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In this note we consider the question: If R is a right Noetherian ring and /
is an invertible ideal of R, how do the Krull dimensions of various modules,
factor rings and over-rings of R, connected with /, compare with the Krull
dimension of R1 This question is prompted by results in (5) and (6). In com-
paring the Krull dimension of the ring R with that of the ring R/I, the best result
would be that the Krull dimension of the ring R is exactly one greater than that
of the ring R/I. This result is not true in general; however, we see, in Theorem
2.4, that if the invertible ideal is contained in the Jacobson radical the result
holds. In the general case we find it is necessary to introduce an over-ring T
of R generated by the inverse 7 " 1 of/. We then see that the Krull dimension of
R is the larger of two possibilities: (a) Krull dimension of R/T plus one or (b)
Krull dimension of T. In order to prove this result we construct a strictly
increasing map from the poset of right ideals of R to the cartesian product of
the poset of right ideals of T with a poset of certain infinite sequences of right
ideals of R/I.

For background knowledge of Krull dimension we refer the reader to (2)
and (4). We shall assume that each ring has a unit and that modules are unital.

1. Definitions and preliminary results
We recall first the definition of the deviation of a poset (partially ordered

set). In (4) the definition was given only for positive integers, but, following
Krause (3), we allow any ordinal number.

Let E be a poset; if a, b e E, then [a, b~] = {x e E \ a g x g b] is again a
poset. If E is a discrete set then dev E = — 1. If E is Artinian (that is, each
decreasing sequence of distinct elements of E is finite) then dev E = 0. Suppose
that, for a given ordinal a, all posets Fwith dev F«x are known; then we define
dev E = a if each decreasing sequence au a2, ... of elements of E such that
dev [at+1,a{\4:u, for each/, is finite. If there is no ordinal a such that dev E = a
we say that E has no deviation.

This definition is applied to £P{M), the lattice of i?-submodules of an R-
module M. The Krull dimension of M, denoted by \M\, is defined by
| M | = dev (JS?(M)). In particular, | R \ = dev (£f(RR))-

Proposition 1.1 (see (3)). If M is a Noetherian module, then M has a Krull
dimension.

E.M.S.—20/1—F
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Next we mention some elementary results from (4) concerning deviation.
If E, Fare posets with deviation then so is Ex Fand

dev (ExF) = sup (dev E, dev F).

If E is a poset, we define Cr {E) to be the set of sequences (eu e2,...) of elements
of E such that et ^ e2 ^ ... and that the ef become constant for i large enough.
The set Cr (E) is a poset under the ordering e ^ / i f and only if et ^ / f , for each i.
In (4) it is shown that dev (Cr (E)) = dev E+1. Let E, F be posets with devia-
tion, a map / : E->F is said to be increasing if, for all x, y e E, x ^ y implies
that/(x) ^ f[y). \ix<y implies that/(jc)</0>)> we say that the map is strictly
increasing. If there is a strictly increasing map from E to F it is easy to see that
dev E ^ dev F.

An ideal / of a ring R is said to be an invertible ideal if there exists a subset,
/ " ' , of some over-ring Q of R with 1G = lR, such that 77"1 = 7" 1 / = 7?.

Lemma 1.2. 7/ 7 is aw invertible ideal of a ring R, with Krull dimension,
then\RII\<\R\.

Proof. First note that the structure of 7?/7as an 7?/7-module is the same as its
7?-module structure. Suppose that J, AT are right ideals of 7? with 7 ̂  J<K ^ 7?,
then 7"+1 ^ JI"<KI" ^ I", and so we have a strictly increasing map from
jS?(7?/7) to S£{Fjl"+*). Hence | 7"/7"+i | ^ | 7?/71 and so the infinite descending
chain of ideals 7? > 7> 72 >. . . shows that | R/I \ < \ R |.

If 7 is an invertible ideal of a ring 7?, it is easy to see that the ideals
00

I", n = 2, 3, ..., are also invertible and that T = [j I~" is an over-ring of 7?.
n = 1

Proposition 1.3. If R is a right Noetherian ring with invertible ideal I and

T = (J /"", then
n = 1

(a) IfJ is a right ideal ofT, we have J = (JnR)T;

(b) T is a right Noetherian ring;

(c) \T\^\R\.

Proof, (a) If ye J then jel~", for some n, and therefore jl" c JnR.
Thus jBjIn.rn £ (JnR)T.

(b) Obvious.

(c) The map J->JnR gives a strictly increasing map from jSf(T) to JS?(7?);
thus \T\ ^ \R\.

