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CONSTRUCTIONS OF BRAUER-SEVERI VARIETIES 
AND NORM HYPERSURFACES 

MING-CHANG KANG 

1. Introduction. Let k be any field, A a central simple /:-algebra of degree m 
(i.e., dim* A = m2). Several methods of constructing the generic splitting fields 
for A are proposed and Saltman proves that these methods result in almost 
the same generic splitting field [8, Theorems 4.2 and 4.4]. In fact, the generic 
splitting field constructed by Roquette [7] is the function field of the Brauer-
Severi variety Vm(A) while the generic splitting field constructed by Heuser 
and Saltman [4 and 8] is the function field of the norm surface W(A). In this 
paper, to avoid possible confusion about the dimension, we shall call it the norm 
hypersurface instead of the norm surface. 

By the result of Saltman mentioned above W(A) is birational to Vm(A) x 
pm--m-\^ Biregularly, the Brauer-Severi varieties and the norm hypersurfaces 
are quite different, since the former are Â:-forms of the projective space [9, p. 
152] and the latter are those of the determinantal variety Tm, which is a singular 
variety when m ^ 3. (Please see Definition 3 are more details.) 

In this paper we are concerned with the constructions of Brauer-Severi vari­
eties and norm hypersurfaces. In Section 2 we shall give an explicit construction 
of Brauer-Severi varieties (Theorem 1). Previously a Brauer-Severi variety is 
usually defined either by Galois descent or as some subvariety of the Grass-
mann variety [1 and 9]. We hope that an explicit construction will help the 
understanding of Brauer-Severi varieties. After we finished our work we found 
that this construction was anticipated by M. Artin in his survey talk using cer­
tain Hochschild-Serre spectral sequence [3]. As a consequence, we show that 
the function fields of Brauer-Severi varieties are actually the generic splitting 
field constructed by Amitsur and Roquette [7], a fact mentioned in [7, §1] al­
though we couldn't locate this result in the literature. In Section 3 we consider 
the norm hypersurface. We give a cohomological interpretation of Heuser and 
Saltman's construction of norm hypersurfaces (Theorem 4). In [5], N. Jacobson 
shows that the reduced norm of a central simple algebra determines uniquely 
the isomorphism or anti-isomorphism class of this algebra. We can show that 
the norm hypersurface plays a similar role as the reduced norm (Theorem 5). 

Standing terminology: For terminologies about central simple algebras we 
adopt those in Draxl's book [3]. Hence exp(/V) and ind(/4) will be the exponent 
and the index of a central simple algebra A. K[x] always means K\\\,...,xni\, 
the polynomial ring of m variables. PGLm(K) is the quotient group of GLm(K) 
by the scalar matrices. 
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2. The Brauer-Severi varieties. Let k be any field, K a finite Galois exten­
sion of k and G — GdX^K/k) the Galois group of K over k. 

Given a central simple /:-algebra A which is split by K, the similarity class 
of A determines a 2-cocycle 7 G H2(G1K

X). If exp(A) = e and m is a multiple 
of ind04), we shall construct a Brauer-Severi variety of dimension m — 1 cor­
responding to A, which is denoted by Vm(A). Since Vm(A) depends only on the 
2-cocycle 7, we denote it also by Vm(l). 

To construct Vm{l) we shall determine its homogeneous coordinate ring as 
follows. 

By [7, Theorem 1], 7 is in 

\mzgz{H\G,PGLm(K))->H2{G,Kx)}. 

Choose the unique 1-cocycle 

/? = {ba : a G G} G Hx(G,PGLm(K)) 

which is mapped to 7. For each ba G PGLm(K) choose a preimage aa G GLm(K). 
Then 

7 = {cv,TE tfx : <7,r€G} 

with 

where aa • a(aT) • a^ is a scalar matrix in GLm(K) and is identified with an 
element of Kx. 

Consider the polynomial ring K[x] = K[x\,..., xm\. Elements in G or GLm(K) 
can be regarded as /:-algebra automorphisms of K[x]. In fact, when a G G, 
c G A', a(c) is defined as before and define a(Xj) = Xj for 1 û i ^ m. When 
5 = (#//) î /,/̂ m is m GLm(K), define a A-automorphism of ATfx] by 

5^0 = X ! a,/X/ for x=J = m-

For each a G G, define wCT by ua = aa - a. Then each wa is a /.-algebra 
automorphism of Afx] satisfying the following conditions 

(1) ua • uT — cGiT - uaT for all <T,T G G, 

(2) ua • c = a(c) - ua for all c e K. 

Since exp(7) = £, choose a 1-cochain x = {̂V : cr G G} in C{(G,KX) so that 

c£T = ca • <J(CT) • c^1 for all cr, r G G. 
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The monomials of degree e in K[x] generate a graded sub-algebra over K. 
Call it K[x]. 

