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Introduction

This is a continuation of our work [4]. The purpose of this paper is to find
the relation of the class of improjective operators on some Banach space, with
the classes of strictly singular, strictly cosingular and ^-admissible perturbations
on X and to investigate those pairs of Banach spaces for which all bounded linear
operators having either of the pair as domain and the other as range are improjec-
tive, or strictly singular. The beginning of Section 1 is intended to familiarize the
reader with the concepts and notations used in this paper.

In Section 2 we have proved that on any Banach space an inessential operator
introduced by Kleinecke [8] is an improjective operator. We have also deduced
that the class of inessential operators and the class of improjective operators
coincide with the class of strictly singular operators on a subprojective Banach
space and coincide with the class of strictly consingular operators on a reflexive
and superprojective Banach space. We have also obtained that if X is a Banach
space such that the class P(X) of improjective operators on X is included in the
class R(X) of Riesz operators on X, then P(X) coincides with the class I(X) of
inessential operators. We have given an example of a Banach space X where R(X)
is not included in P(X). It is known [5] that if X = c0, or I" (1 g p < oo), then
the compact operators form the largest ideal in the ring of all bounded linear
operators on X. In this section we have proved that if X = m then the improjective
operators form the largest ideal in the semigroup of all bounded linear operators
on X.

In the beginning of Section 3 is listed a class of pairs of Banach spaces
such that for each such pair all bounded linear operators having either of the
pair as the domain and the other as the range are improjective. We have also
deduced some corollaries, including

(i) If X is a Banach space isomorphic to an abstract L-space and Y = c0,
or l"(S) (1 < p < oo), or L" (2 S p < oo), or C(S') (where S' is metrizable,
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compact and dispersed), and Y' = lp(S) (1 < p < oo), or Lp(l < p ^ 2), then
every bounded linear operator ofX into Y is strictly singular and every bounded
linear operator ofY' into X is strictly cosingular

(ii) IfX e P (for definition see Section 3) andZ=Y as in (i) or l(S), S being
a countable set and Y' has the same meaning as in (i), then every bounded linear
operator of X into Z is strictly singular and every bounded linear operator of
Y' into X is strictly cosigular;

if XePt and U = Z as above, or any reflexive Banach space, then every
bounded linear operator of X into U is strictly singular.

(iii) Every bounded linear operator of Lp into lq where 1 < p < co,l ^ q
< oo, q # 2 and p ^ q is strictly singular.

This work was carried out under the supervision of Professor B. Abrahamson.
The author wishes to thank him for his constant encouragement and advice.

1. Definitions and notations

The set of all bounded linear operators from a Banach space X into a Banach
space 7 will be denoted by B(X, Y).

A subspace U of a Banach space X is said to be complemented in X if it is
closed, and there is a closed subspace V of X such that for each xeX there exist
a u in U and t; in V such that x = u + v and if u + v = 0, then u = v = 0.

We know that a closed subspace U of a Banach space X is complemented
in X if and only if there is a projection (a linear idempotent operator) of AT onto 17.

An operator TeB(X,Y) is called a strictly singular operator if, for no
infinite dimensional subspace M of A", is the restriction of Tto M an isomorphism
(see [1] or [2]). The following definition is due to Pelczynski [3];

An operator TeB(X, Y) is said to be strictly cosingular if, for no infinite
dimensional Banach space Z do there exist epimorphisms (onto maps) Tx:
X -» Z and T2: Y -»Z such that the diagram

commutes. An operator T e B(X, Y) is said to be improjective if, for any infinite
dimensional closed subspace M of X such that TM is complemented in Y, the
restriction of T to M is not an isomorphism.
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The following relations hold [4].

strictly singular

Compact \ ^ Improjective

strictly cosingular /

Other properties of improjective operators can be found in [4].

(f>-admissible pertubations.
An operator TeB(X, Y) is called a ^-operator or a Fredholm operator if

the range of T is closed in Y, a(T) = the dimension of the null space of T is finite
and /?(T) = the codimension of the range R(T) is finite.

An operator T e B(X, Y) is called a (^-admissible perturbation or a Fredholm
perturbation if A + T is a ^-operator for all ^-operator A e B(X, Y) (see [5]).

We use the following notations for subsets of B(X, Y);

P(X, Y) = the set of all improjective operators,
S(X, Y) = the set of all strictly singular operators,
SC(X, Y) = the set of all strictly cosingular operators,
F(X, Y) = the set of all ^-admissible perturbations,
W(X, Y) = the set of all weakly compact operators,
T(X, Y) = the set of all compact operators.