Proposition 1.4 (1, Lemma 1.1). If I is an invertible ideal of a right Noetherian
ring R and E is a right ideal of R, there exists an integer n = n(E), such that
EnP £ EL
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2.
Throughout this section the following notation is used; R is a right

CO

Noetherian ring; / is an invertible ideal of R; T = \J /""; K, L are right
n = 1

ideals of R and 3 = J(R) is the Jacobson radical of R.
We would like to make the inequalities of Lemma 1.2 and Proposition

1.3(c) into some kind of equalities. This seems to be impossible in the general
case. However, we are able to show that the two inequalities are closely con-
nected. Recalling Kaplansky's comment on invertible ideals (a sort of poor
man's principal ideal) and remembering the Principal Ideal Theorem, one
might hope to prove that | R \ = | R/I | +1 . This is obviously impossible if
| R | is a limit ordinal and is also not necessarily true when rings of finite Krull
dimension are investigated. What we are able to show is that if this equality
does not hold then the rings R and T have the same Krull dimension. The
key result is the following simple lemma.

Lemma 2.1. Let L £ K be right ideals of R such that
(a) KI £ L;

(b) L+T = K+In,forn = 1, 2

Then L = K.

Proof. By Proposition 1.4, there is an integer n such that Knl" g X / g i .
Thus Knl" = Lnl".

Let X = K+I" = L+I" and consider the module X/L.
We see that

XjL = (L+F)jL s 77(Ln/n) = /n/(Xn/n) s (K+F)IK = XjK.

If L # K, we have shown that X/L is isomorphic to a proper factor module of
itself. Since X/L is Noetherian, this is obviously impossible.

Lemma 2.2. Let L £ K be right ideals of R and suppose that

(Lnln) + In+1 = (KnIn) + In+1,forn = 0, 1, 2, ....

Then L + I" = K+In,for n = 0, 1, 2, ....

Proof. This is an easy inductive proof.

Our next objective is to construct an increasing map from JS?(i?) to
Cr (if (i?//)). The map we are interested in is the map 6 where 6(K) is

((K+/)/7, ((Xn/)/"1 +/)//, ..., ((KnJ")/-" + /)/ / , ...).

We only need to verify that 6(K) e Cr (if {R/I)), since the fact that 6 is increas-
ing is trivial. Now (KnI")I~n £ R, for each n = 1, 2, ..., and

(Knln)rn = CKn/")/./-"-1 £ (Knr+1)rn-1.

Therefore, since R is right Noetherian, 0(K) e Cr (if (R/I)).
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Theorem 2.3.
[ 1? | = max {| T | , | U//

Proof. If we are able to construct a strictly increasing map from Hf(R) to
JS?(T) x Cr (&(R/r)), then

| R | ^ dev (j$?(r) x Cr (SC(R/I)))

= max( |T | ,

and the result follows from Lemma 1.2 and Proposition 1.3 (c).
The map we use is O where O(^) = (KT, 6(K)), and 0 is the map defined

above. This is obviously an increasing map, we need only check that it is strict.
Suppose that L g K are right ideals of R such that <fr(L) = O(A). Using the
Noetherian property, we may assume that K/L is a simple module. From the
fact that 9(L) = 0(K) we deduce, using Lemma 2.2, that L+I" = K+I",
for each n. Now K^ KT = LT, and so, if k generates K modulo L, kln sL,
for some integer n. Since K/L is simple, we see that klc. L and thus KI c £.
Hence the conditions of Lemma 2.1 are satisfied and we deduce that L = K.
Therefore $ is a strictly increasing map.

We shall see that either of the two equalities in this theorem may fail.
However, in one case, we can be more specific.

Theorem 2.4 (cf. 6, Theorem 1.9). If I is contained in the Jacobson radical
ofRthen\R\ =

Proof. The proof is similar to that of the previous theorem except that we
need only consider the map 6, which has already been defined. The fact that
this is a strictly increasing map follows easily from the next lemma.

Lemma 2.5. If I z J(R) then E = f] (£ + /"), for all right ideals E of R.
n = 1

Proof. Suppose that the result is false and choose a right ideal E maximal

among those for which the result fails. Then E' = f) (£+/")>£. Now,
n = 1

if K is any right ideal properly containing E, it is obvious that E' ^ K' = K.
Hence E'jE is a simple module and so (E'/E)J = 0, from which it follows that
E'l z E. However, by Proposition 1.4, there is an integer s with

E'nls£ E'lz E.