Now we shall define a ^-algebra automorphism va on K[x] for each a G G. 
Namely, if / G AT[x] is a homogeneous polynomial of degree er in JCI, . . . ,xm, 
define 

v„(/) = C • *„(/)• 

It is easy to check that 

(1) va • vr = vaT for all a,T e G, 

(2) va(c • / ) = <r(c) • va(f) for all c G ^ and for a l l / G £[*]. 

The group of automorphisms {va : a G G} is isomorphic to G. By abusing the 
notations we still call it G. 

Definition 1. Let 7? be the ring of invariants of K[x] under the actions of G, 
i.e., 

fl = K[xf = {/ G £[jc] : va(/) = / for all cr G G}. 

/? is a graded ^-algebra. We shall show that R is the homogeneous coordinate 
ring of the Brauer-Severi variety Vm(l). 

Note that it may be possible that similar arguments could be applied to the 
construction of forms of some other projective varieties. 

LEMMA 1. (1) R is an affine normal domain over k. 
(2) K[x]=R®kK. 

Proof (1) Since K[x] is normal, its ring of invariants is also normal. 
(2) By a theorem of Speiser [3, Theorem 1, page 36] 

K[x]=K[xf(g)K. 
k 

In [7, §5] Roquette defines the following generic splitting field of 7, 

Fm{y) = {f ' g~l '• f a nd g are homogeneous polynomials in K[x], 

deg / = degg and ua(f • g"1) = / • g"1 for all a G G}. 

LEMMA 2. Fm{")) — {/ • g_ 1 : / and g are homogeneous polynomials in R 
with deg / = degg}. 

Proof. It suffices to prove the following assertion. Le t / and g be relatively 
prime homogeneous polynomials in K[x] with deg / = degg and 

u*(f ' g~l) = f ' g~l for all a G G. 
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Then there is some element c G Kx so that both cf and eg are in R. 
We shall prove the above assertion in three steps. 
Step 1. ua(f) = Xa •/, ua(g) = Aa • g where \a £KX. 
In fact, / • ua(g) = g • ua(f). Since / and g are relatively prime, hence 

Ua(f) = \a -f for some Xa E Kx. 
Step 2. e | d e g / . 
Apply the relation wa • ur — ca^uaT to / and use the result of Step 1. Then 

c'aT = Xa • a(AT) • A^! where r = deg / . 

Thus {c£T : O\T G G} is cohomologously trivial in H2(G,KX). It follows that 

Step 3. There is an element c G Kx so that cf G /?. 
Write r — e • r'. In the proof of Step 2, we have 

On the other hand 

where {ca : G G G} is the 1-cochain used in the definition of va. Hence {Xa-c~r : 
a G G} is a 1-cocycle in Hl(G,Kx). By Hilbert Theorem 90 we can find c G Kx 

so that 

Xa 'C~r' = C '(T(C~1). 

Then c/ G R. 
It is not difficult to show that, up to isomorphism, the graded algebra R 

depends only on the cohomology class of the 2-cocycle A, i.e., it is independent 
of the choice of the 1-cochain {ca : a G G}, etc. Hence we arrive at our 
definition of Vm(l). 

Definition 2. For a 2-cocycle 7 G H2(G,KX), define Vm{l) = Proj(tf). V„7(7) 
is a projective variety defined over k. 

THEOREM 1.(1) Vw(7) is a Brauer-Severi variety of dimension m — 1 defined 
over k, i.e., Vm(l) is a form of P™~1, the projective (m — X)-space over k. In 
fact, 

k 

(2) Vm(l) can be embedded in P^~{ as a projectively normal subvariety where 

( e + m — 1 \ 
N = I and e = exp(7). 
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(3) The function field ofVm(l) is Fw(7), a generic splitting field of 1. 

Proof 

(1) Vm<n)®K ~ P r o j [ / ? ( g ) ^ ] ~ Proj(tf [*]) - P r o j ^ M ) - F™"'-

(2) Note that R = R0 0 /?r 0 /?2f> 0 • • • © /?,-, 0 • • • where /?,- is the set of 
homogeneous polynomials of degree / in R and RQ — k. Since dim* Re — the 
dimension of monomials of degree e — N and each element in Re defines a 
hyperplane section in the given projective embedding of Proj(/?). Thus Vm(l) is 
a subvariety of P%~1. Now apply Lemma 1 (1). 

(3) Use Lemma 2. 