B(X), P(X), S(X) etc, will stand repectively for B(X,X), P(X,X), S(X,X) etc.
A Banach space X is said to be subprojective if every infinite dimensional

closed subspace M of X contains an infinite dimensional subspace N complemented
in X. A Banach space X is superprojective if, for every closed subspace M with
infinite codimension, there exists a closed subspace N of infinite codimension
such that N contains M and is complemented in X.

For all other notations used in this paper we refer to [6].

2.

Let Rad y4 denote the Jacobson radical of any ring A and for any Banach space

where n is the canonical homomorphism of B(X) onto B(X) j T(X). I(X) is a
closed two-sided ideal of B{X), called the ideal of inessential operators (see [7]
and [8].

For any Banach space X we have the following characterization of I(X)
([7] p. 604).

For any TeB{X), Tel(X) if and only if I-WTe<f> + (X) and the range of
I-WT is complemented in X for all W e B(X) where / is the identity operator on X,
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where 4>+ (X) is the class of operators T in B(X) such that a(T) < oo and R(T)
is closed.

From the results of [8] and [9] it easily follows that for any Banach space X,

F(X) =

(See the proof of lemma 2.1 in [7]).

THEOREM 2.1 For any Banach space X,I(X) s P(X).

PROOF. The proof is similar to that of the theorem 2.2 in [7]. Let T eI(X)
and if possible, let T £ P(X). Then there is an infinite dimensional closed subspace
Xt of X such that the restriction T' of T to Xl is an isomorphism and TXj is
complemented in X. Since TXt is complemented in X, we have X = TX1 + X2

for some closed subspace X2 of X. For each xeZ,we define T(x) = T'~1(x1) where
x = xt + x2,Xj e TX, and x2 eX2. Clearly T eB(X) and has the property that
T = T'~l on T ^ and f s O on X2. Now since Tel(X), 7r(T)eRad. B(X)jT{X).
Then by the characterization of Rad B (X)/T(X) mentioned earlier, I-TT e<j>+ (X).
Thus the null space of J-7T is finite dimensional. Now TTX^ = T'~iTX1 = Xt

is an infinite dimensional closed subspace of X and ( / - T r ) ^ = 0. But this
implies that X^ is contained in the null space of I-TT. Thus the null space of
of I-TT is infinite dimensional which is a contradiction. Hence TeP(X). This
completes the proof.

COROLLARY 2.1. IfX is any subprojective space, then S(X) = I(X) = P(X).

PROOF. Since X is subprojective, by theorem 1.3 of [4], P(X) = S(X).
Hence the result follows.

COROLLARY 2.2 / / X is reflexive and superprojective then SC(X) = I(X) =
P(X).

PROOF. For any Banach space we have

SC(X)^F(X) = I(X) (sse [10]).

Hence SC(X)<=I(X)<=\l(X)\P(X) by theorem 2.1.
Now let TeP(X). Then T*eP(X*) by corollary 1.4 of [4]. Now since X*

is subprojective ([11], p. 257), T*eS(X*) by corollary 2.1 and hence Te SC(X)
{[3], prop. 3(a)}. Thus SC(X) = I(X) = P(X).

Throughout this paper, by Lp we shall mean the spaces Lp(S,l,,iS) where S =
[0,1], X is the family of Lebesgue measurable subsets of S and n is Lebesgue measure.

COROLLARY 2.3. IfX = Lp (1 < p < oo), then P(X) = I(X) and more over,
SC(X) = I(X) for 1 < p ^ 2 and S(X) = I(X) for 2 ^ p < oo.

PROOF. TO prove this corollary we only need to note that L is reflexive and
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superprojective for 1 < P ^ 2 and subprojective for 2 ^ p < oo and then apply
corollary 2.2 and 2.1 respectively.

REMARK. We should point out that the corollary 2.1 has been proved by
Pfaffenberger ([7], Th. 2.2) and the part of the corollary 2.3 that S(X) = F(X) for
p ^ 2 has been announced by Milman [12].