Therefore E = E+iE'nl") = E'n(E+Is) = E', which is a contradiction.
In the case of a ring with finite Krull dimension we are able to give another

proof of Theorem 2.4, following directly from Theorem 2.3. We need the
following result from (4).
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Lemma 2.6. Let E, F be posets with finite deviation and suppose that f: E-*F
is an increasing map. If there are non-negative integers n, r such that
dev [a, b\ ^ n implies that dev [/(a), /(&)] = r> tnen

dev E+r g sup (n + r, dev F+ri).

In particular, if a<b implies that dev [f(a), f(bj\ ^ r, then dev E+r ^ dev F.

Suppose now that R is a ring with finite Krull dimension and that / is an
invertible ideal contained in J(R), the Jacobson radical of R. If L ^ K are
right ideals such that K/L is Artinian then some power of / will annihilate K/L
and thus LT = KT. With this in mind, we see that the map/: if(T)-»Jz?CR),
given by/04) = AnR, has the property that A <B implies \(BnR)/(Ar\Ji)\ i> 1.
Therefore, from the lemma, \T\ + l g \R\ and | r | < | i ? | . Hence, from
Theorem 2.3, we conclude that \R\ = \R/I\ + l.

The reason for giving this alternative proof for a special case is that it suggests
a generalisation of the Jacobson radical. A module M is said to be a-critical
if | M | = a. but | M/N \ < <x, for each non-zero submodule N of M. It is obvious
that simple modules are exactly the O-critical modules and so we can think of
the Jacobson radical of R as the intersection of the annihilators of the O-critical
modules. In this way we are led to define, for each positive integer n,
Jn(R) = f]A, where A is the annihilator, in R, of a critical module whose Krull
dimension is less than or equal to a. The Jn(R) are ideals of R and

Proposition 2.7. Let Rbe a ring with finite Krull dimension and I an invertible
00

ideal of R with / £ Jn(R), for some integer n. Then, if T = [J I~", we have

| * |

Proof. The proof is similar to the reasoning above. We need only observe
that if L S K are right ideals of R with | K/L \ ^ n then LT = KT.

The most obvious example of an invertible ideal is an ideal generated by a
regular central or normalising element (an element x is a normalising element if
xR = Rx). We shall say that R is an N-ring if each proper ideal of every prime
factor ring of R contains a normalising element of the factor ring (right
Noetherian polynomial identity rings satisfy this condition).

Theorem 2.8. Let R be an N-ring and J its Jacobson radical. Suppose that
| R/J | = a. Then | R \ = cc + n,for some non-negative integer n.

Proof. Using the Noetherian condition we may assume, by way of a contra-
diction, that the result fails for R but holds for proper factor rings of R, and that
| JR | = p. There is a prime ideal P of R with | R/P | = /?. If P ¥= 0, then the
result holds in the ring R/P. In this case, if K is the inverse image in R of the
Jacobson radical of R/P, we have that /? = | R/K \+n, for some n. However,
J <=, K and so | R/K \ ^ | R/J |. Hence we see that a ^ fi g a+n. Therefore
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we may assume that R is a prime ring. If J(R) = 0, then we are finished.
Otherwise, choose xeJ, a normalising element. Then by Theorem 2.4,
| .R | = | R/xR | + 1. Now J/xR is the Jacobson radical of R/xR and so, by
assumption, | RJxR | = | R/J \+n, for some integer n. But then

\R\ = I.R/xRI + 1 = \R/J\+n + l,
a contradiction.

This last result is not true in general; see, for example, the rings of
Jategaonkar (2, Ex. 10.3). As a corollary to this theorem, we mention a result
of Small.

Corollary 2.9. If R is a right Noetherian, semi-local polynomial identity
ring then R has finite Krull dimension.

Proof. If / i s the Jacobson radical of R, then | R/J | = 0. Therefore, by the
theorem, | R \ = 0+n = n, for some integer n.

We have seen that if/is an invertible ideal contained in the Jacobson radical
of R then | T\<\ R\. This occurs, for instance, if / i s the ideal generated by 2
in R, where R is the ring of integers localised at the ideal 2Z. In this case,
| R | = 1 and | T\ = 0; in fact, T = Q, the field of rational numbers.

In order to show that the other equality of Theorem 2.3 may fail we proceed
as follows. Let S be the ring of polynomials in commuting indeterminates
x, y and z over a field. Let R be the localisation of S with respect to the comple-
ment of the set xSu(yS+zS). Then | R | = 2 and | R/xR | = 0.
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