H. Sato Nagoya Math. J. Vol. 88 (1982), 73-78

A PROPERTY OF NEW COORDINATES DEFINING AUGMENTED SCHOTTKY SPACES

HIROKI SATO

§0. Introduction

In the previous paper [3], we introduced new coordinates to the Schottky space, and defined the augmented Schottky spaces $\hat{\mathbb{S}}_{g}^{*}(\Sigma)$. Here, in § 1, we will define fiber spaces over the augmented Schottky spaces. In § 2, we will consider a property of the new coordinates, namely, we will state a relation between limits of sequences of elements of the new coordinates and limits of sequences of length of loops on Riemann surfaces.

§1. Fiber spaces over the augmented Schottky spaces

1.1. We will use the same notations and terminologies as in the previous paper [3]. Throughout this paper, we fix a standard system of loops $\Sigma = \{\alpha_1, \dots, \alpha_g; \gamma_1, \dots, \gamma_{2g-3}\}$ on a compact Riemann surface S of genus g (see p. 156 in [3]).

For $I \subset \{1, 2, \dots, g\}$ and $J = \{j_1, \dots, j_m\} \subset \{1, 2, \dots, 2g - 3\}$ where $j_1 < \dots < j_m$, we consider $\delta^{I,J} \mathfrak{S}_g(\Sigma)$. We see that $S \setminus \bigcup_{i=1}^m \gamma_{j_i}$ consists of m+1 components $[\sigma_0], [\sigma_{j_1}], \dots, [\sigma_{j_m}]$, here each $[\sigma_j]$ represents one containing the cell $\sigma_j = \sigma(1, i_1, \dots, i_{\mu})$ when $\gamma_j = \gamma(1, i_1, \dots, i_{\mu})$ (see [3], p. 157). If $J = \phi$, we regard $S \setminus \bigcup \gamma_{j_i}$ as S itself. For arbitrary $\tau \in \delta^{I,J} \mathfrak{S}_g(\Sigma)$, we have m+1 Schottky groups (including the trivial group) $G_0(\tau), G_{j_1}(\tau), \dots, G_{j_m}(\tau)$, and m+1 Riemann surfaces $S_0(\tau), S_{j_1}(\tau), \dots, S_{j_m}(\tau)$ as well as the Riemann surface with nodes

$$S(\tau) = S_0(\tau) + S_{j_1}(\tau) + \cdots + S_{j_m}(\tau)$$

as in the previous paper [3]. We will introduce 2g - 2 Schottky groups (including the trivial group) $\tilde{G}_s(\tau)$ $(s = 0, 1, \dots, 2g - 3)$ as follows.

(i) $\tilde{G}_0(\tau)$ is defined by normalizing $G_0(\tau)$ as follows: $p_1(\tau) = 0$, $q_1(\tau) = \infty$ and $p_2(\tau) = 1$ if the cell σ_2 is contained in $[\sigma_0]$, or $p^+(1, 0, \dots, 0) = 1$

Received May 31, 1981.

HIROKI SATO

if $\sigma_2 \in [\sigma_0]$, where $p^+(1, 0, \dots, 0)$ is the right distinguished point with respect to the boundary loop $\gamma(1, 0, \dots, 0)$ of $[\sigma_0]$.

(ii) $G_s(\tau)$ $(s = 2, 3, \dots, g)$ is defined as follows: Let $[\sigma_{k(s)}]$ be the part which contains the cell σ_s . Let $G_{k(s)}(\tau)$ be the Schottky group representing the Riemann surface $S_{k(s)}(\tau)$ (see p. 172 in [3]). $\tilde{G}_s(\tau)$ is the group obtained from $G_{k(s)}(\tau)$ by the following normalization: $p_s(\tau) = 0$, $q_s(\tau) = \infty$, and $p_1(\tau) = 1$ if $\sigma_0 \in [\sigma_{k(s)}]$, or $p^-(1, i_1, \dots, i_{\mu})$ $(\tau) = 1$ if $\sigma_0 \in [\sigma_{k(s)}]$, where $p^-(1, i_1, \dots, i_{\mu})$ (τ) is the left distinguished point with respect to the boundary loop $\gamma(1, i_1, \dots, i_{\mu})$ of $[\sigma_{k(s)}]$.