THEOREM 2. Let 

£lm(K/k) = Imagej / / 1 (G, PGLm{K)) - * / / 2 (G , ATX)}. 

r/ẑ A? r/z^/T <2/r one-to-one correspondences among the following sets; the set 
of all central simple k-algebras of degree m which are split by K, the set of all 
Brauer-Severi varieties of dimension m — 1 over k which are split by K, 

{Fm(D : 7 €* (K/k)}. 

Moreover the correspondences are given as follows. If A is a central simple 
k-algebra of degree m and with a splitting field K, let J be the associated 
2-cocycle in H2(G,KX). Then A corresponds to Vm{l) (= Vm(A)) and Vm(l) 
corresponds to its function field. 

Proof. Almost everything in this theorem follows from Galois descent. The 
essence of this theorem is to make sure that everything corresponds to the 
right one as we expect, that is, a central simple algebra A should go to Vm(A) 
constructed in Theorem 1 and Vm(A) should goes to its function field. As to the 
proof, note that the correspondences are functorial and it has been proved that 
A and Fm(A) correspond bijectively in [7]. 

3. The norm hypersurfaces. 

Definition 3. Let k be any field, (Xij)\^ij^m the generic m x m matrix over 
k, i.e., k(x\\,x\2, •.. -,xmm) are the rational function field of m2 variables over k. 
The determinantal variety Tm of dimension m2 — 2 is the projective subvariety 
of P™~~{ defined by the equation det(A/7) = 0. 

Note that T2 is just the quadratic surface xu — yz = 0 in P3, and therefore is 
biregular to P' x Pl. 

Definition 4. Let k be any field and A a central simple /r-algebra of degree 
m. Then the reduced norm of A is a homogeneous polynomial/^(AJ. . . . ,xmi) of 
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degree m, which is called the norm polynomial for A [8, Section 1]. The norm 
hyper surface associated to A, denoted by W(A), is the projective subvariety of 
P*ff~x defined by the equation 

fA(xXl...,xm2) = 0. 

Note that our definition of a norm hypersurface is in accordance with that of 
[4]. However the norm hypersurface in [8] is the affine subvariety in the affine 
m2-space defined by the same equation 

fA(x\,...,xmi) = 0. 

When AT is a splitting field of A, then /^(xi , . . . ,xm2) is equivalent to det(x/y) 
under some linear change of variables over K. Hence W(A) is a &-form of Tm 

and W{A) is ^-isomorphic to Tm [9, page 152]. 
Let K be a finite Galois extension of the field k with Galois group G, E(K jk) 

the set of all £-forms which are ^-isomorphic to Tm, and Qm(K/k) the set of 
all central simple ^-algebras of degree m which are split by k. 

By [7, Theorem 1], 

Qm(K/k) ~ Image{//{(G,PGLm(K)) ^H2(G,KX)}. 

E(K/k) contains {W(A) : A G Qm(K/k)}. But it may be possible that the norm 
hypersurfaces cannot exhaust E(K jk). 

By Galois descent [9, Proposition 4, page 153] there is a bijection between 
E{K/k) and / / !(G, Aut(rw <g)A K)) where AuiK(Tm<^kK) is the group of K-
automorphisms of Tm ®k K. 

By a theorem of Dieudonne [2], the automorphism group of Tm ®kK is the 
semi-direct product of PGLm{K) x PGLm(K) and S = {id, 77} where 

{Zui2)ePGLm{K)xPGLm{K) 

acts on Tm by sending {aif) G Tw to £i(tf/;) • £^! and 77 is the automorphism on 
Tm by sending (aif) to (#/,-)' = (<?//). Hence we obtain the following. 

PROPOSITION 3. Eet K be a finite Galois extension of k with Galois group G. 
Then the following sequence is exact as pointed sets: 

Hl (G, PGLm(K) x PGLm(K)) -+ H1 I G, Auk I Tw (g) /M I 

— ^ ( G , ! ) — > 1. 

Now we shall define a map from Hl(G,PGLm(K)) by sending a 1-cocycle 
f3 = {ba G PGLm(K) : a G G} to 0 = { ( ^ , W : cr G G} which is in 
H\G,PGLm(K) x PGLm{K)). Call * the composite map of 

/ / J (G, PGLm(K)) —• // J(G, PGLm(K) x PGLm{K)) 
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and 

Hl(G,PGLm(K) x PGLm(K)) — // ' f G, Aut* (rm (g)tf 

THEOREM 4. Consider the fol owing diagram 

H\G,PGLm{K)) -^ Hl(G.AutK(rnl(g)K 

I 1 
tom(K/k) - ^ £(ff/*) 

where the vertical bijections are the canonical ones given by Galois descent, and 
ip is defined so that the diagram commutes. If A is a central simple k-algebra in 
Clm(K /k), then the image of A under the map ifj is the norm hyper surface W(A). 