Riesz Operators. An operator T e B{X) is called a Riesz operator if
T-Xl e 4>(X) for all scalars k # 0. Let R(X) denote the class of all Riesz operators
on X. We can easily see that R(X) is not always included in P(X). For example,
if X is subprojective and R(X)^P(X) thenR(X) £ P(X) = S(X). Also S(X)eR(X)
for every Banach space X [13] p. 66). Hence S(X) = R(X). This implies that
R(X) is a closed ideal in B(X) when X is a subprojective space. But this is
impossible when X = l which is a subprojective space (see [13], remark p. 67-68).

Whether or not P(X) c R(X) for every Banach space remains open. We
have, however, the following proposition:

PROPOSITION 2.1. If for some Banach space X, P(X)^R(X) then P(X) =

FRCOF. Let Te P(X). Then for every T^e B(X), both TTt and Tx T are in P(X)
(see [4], th. 1.2). Now since every member of R(X) has Riesz spectrum (for definition
and proof see [13], p.66), both TTX and Tt T have Riesz spectrum by the condition
of the proposition. Now proceeding exactly as in the proof of Theorem 1 of [8]
we can show that T e I(X) (note that the linearity of the ideal in theorem 1 of
[8] is not used). Thus P(X) c I(X). The rest of the proof follows our theorem 2.1.

We have already defined the notion of an ideal in a category of Banach spaces
in [4]. If we now consider the category of a single infinite dimensional Banach
space X with all the bounded liner operators on X as morphisms, then by theorem
1.2 of [4] P(X) is an ideal in this category. In other words, P(X) is a two-sided
ideal in the semigroup B(X) of all bounded linear operators on AT; in this case
we are not considering B(X) as a ring as we do not yet know if the sum of two
improjective operators is improjective. However, it is trivial that every two-sided
ideal in the ring B(X) is also a two-sided ideal in the semigroup B(X).

THEOREM 2.2. If X is a Banach space such that every infinite dimensional
complemented subspace of X contains a subspace which is complemented in X
and isomorphic to X, then P(X) is the largest ideal in the semigroup B(X).

PROOF. Since X is infinite dimensional, P(X) is a proper ideal in B(X).
We will assert that any ideal / which is not contained in P(X) must coincide
with B(X). Let T be any member of / such that T $ P{X). Then there is an
infinite dimensional closed subspace M of X such that the restriction of T to M is
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an isomorphism and TM is complemented in X. Now by the hypothesis of the
theorem TM contains an infinite dimensional subspace M' such that M' is isomor-
phic to X and complemented in X. Let J be an isomorphism of M' onto X andQ
be a projection of X onto M'. We set T~l(M')C\M = N. Then the restriction
of T to N is also an isomorphism, i.e., N and M' are isomorphic. Hence N is
isomorphic to X. Let U be an isomorphism of X onto N. Then i.U eB(X) where
j is the injection map of N into X. Also J.g e B(X). We have the following diagram:

Q

We consider the composition map 7\ = JQTiU which is =JTjNU and
clearly an isomorphism of X onto X. Now 7\ e / as T e I, JQ e B(X) and W e B(X).
Hence / x = T^1 Tx el as Tj e / and Tf1 eB(I), / x being the identity operator
on X. Thus / = B(X). This proves the theorem.

Now since the spaces /p(l ^ P < oo), c0 and m satisfy the hypothesis of the
above theorem (see [14] and [15]) we have the following corollary.

COROLLARY 2.4. IfX = IP (I ^ P"< oo), c0, or, m, then P(X) is the largest
ideal in the semigroup B(X).

REMARK. For the spaces I" (I g p < oo) and c0 stronger result is already
known [5].

3.

Definition. A Banach space X will be said to be totally dissimilar with a
Banach space Y if no infinite dimensional complemented subspace of X is isomor-
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phic to a complemented subspace of Y. In this case we will say that X and Y are
totally dissimilar.

THEOREM 3.1. The following paris are totally dissimilar:
(i) X,Y where XeP and Y is a Banach space isomorphic to an abstract

L-space.
{A Banach space X is in P, or X eP ifX is complemented in every Banach

space which contains it.)
(ii) C(S), X where S is a compact Hausdorff topological space and X is a

Banach space isomorphic to an abstract L-space.
(iii) X, Y where X is a Banach space isomorphic to an abstract L-space and

and Y= c0, or a reflexive Banach space.
(iv) X,Y where Y is a reflexive Banach space and X is either of (a) C(S)

where S is a compact Hausdorff space, (b) B(S), S a set, (c) Lx(S,S,/z) or L(S,Y,,[i)
where (S,2.,[i) is a positive measure space, (d) rca(S) or ba(S) and (e) any infinite
dimensional complemented subspace of (a) to (d).