(iii) $G_1(\tau)$ is defined as follows. Let $[\sigma_{k(1)}]$ be the part of S which contains the cell σ_1 . Let $G_{k(1)}(\tau)$ be the Schottky group representing $S_{k(1)}(\tau)$. $\tilde{G}_1(\tau)$ is the group obtained from $G_{k(1)}(\tau)$ by the following normalization: (1) $p_1(\tau) = 0$ if $\sigma_0 \in [\sigma_{k(1)}]$, or $p^-(1)$ (τ) = 0 if $\sigma_0 \in [\sigma_{k(1)}]$; (2) $p_2(\tau) = \infty$ if $\sigma_2 \in [\sigma_{k(1)}]$, or $p^+(1, 0, \dots, 0)$ (τ) = ∞ if $\sigma_2 \in [\sigma_{k(1)}]$, where $p^+(1, 0, \dots, 0)$ is the right distinguished point with respect to the boundary loop $\gamma(1, 0, \dots, 0)$ of $[\sigma_{k(1)}]$; (3) $p_1(\tau) = 1$ if the terminal cell σ_1 with $l = (1, 1, 0, \dots, 0)$ belongs to $[\sigma_{k(1)}]$, or $p^+(1, 1, 0, \dots, 0)$ (τ) = 1 if $\sigma_1 \in [\sigma_{k(1)}]$, where $p^+(1, 1, 0, \dots, 0)$ (τ) is the right distinguished point with respect to the boundary loop $\gamma(1, 1, 0, \dots, 0)$ of $[\sigma_{k(1)}]$.

(iv) $\tilde{G}_{s}(\tau)$ ($s = g + 1, g + 2, \dots, 2g - 3$) are defined as follows. Let $[\sigma_{k(s)}]$ be the part of S which contains the cell σ_{s} . Let $G_{k(s)}(\tau)$ be the Schottky group representing $S_{k(s)}(\tau)$. Let $\gamma_{s} = \gamma(1, i_{1}, \dots, i_{\mu})$. We define $\tilde{G}_{s}(\tau)$ as the group obtained from $G_{k(s)}(\tau)$ by the following normalization: (1) $p_{1}(\tau) = 0$ if $\sigma_{0} \in [\sigma_{k(s)}]$, or $p^{-}(1, i_{1}, \dots, i_{\nu})(\tau) = 0$ if $\sigma_{0} \in [\sigma_{k(s)}]$, where $p^{-}(1, i_{1}, \dots, i_{\nu})(\tau)$ is the left distinguished point with respect to the boundary loop $\gamma(1, i_{1}, \dots, i_{\mu}, 0, \dots, 0)$ belongs to $[\sigma_{k(s)}]$, or $p^{+}(1, i_{1}, \dots, i_{\mu}, 0, \dots, 0)$ (τ) = ∞ if $\sigma_{l} \in [\sigma_{k(s)}]$, where $p^{+}(1, i_{1}, \dots, i_{\mu}, 0, \dots, 0)$ (τ) is the right distinguished point with respect to the boundary loop $\gamma(1, i_{1}, \dots, i_{\mu}, 0, \dots, 0)$ of $[\sigma_{k(s)}]$; (3) $p_{l'}(\tau) = 1$ if the terminal cell $\sigma_{l'}$ with $l' = (1, i_{1}, \dots, i_{\mu}, 1, 0, \dots, 0)$ belongs to $[\sigma_{k(s)}]$, or $p^{+}(1, i_{1}, \dots, i_{\mu}, 1, 0, \dots, 0)$ (τ) = 1 if $\sigma_{l'} \in [\sigma_{k(s)}]$, where $p^{+}(1, i_{1}, \dots, i_{\mu}, 1, 0, \dots, 0)$ (τ) is the right distinguished point with respect to $[\sigma_{k(s)}]$, or $p^{+}(1, i_{1}, \dots, i_{\mu}, 1, 0, \dots, 0)$

SCHOTTKY SPACES

to the boundary loop $\gamma(1, i_1, \dots, i_{\mu}, 1, 0, \dots, 0)$ of $[\sigma_{k(s)}]$.

