ( 2 + I 'Vs, 043)

the transform function 6 is such that
z r dr r2 ) r

with 0 = 0 when r = b, and has the solution

§ = - X x ( | s | r > ) / 1 ( | s | r < ) + f ^ ^ / ^ l s | r ) / x ( | s | r t ) ;

the functions /, and Kt are modified Bessel functions. In particular then,
when z = zx = 0, we have

A useful related function is that obtained by integrating g(r, z; ru zt)
from z = 0 to z = 00, and is most easily calculated directly from equation
041). Thus

' C O ld2 _,_ 1 d A f»
dr2 rdr r1) J o
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Too
with gdz = 0 when r = b, and has the solution

Jo

[" g(r, z; ru z,)dz = f" g(r, z,; ru z)dz = ^ - Ls~. (A6)
Jo Jo 2b2 2r>

In particular,

Jo dr
r,rlfzl)dz = rllb

2 (A7)
Jo or

and

Jo Sri ' ' 2b \r b

Asymptotics for small 5. We require the asymptotic form of the function
g(r, 0; rt, 0) when r = b(l—5x) and rt = b(l —5xt) with 5 small.

The first integral of (.45) is readily dealt with, since it can be expressed (9)
in the form of a hypergeometric function,

whose known expansion (cf. (1)), with argument close to unity, leads to the
result that

7Cb\
log S - l o g

\x-xt \e2

8

3

~2xxl+9x\) log d + O(82)\. (AlC)\.

To deal with the remaining integral of (̂ 45) we note that, for small 5, the
factor It(t—tdx)It(t—t8xi) appearing in the integrand is nearly the same as
h(t)h(.t-t5(,x+x1)). Thus

nbjo It(t)
hO-tSx)I1(t-tSx1)dt=\

nb
(All)

where

\ {"^ (A12)

is small when 8 is small.
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The first term of (All), which gives the main contribution when 8 is small,
can be written as a hypergeometric function, whence

2 f°°
— K1
nb Jo

nb\
log <S-l x) log 8—i8(x + Xi) log

2log<5 + O(52)\.

8

(^413)

It remains to deal with the correction term R of formula (All). This can
be estimated by dividing the range of integration at t — N, where N is a large
number such that

Af->oo, M5->0 asc5->0. 0414)

Over the interval 0<t<N, we have t5<£l and the modified Bessel functions
may be replaced by their Taylor series approximations about t; for />iV,
on the other hand, the Bessel functions have uniformly large arguments and
may therefore be replaced by their appropriate asymptotic forms. This
procedure leads to the estimate

^^82 log 8+ O(82),
2nb

0415)

whence from 0410), 0413) and 0415) we get

x — x
g(r,0; ru -Ulog

no I

Finally, the kernel of equation (5.16) is

•Mx> xi) — 775 ~

0416)

and is found from 0416) to take the asymptotic form

K(x,
4nb82xxl

log x — xt -%xXl8
2 log 8 + O(82)}. (All)
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