(v) X, Y where XeP and Y is either a separable or a reflexive Banach space.
(vi) P(l g p < oo), c0.

and (vii) lp, lq (1 ^ p, q < oo and p # q).

PROOF, (i) If possible, let an infinite dimensional complemented subspace
Z of X be isomorphic to a complemented U of Y. Then since Y is isomorphic
to an abstract L-space, U contains a complemented subspace V isomophic
to / ([14], cor. 4) (V is complemented in Y as well as in U). Let T be an
isomorphism of U onto Z. Then TV is complemented in Z. Hence TV is
complemented in X as Z is complemented in X. Now since XEP, by a result
of Goodner ([16], p.93) TV eP (this can also be proved by using the result that
a Banach space X eP is and only if X is isomorphic to a complemented subspace
of a space B(S); see [11], p. 256). TV being isomorphic to V is isomorphic to /.
Hence TV is separable and TVeP. Then by a result of Grothendieck ([17], p.
169) (also [14], Th. 6), TV is finite dimensional which is a contradiction.

(ii) The proof of theorem 2.4 in [4] contains a proof of (ii).
(iii) Suppose that an infinite dimensional complemented subspace Z of X

is isomorphic to a complemented subspace U of Y. Then as in (i) Z contains a
complemented subspace R isomorphic to I. If Y is c0, then U is isomorphic to c0

([14], Th. 1). Now since Z is isomorphic to U, the above will imply that c0 contains
a subspace isomorphic to I which is impossible.

If 7 is reflexive, then U is also reflexive. But this would imply that U contains
a subspace isomorphic to / which is again impossible as U is reflexive.

(iv) This follows from lemma 2.1 of [4].
(v) If possible, let an infinite dimensional complemented subspace Z of X

be isomorphic to a closed subspace U of Y (in this case we do not need U to be
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complemented in Y). Since XeP, and Z is complemented in X, Z e P by the reason
given in (i). Now U is separable or reflexive according as Y is separable or reflexive.
Hence Z, being isomorphic to U, is either separable or reflexive. Then in either
case Z is finite dimensional by the result of Grothendieck quoted in (i), as Z e P.
This is a contradiction, (vi) and (vii) are simple consequences of theorem 1 [14].

THEOREM 3.2 Let X and Y be any two Banach spaces. Then B(X Y) - P
(X, Y) if and only if X and Y are totally dissimilar.

PROOF. First, let X and Y be totally dissimilar. Let T: X -> Y be an arbitrary
bounded liner operator. Suppose that T £ P(X, Y). Then there is an infinite
dimensional closed subspace M ofX such that the restriction of Tto M is an isomor-
phism and TM is complemented in Y. Also by lemma 1.1 of [4], M is complement-
ed in X. Thus the infinite dimensional complemented subspace M of X is isomor-
phic to the complemented subspace TM of Y. This contradicts that X and Y are
totally dissimilar. Hence we conclude that B{X, Y) = P(X, Y). Next, let B(X, Y)
= P(X, Y). If possible, let X and Y be not totally dissimilar. Then there must
be an infinite dimensional complemented subspace Z of X and in infinite dimension-
al complemented subspace U of Y such that Z and U are isomorphic. Let j
be an isomorphism of Z onto U. Now since Z is complemented in X, there is a
projection P of X onto Z. Let us now define f:X -> 7 by f = ijP where i is the
injection map of U into Y. Clearly TeB(X, Y). It is easy to see that the restriction
of f to Z is an isomorphism and TZ=Uis complemented in Y. Hence T$ P
(X, Y). But this contradicts the hypothesis that B(X, Y) = P(X, Y). Hence X and
Y are totally dissimilar.

COROLLARY 3.1. / / X and Y are toally dissimilar Banach spaces, then
(0 B(X,Y) = S(X,Y) if Y is subprojective;

and (ii) B(X, Y) = SC(X, Y) if X is reflexive and superpro-
jective.

PROOF. Since X and Y are totally dissimilar, we have by theorem 3.2 B(X,Y)
= P(X, Y). Then by theorem 1.3 of [4],

B(X, Y) = S(X, Y) if Y is subprojective.