Remark. Each $[\sigma_j]$ is the union of all cells σ_s such that

k(s)=j.

Corresponding groups $\tilde{G}_s(\tau)$ are equivalent to $\tilde{G}_j(\tau)$, namely, there exist $T_s \in \text{M\"ob}$ with $\tilde{G}_s(\tau) = T_s \tilde{G}_j(\tau) T_s^{-1}$. The Riemann surfaces

$$ilde{S}_{s}(au)=arOmega(ilde{G}_{s}(au))/ ilde{G}_{s}(au)$$

are conformally equivalent to $S_j(\tau)$. Accordingly

$$\mathrm{S}(\tau) = S_{0}(\tau) + S_{j_{1}}(\tau) + \cdots + S_{j_{m}}(\tau)$$

can be written as

$$S(au) = ilde{S}_{0}(au) + ilde{S}_{s_{1}}(au) + \cdots + ilde{S}_{s_{m}}(au)$$

with some s_i with $j_i = k(s_i)$, $i = 1, 2, \dots, m$, and $\tilde{S}_0(\tau) = S_0(\tau)$.

1.2. Fiber spaces. Here we will define fiber spaces $\mathfrak{F}_s \hat{\mathfrak{S}}_s^*(\Sigma)$ $(s = 0, 1, \dots, 2g - 3)$ over the augmented Schottky spaces $\hat{\mathfrak{S}}_s^*(\Sigma)$.

DEFINITION. The s-th fiber space $\mathfrak{F}_s \mathfrak{\hat{S}}_g^*(\Sigma)$ $(s = 0, 1, \dots, 2g - 3)$ over the augmented Schottky space $\mathfrak{\hat{S}}_g^*(\Sigma)$ is the set of all the points $(\tau, z) \in C^{3g-2}$ with $\tau \in \mathfrak{\hat{S}}_g^*(\Sigma)$ and $z \in \Omega'(\tilde{G}_s(\tau))$, where $\Omega'(\tilde{G}_s(\tau)) = \Omega(\tilde{G}_s(\tau)) \setminus \bigcup_{A \in \tilde{G}_s(\tau)} A$ (distinguished points).

We define the following sets by using $\mathfrak{F}_s \widehat{\mathfrak{S}}_s^*(\Sigma)$:

$$\mathfrak{F}_s \mathfrak{S}_{g}^{I,J}(\Sigma) = \mathfrak{F}_s \mathfrak{S}_{g}^{*}(\Sigma) |\mathfrak{S}_{g}^{I,J}(\Sigma) ,$$

 $\mathfrak{F}_s \delta^{I,J} \mathfrak{S}_{g}(\Sigma) = \mathfrak{F}_s \mathfrak{S}_{g}^{*}(\Sigma) |\delta^{I,J} \mathfrak{S}_{g}(\Sigma) ,$
 $\mathfrak{F}_s \delta^{j} \mathfrak{S}_{g}^{I}(\Sigma) = \mathfrak{F}_s \mathfrak{S}_{g}^{*}(\Sigma) |\delta^{j} \mathfrak{S}_{g}^{I}(\Sigma) ,$

and

$$\mathfrak{F}_s\hat{\delta}^{_J}\mathfrak{S}^{*}_{\mathbf{g}}(\varSigma) = \mathfrak{F}_s\hat{\mathfrak{S}}^{*}_{\mathbf{g}}(\varSigma) \,|\, \hat{\delta}^{_J}\mathfrak{S}^{*}_{\mathbf{g}}(\varSigma) \;.$$

Here the vertical segment | represents a restriction.