Proof Let /? = {ba e PGLm(K) ' ° G G} be a 1-cocycle in Hx(G,PGLm(K)) 
and A its associated central simple algebra of degree m. Then there is a /^-linear 
isomorphism 

<t>:Mm(K)-^A§§K. 
k 

For each a G G, id <g>a denotes the automorphism of A 0 K keeping A 
pointwise fixed and a is the automorphism of Mn(K) by acting on the entries of 
matrices in Mm{K). Let 

a(f) = (id 0<r) o (j) o a~~' for each a G G. 

Then 

a<j) =z (f)oba for each <r E G. 

Let 

f = {r G Mm(/0 : det(r) = 0} and W = 0(f) 

and denote the restriction map of <j> by 0, i.e., (/> : f —> W is a /C-linear 
isomorphism of vector spaces. 

Now W consists of elements of reduced norm zero in A 0 A K. Hence f and 
W are just the affine cones of the projective varieties Fm and W(A). Therefore 
the map (j> induces a splitting of the A-form W(A) of Tm. In other words, the 
induced map 

k A-

• 

) ) 

https://doi.org/10.4153/CJM-1990-013-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-013-7


BRAUER-SEVERI VARIETIES 237 

is a regular isomorphism defined over K. 
Again the relation ac/>* — <j>* o ba holds for each a G G. Moreover, since /?a 

acts as an automorphism of Mm(K) by sending each m x m matrix t lo ba • t • b~l 

by Skolem-Noether's Theorem, hence the induced action of ba on Vm(K) is just 
the same one when we embed PGLm(K) into K\xiK(Tm Ç$k K). This proves that 
W(A) corresponds to the 1-cocycle 

tf = {Q>a,ba):aeG}. 

Hence the result. 

THEOREM 5. Let A and B be central simple k-algebras of degree m and W(A), 
W(B) the norm hyper surf ace s of A and B respectively. If W(A) is isomorphic 
to W(B) as subvarie ties in P™~~[, then A and B are either isomorphic or anti-
isomorphic. 

Proof. By assumption, W(A) and W(B) are isomorphic by some regular map 
of P™~~{. Such a regular map is of degree one since it is so on W(B). (Recall 
the W(B) —+ W(A) is one-to-one.) Hence there is a /:-linear map </> so that 

fA (<j>(xx,..., xmi )) = afB(x\,..., xmi ) 

for some a G ^ \ { 0 } . After choosing basis for A and B, we can regard ^ as a 
^-linear map of the vector spaces A into B so the 

fA(<t>(xx,...,xmi)) = afB(x\,...,xmi). 

When both A and B are matrix rings, since the proof of Lemma 7 and Lemma 
8 of [6] is still valid in our situation, it follows that <j> is rank-preserving and 
hence <j> — (3 • I/J by [6, Theorem 1] where /3 is a non-singular matrix and 4) 
is an isomorphism or anti-isomorphism of the matrix ring. When A and B are 
any central simple algebras, the technique of descent of [10, Theorem] can be 
applied to show that <j> — (3-ip again for some isomorphism or anti-isomorphism 
i/; of the central simple algebras A and B. 

REFERENCES 

1. M. Artin, Brauer-Severi varieties, in Brauer groups in ring theory and algebraic geometry, 

Springer LNM 917 (Springer-Verlag, Berlin, 1982). 

2. J. Dieudonné, Sur une generalisation du group orthogonal a quatre variables, Archiv. der Math. 

/ (1948), 282-287. 

3. P. K. Draxl, Skew fields (Cambridge University Press, Cambridge, 1983). 
4. A. Heuser, Uber den Funktionenkorper der Normfiache einer zentral einfachen Algebra, J. 

Reine Angew. Math. 301 (1978), 105-113. 

5. N. Jacobson, Structure groups and Lie algebras of Jordan algebras of symmetric elements of 

associative algebras with involution, Advance in Math. 20 (1976), 106-150. 
6. M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Can. J. Math. 11 

(1959), 61-66. 

https://doi.org/10.4153/CJM-1990-013-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-013-7


238 MING-CHANG KANG 

7. P. Roquette, On the Galois cohomology of the projective linear group and its applications to 
the construction of generic splitting field of algebras, Math. Ann. 150 (1962), 411—439. 

8. D. Saltman, Norm polynomials and algebras, J. Algebra 62 (1980), 333-345. 
9. J. P. Serre, Local fields, English translation, Springer GTM 67 (Springer-Verlag, New York, 

1979). 
10. W. C. Waterhouse, Linear maps preserving reduced norms, Linear Algebra and Its Appl. 43 

(1982), 197-200. 

National Taiwan University, 
Taipei, Republic of China 

https://doi.org/10.4153/CJM-1990-013-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-013-7