This proves (i).
Now let X be reflexive and superprojective and T:X-> Y be any bounded

linear operator of X into Y. Then TeB(X, Y) = P{X, Y). Since X is reflexive,
T* :Y*->X* is improjective by corollary 1.4 of [4]. Again since X is reflexive
and superprojective, X* is subprojective by a result of Whitely ([11], cor. 4.7,
p. 257). Thus T* is strictly singular by theorem 1.3 of [4]. Hence by a result of
Pelczynski ([3], prop. 3(a)) T is strictly cosingular. Thus B(X, Y) = SC (X, Y).
This proves (ii).
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REMARK. We point out that although a recent result (Theorem 4) of Milman
[12] is similar to the part (i) of our cor. 3.1, ours involve weaker hypotheses.

COROLLARY. 3.2. IfX is a Banach space isomorphicto an abstract L-space and
Y = c0, or l"(S) (1 < p < oo) or Lp (2 ^ p < oo) or CiSi) where St is me-
trizable compact and dispersed, then B(X, Y) = S(X, Y).

PROOF. X and Y are totally dissimilar by theorem 3.1 (ii) when Y = C(St)
and by theorem 3.1 (iii) when Y is other than CiSJ. Also Y is subprojective
(see [11] and [4]).

Hence B(X, Y) = S(X, Y) by corollary 3.1 (i).

COROLLARY 3.3 IfX is a Banach space isomorphic to an abstract L-space and

Y = F(S) (1 < p < oo) or Lp (1 < p S 2),

then B(Y,X) = SC(Y,X).

PROOF. X and Y are totally dissimilar as in corollary 3.2 and Y is reflexive
and superprojective [11]. Hence B(Y, X) = SC(Y,X) by corollary 3.1 (ii).

COROLLARY 3.4. If XeP and Y= co(S), S being a countable set, /"(SJ
(1 < p < oo) or 1{S2), S2 being a countable set or Lp(2 ^ P < oo) or C(S'),S'
being metrizable compact and dispersed, then

B(X, Y) = S(X, Y) = W(X, Y).

PROOF. X and Y are totally dissimilar by theorem 3.1 (v) as Y is either a
separable or a reflexive Banach space. Also Y is subprojective. Hence B(X, Y)
= S(X, Y).

Now since every Banach space can be embedded in a space C(S), S being
compact and Hausdorff and X eP, is isomorphic to a complemented subspace of
C(S). Hence A" is a continuous linear image of C(S), i.e., there is a continuous
linear operator of C(S) onto X. Hence by proposition 4(2) of [18] S(X, Y) c W
(X, Y), Thus the corollary is proved.

COROLLARY 3.5. If XeP and Y= l"(S) (1 < p < oo) or Lp (1 < p ^ 2),

then B(Y,X) = SC(Y,X).

PROOF. X and 7are totally dissimilar by theorem 3.1 (v) and Y is reflexive and
superprojective. Hence the corollary follows from corollary 3.1 (ii).

A Banach space X is said to belong to Pt or said to be in Pu if given any
Banach space Z containing X there is a projection P of Z onto X with ||PJ| = 1.

COROLLARY 3.6. IfXePt and Y=any reflexive Banach space, or co(S),
S being a countable set, or I (S^, S, being a countable set or C(S'), S' being
metrizable compact and dispersed, then B(X, Y) = S(X, Y) = W(X, Y).
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PROOF. If T = c0 (S), or l(S,), or C(S'), then the proof is immediate from
corollary 3.4.

Suppose that X is any reflexive Banach space. Since XePu it is known
([19], p. 95) that X is isometrically isomorphic to a space C(S) where S is
compact Hausdorff and extremally disconnected. Let j be any isometry of C(S)
onto X. Now let T be any bounded linear operator of X into Y. Then Tj = T,
say, is a bounded linear operator of C(S) into Y. But then by a result of Whitley
([11], p. 253) T is strictly singular. Hence T = T'j~l is strictly singular. Thus
B(X, Y) = S(X, Y). The rest is trivial (e.g. see the proof of corollary 3.4).

REMARK. B(S) e P ( [ l l ] , p. 256) and m, U*, V**ePt ([16], p. 106) where U
is an abstract L-space and V an abstract M-space. However, for us the interest of
the corollary 3.4 for X = B(S)is only for the non reflexive part of Y, because the
following result is already known ([11], p. 253):

If X and Y are as in theorem 2.1 (iv), then B(X, Y) = S(X, Y).