1.3. PROPOSITION 1. (1) For each $s = 0, 1, \dots, 2g - 3$, the fiber space $\mathfrak{F}_s \hat{\mathfrak{S}}_g^*(\Sigma)$ is a domain in C^{3g-2} . (2) For each $I \subset \{1, 2, \dots, g\}$ and $J \subset \{1, 2, \dots, 2g - 3\}$, $\mathfrak{F}_s \mathfrak{S}_g^{I,J}(\Sigma)$ is a subdomain of $\mathfrak{F}_s \hat{\mathfrak{S}}_g^*(\Sigma)$ and a domain in $C^{3g-2-|I|-|J|}$.

We can prove the above proposition by a similar way to the proof of Proposition 5 in [3], and here we omit it.

HIROKI SATO

1.4. Poincaré metric. It is assumed that each component of $S \setminus \{\text{nodes}\}$ has hyperbolic universal covering surface (see [3]). For each $\tau \in \hat{\mathbb{S}}_{\mathfrak{s}}^*(\Sigma)$, we denote by $\lambda_{\mathfrak{s}}(\tau, z)$ the Poincaré metric on $\Omega'(\tilde{G}_{\mathfrak{s}}(\tau))$. In this case, the Poincaré metric $\lambda_{\mathfrak{s}}(\tau, z)$ means the unique conformal complete Riemannian metric of Gaussian curvature -1. Then by a similar method to Bers [2], we have the following.

PROPOSITION 2. The number $\lambda_s(\tau, z)$ is a continuous function of $(\tau, z) \in \mathfrak{F}_s \hat{\mathfrak{S}}_s^*(\Sigma)$ for each $s = 0, 1, \dots, 2g - 3$.

We project this $\lambda_s(\tau, z)$ to $\Omega'(\tilde{G}_s(\tau))/\tilde{G}_s(\tau)$ and we call it the Poincaré metric as well.

§2. A property of the new coordinates

2.1. In this section we will consider a relation between the new coordinates and the non-Euclidean length of loops on Riemann surfaces.

Let S be a fixed compact Riemann surface of genus g and $\Sigma = \{\alpha_1, \dots, \alpha_g; \gamma_1, \dots, \gamma_{2g-3}\}$ a fixed standard system of loops on S. Let $S(\nu)$ be a compact Riemann surface of genus g and $\Sigma_{\nu} = \{\alpha_1(\nu), \dots, \alpha_g(\nu); \gamma_1(\nu), \dots, \gamma_{2g-3}(\nu)\}$ a standard system of loops on $S(\nu)$ such that $\gamma_j(\nu)$ $(j = 1, 2, \dots, 2g - 3)$ give the same partitions of the set $\{1, 2, \dots, g\}$ as γ_j (see p. 157 and p. 171 in [3]). Then there exists a Schottky group

$$G(
u) = \langle A_{1}(
u, z), \cdots, A_{g}(
u, z)
angle$$

with $\Omega(G(\nu))/G(\nu) = S(\nu)$, where the defining curves $C_j(\nu)$ and $C'_j(\nu)$ of $A_j(\nu, z)$ have the property $\Pi_{\nu}(C_j(\nu)) = \alpha_j(\nu) = \Pi_{\nu}(C'_j(\nu))$ and Π_{ν} is the natural projection of $\Omega(G(\nu))$ onto $S(\nu)$. We call $A_j(\nu, z)$ the generator of $G(\nu)$ associated with $\alpha_j(\nu)$. Then we can uniquely determine $\tau_{\nu} \in \mathfrak{S}_{\mathfrak{g}}(\Sigma)$ such that $G(\tau_{\nu}) = G(\nu)$. Let $L(\alpha_i(\nu))$ and $L(\gamma_j(\nu))$ denote the length of geodesic loops homotopic to $\alpha_i(\nu)$ and $\gamma_j(\nu)$ on $S(\nu)$, respectively $(i = 1, 2, \dots, g; j = 1, 2, \dots, 2g - 3)$.

2.2. THEOREM. Let

$$au_{
u}=(t_1(au_{
u}),\,\cdots,\,t_g(au_{
u}),\,\,
ho_1(au_{
u}),\,\cdots,\,
ho_{2g-3}(au_{
u}))$$

 $(\nu = 1, 2, \cdots)$ be elements of $\mathfrak{S}_{\mathfrak{g}}(\Sigma)$ determined by $S(\nu)$ and Σ_{ν} as above.