COROLLARY 3.7. If X = Laj{S,'L,n) where (S,Z,/i) is a positive measure space,
or rca(S) or ba(S) and

Y = F(S) (l<p<oo)orLp(l<p^ 2),

then B(Y,X) = SC(Y,X).

PROOF. X and Y are totally dissimilar by theorem 3.1 (iv) and Y is reflexive
and superprojective. The proof now flows from corollary 3.1 (ii).

COROLLARY 3.8. IfX = C(S), S a compact Haudorff space, or B(S), S a set
or L(S,2,/i) where (S,I.,n) a positive measure space and Y is any reflexive Banach
space, then B(Y,X) = SC(Y,X).

PROOF. Let T be any bounded linear operator eB(Y,X). Then T* e B
(X*,Y*) where X* = rca (S) or ba(S) or LQ0(S,S,^) and Y* is a reflexive Banach
space. Hence by the result of [11] quoted in the above remark, T*eS (X*, Y*).

Therefore TeSC(Y,X). This proves the corollary.

LEMMA 3.1 The pair Lp, /"(I ^ p < co, 1 ^ q < oo, q ^ 2 and p # q) is
totally dissimlar.

PROOF. Since L is an abstract L-space, the pair L, /'(I < q < oo) is totally
dissimilar by theorem 2.1 (iii). Let us now consider the pair Lp, I" where p and q
satisfy l < p < < o o , l :g<jf<oo, q ¥" 2 and p # q.

If possible, let an infinite dimensional complemented subspace M of Lp be
isomorphic to a complemented subspace JV of /*. Then by theorem 1 of [14], JV
is isomorphic to /*. Now since M is complemented in Lp (1 < p < oo), either M
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is isomorphic to I2, or M contains a subspace isomorphic to F ([20], p. 168).
But the fact that M is isomorphic to I2 will imply that I2 is isomorphic to /" where
q=£2. This is impossible ([21], p. 205). Again the fact that M contains a subspace
isomorphic to lp will imply that /* contains a subspace isomorphic to I" where
p ¥= q. This is also impossible ([21], p. 205). Thus we have proved the lemma.

Because /* (1 ^ q < oo) is subprojective and 1* (1 < q < oo) is reflexive and
superprojective, the following corollary is an immediate consequence of the above
lemma 3.1 and the corollary 3.1.

COROLLARY 3.9. B(Lp,l
q) = S^l") where 1 ^ p < oo, 1 ^ q < oo, q # 2

and p # q and B(lq,Lp) = SC(lq, Lp) where 1 ^ p < <x>, l<q < ao, q^2 and

P # 1-

THEOREM 3.3. An operator T e B(Lp,Lq) (1 < p, q < oo, p ^ q) is improjec-

tive if the restriction of T to a subspace M (of Lp) isomorphic to I2 is never an

isomorphism of Monto TM.

PROOF. Suppose that the condition of the theorem holds. If possible, let T be
not improjective. Then there is an infinite dimensional closed subspace M of
Lp such that the restriction of T to M is an isomorphism onto TM and TM is
complemented in Lq. Since TM is an infinite dimensional complemented subspace
of Lq, then either TM is isomorphic to I2 or TM contains a subspace isomorphic
to lq and complemented in Lq ([20], p. 168). Now if TM is isomorphic to I2,
then M being isomorphic to TM will be isomorphic to Z2 which will contradict
the hypothesis of the theorem. Hence we are left with the alternative that TM con-
tains a subspace M, isomorphic to lq and complemented in L?.We set T~i(Mi) C\M
= N. Then since the restriction of T to N is also an isomorphism and TN = M\
is complemented in Lq, by lemma 1.1 of [4], N is complemented in Lp. But then
by the same result of [20] quoted above, either JV is isomorphic to I2 or N contains
a subspace isomorphic to I". We now prove that neither of these two alternatives
is true. Clearly N can not be isomorphic to I2 by the condition of the theorem.
Nor could N contain a subspace isomorphic to I", because if N contains a subspace
isomorphic to lp, then the fact that N is isomorphic to Mt would imply that /*
contains a subspace isomorphic to lp where q ^ p which is impossible by the
reason given earlier.

COROLLARY 3.10. An operator TeB(Lp,Lq) (1 < p < oo, 2 ^ q < oo,
p # q) is strictly singular if and only if the restriction of Tto a subspace (of Lp)
isomorphic to I2 is never an isomorphism.

PROOF. Since Lq, 2 g q < oo is subprojective, the corollary follows from the
above theorem.
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