(1) Suppose $\lim_{\nu\to\infty} \tau_{\nu} = \tau_0 \in \delta^I \mathfrak{S}_g(\Sigma)$ $(I \neq \phi)$. Then $\lim_{\nu\to\infty} L(\alpha_i(\nu)) = 0$ if and only if $t_i(\tau_0) = 0$, that is, $i \in I$.

(2) Suppose $\lim_{\nu\to\infty} \tau_{\nu} = \tau_0 \in \hat{\delta}^J \mathfrak{S}_g(\Sigma)$ $(J \neq \phi)$. Then $\lim_{\nu\to\infty} L(\gamma_J(\nu)) = 0$ if and only if $\rho_J(\tau_0) = 1$, that is, $j \in J$.

SCHOTTKY SPACES

Proof. (1) We show that if $\lim_{\nu\to\infty} L(\alpha_i(\nu)) = 0$, then $t_i(\tau_0) = 0$. Suppose $t_i(\tau_0) \neq 0$. Since $\tau_0 \in \delta' \mathfrak{S}_g(\Sigma)$, $A_i(\tau_0, z)$ is one of generators of the Schottky group $G(\tau_0)$. We may set $A_i(\tau_0, z) = (1/t_i(\tau_0))z$. Let $C_i(\tau_0)$ and $C'_i(\tau_0)$ be defining curves of $A_i(\tau_0, z)$. Let $\Lambda(z) |dz|$ be the Poincaré metric on $C \setminus \{0, 1\}$. Then noting that $\Lambda(z) \leq \lambda(\tau_0, z)$, it is easily seen that $L(\alpha_i(\tau_0)) \neq 0$, which contradicts the assumption.

Next we will show that if $t_i(\tau_0) = 0$, then $\lim_{\nu \to \infty} L(\alpha_i(\nu)) = 0$. Let c be a circle with the center $p_i(\tau_0)$ (the extended repelling fixed point associated with $i \in I$ in a standard fundamental domain $\omega(G(\tau_0))$) (see § 5–1 in [3]) such that $l_{\tau_0}(c) < \varepsilon$ for sufficiently small ε , where $l_{\tau_0}(c)$ denotes the length of c with respect to the Poincaré metric on $\Omega'(G(\tau_0))$. For sufficiently large ν , $p_i(\tau_\nu)$ is contained in the interior to c, and all defining curves of $G(\tau_\nu)$ other than $C_i(\tau_\nu)$ can be taken to be to the exterior to c, where $C_i(\tau_\nu)$ is a defining curve of $A_i(\tau_\nu, z)$ containing $p_i(\tau_\nu)$ in the interior. Then it is easily seen that $\alpha_i(\nu)$ is homotopic to the image of c under the natural projection from $\Omega(G(\tau_\nu))$ to $S(\nu)$. By Proposition 2, $|l_{\tau_0}(c) - l_{\tau_\nu}(c)| < \varepsilon$ for sufficiently large ν . Hence $l_{\tau_\nu}(c) < 2\varepsilon$. Thus $L(\alpha_i(\nu)) \leq l_{\tau_\nu}(c) < 2\varepsilon$. Since ε may be taken arbitrarily small, we have $\lim_{\nu \to \infty} L(\alpha_i(\nu)) = 0$.

(2) We will show that if $\lim_{\nu\to\infty} L(\gamma_j(\nu)) = 0$, then $\lim_{\nu\to\infty} \rho_j(\tau_\nu) = 1$. Let $S(\nu) = \Omega(G(\tau_\nu))/G(\tau_\nu)$ be divided into two parts $S_1(\tau_\nu)$ and $S_2(\tau_\nu)$ by the loop $\gamma_j(\nu)$. We denote by $\alpha_1^i(\nu), \dots, \alpha_{g_i}^i(\nu)$ the " α -loops" on $S_i(\tau_\nu)$ (i = 1, 2). We denote by $A_k^{(i)}(\tau_\nu, z)$ the generators of $G(\tau_\nu)$ associated with $\alpha_k^i(\nu)$. Let $G_1(\tau_\nu)$ be the group $G(\tau_\nu)$ normalized by $p_1^{(1)}(\tau_\nu) = 0$, $q_1^{(1)}(\tau_\nu) = \infty$ and $p_1^{(2)}(\tau_\nu) = 1$, where $p_1^{(i)}(\tau_\nu)$ (l = 1, 2) and $q_1^{(1)}(\tau_\nu)$ are the repelling fixed points of $A_1^{(i)}(\tau_\nu, z)$ and the attracting fixed point of $A_1^{(1)}(\tau_\nu, z)$, respectively.

With the aid of a standard fundamental domain for $G(\tau_{\nu})$, we can find a simple closed curve $\tilde{\gamma}_{j}(\nu)$, which is a lift of $\gamma_{j}(\nu)$, whose interior contains all the fixed points of $A_{1}^{(2)}(\tau_{\nu}, z), \dots, A_{g_{2}}^{(2)}(\tau_{\nu}, z)$. It is easily seen that the Euclidean length of $\tilde{\gamma}_{j}(\nu)$ tends to 0 as $\nu \to \infty$, since $L(\gamma_{j}(\nu)) \to 0 \ (\nu \to \infty)$. Hence

$$\lim_{\nu\to\infty}p_1^{(2)}(\tau_\nu)=\lim_{\nu\to\infty}q_1^{(2)}(\tau_\nu)=\cdots=\lim_{\nu\to\infty}p_{{\mathcal S}_2}^{(2)}(\tau_\nu)=\lim_{\nu\to\infty}q_{{\mathcal S}_2}^{(2)}(\tau_\nu)=1\ .$$

Thus from the definition of $\rho_j(\tau_{\nu})$ (see p. 161 in [3]) we have the desired result, $\lim_{\nu\to\infty} \rho_j(\tau_{\nu}) = 1$.

Conversely, we show that if $\lim_{\nu\to\infty} \rho_j(\tau_\nu) = 1$, then $\lim_{\nu\to\infty} L(\gamma_j(\nu)) = 0$. We denote by $p(\tau_0)$ the distinguished point resulted from the deformation. Then we choose a circle c with the center $p(\tau_0)$ in a standard fundamental

HIROKI SATO

domain $\omega(\tau_0)$ for $G(\tau_0)$ such that $l_{\tau_0}(c) < \varepsilon$ for sufficiently small ε . By a similar method to the proof of Proposition 5 in [3], we can assume that all defining curves of $A_1^{(2)}(\tau_{\nu}, z), \dots, A_{g_2}^{(2)}(\tau_{\nu}, z)$ can be taken to be in the interior to the circle c, and all defining curves of $A_1^{(1)}(\tau_{\nu}, z), \dots, A_{g_1}^{(1)}(\tau_{\nu}, z)$ can be taken to be to the exterior to the circle c for sufficiently large ν . Thus the image of c under the natural projection is homotopic to the loop $\gamma_j(\nu)$. By Proposition 2, we have $|l_{\tau_\nu}(c) - l_{\tau_0}(c)| < \varepsilon$. Hence $l_{\tau_\nu}(c) < 2\varepsilon$. Since $L(\gamma_j(\nu)) \leq l_{\tau_\nu}(c)$, we have $\lim_{\nu \to \infty} L(\gamma_j(\nu)) = 0$.

References

- [1] L. Bers, Spaces of degenerating Riemann surfaces, Ann. of Math. Studies, 79 (1974), 43-55.
- [2] —, Automorphic forms for Schottky groups, Adv. in Math., 16 (1975), 332-361.
- [3] H. Sato, On augmented Schottky spaces and automorphic forms, I, Nagoya Math. J., 76 (1979), 151-175.
- [4] —, On augmented Schottky spaces and automorphic forms, II, Nagoya Math. J., 88 (1982), 79-119.

Department of Mathematics Faculty of Science Shizuoka University 836 Ohya, Shizuoka 422, Japan