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HAUSDORFFNESS IN VARIETIES OF TOPOLOGICAL GROUPS

CAROLYN E. MCPHAIL

A variety of topological groups 93 is a class of (not necessarily Hausdorff) topo-
logical groups closed under the operations of forming subgroups, quotient groups
and arbitrary products. It is well known that the class of groups underlying the
topological groups contained in any variety of topological groups is a variety of
groups. Much work on topological groups is restricted to Hausdorff topological
groups and so it is relevant to know if the class of groups underlying Hausdorff
topological groups in 93 is a variety of groups. It is shown that this is not always
the case. Indeed it is proved that this is not the case for an important proper class
of varieties of topological groups.

1. PRELIMINARIES

Recall that a class V of groups is said to be a variety of groups [9] if it is closed
under the operations of forming subgroups, quotient groups and arbitrary products.
Similarly, Morris [5] denned a class 93 of topological groups to be a variety of topolog-
ical groups if it is closed under the operations of forming subgroups (with the subspace
topology), quotient topological groups and arbitrary products (with the Tychnoff prod-
uct topology). (For a survey of varieties of topological groups see [8].) Much work on
topological groups deals only with Hausdorff topological groups so it is important to
point out that our attention is not restricted to Hausdorff topological groups.

For a topological group G, let |G| denote the group obtained by G by "forgetting"
the topology. We call \G\ the group underlying G. Further, let |93| denote the class
of all groups underlying the topological groups contained in the variety of topological
groups 93. Note that |93| is obviously a variety of groups. Finally, let |93|2 denote the
class of all groups that, with a Hausdorff topology, appear in 93. It is of interest to
know if the class of groups |93|2 is always a variety of groups.
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2. A N IMPORTANT EXAMPLE

Central to the study of varieties of topological groups are the T(m)-groups, where
m is some cardinal number. The T(m)-groups were introduced in Morris [6].

DEFINITION 2.1: (See [6, Section 4].) Let m be some cardinal number. A topo-
logical group is said to be a T(ra) -group if each neighbourhood of the identity contains
a normal subgroup of index strictly less than m.

The inclusion of "normal" in Definition 2.1 did not appear in [6]. However, our

definition of T(m)-group has in recent years been considered to be a more useful concept

[3].

R E M A R K . Let G be a topological group. Then G is a T(m)-group for every m strictly
greater than the cardinality of G (denoted card(G)). In particular, let G be a discrete
group (or any NSS-group) [7] such as any Lie group, or any Banach space considered
as a topological group); then G is a T(m)-group if and only if card(G) is strictly less
than m. As subgroups, quotient groups and arbitrary products of T(m)-groups are
T(m)-groups, we obtain the following proposition.

PROPOSITION 2 . 2 . (See [6, Theorem 4.2].) Let V be a variety of groups and

for any infinite cardinal number m, let 5Jm be the class of all T(m)-groups G such

that \G\ € V. Then 5Jm is a variety of topological groups. Further, for distinct infinite

cardinal numbers m and n, QJm ^ %3n.

We shall use 1 m to denote the variety of all T(m)-groups and 2lm to denote the
variety of all Abelian T"(m)-groups.

3. r(N0)-GROUPS

We shall see below that the variety of all T(N0)-groups, TK0 , has the property that

|TN o |2 is not a variety of groups. This is the first such example.

Recall that a group is said to be residually finite [4] if it is isomorphic to a subgroup

of a product of finite groups. This algebraic property characterises those groups that

underlie Hausdorff topological groups contained in TK0 .

LEMMA 3 . 1 . Let G be a group. Then G admits a Hausdorff group topology

which makes it a T(Ko)-group if and only if G is residually finite.

P R O O F : Let G be a group that admits a Hausdorff group topology which makes it
a T(No)-group. Let {Ui : i 6 / } be the family of all neighbourhoods of the identity 1 in
G. Then for each Ui, there exists a normal subgroup Ni of G such that 1 6 Ni C Ui

and caid(G/Ni) is finite. Further, let 4>i '• G —*• G/Ni be the canonical homomorphism
from G onto G/Ni and let $ : G -> ]} G/Ni be given by $(5) = ]1 &(ff)- Since
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the topology on G is Hausdorff, Q Ui = {1} and so $ is a one-to-one homomorphism

from G into a product of finite groups. Therefore, G is residually finite.

Conversely, let G be a residually finite group. Then there exists an index set

/ and finite groups Fi for each i £ I such that G is isomorphic to a subgroup of

Y\ Fi. Now, for each i e I, Fi with the discrete topology is a Hausdorff T(N0)-group.

Since products of Hausdorff T(No)-groups and subgroups of Hausdorff T(Ko)-groups are
Hausdorff T(H0)-groups, then G with the induced topology from Y\Ft is a Hausdorff
T(K0)-group. ieI D

The main result for this section will also use the following lemma.

LEMMA 3 . 2 . Let G be a non-trivial divisible group. Then G is not residually

finite.

PROOF: Suppose G is residually finite. Then G is isomorphic to a subgroup of
Y[ Fi, where / is an index set and each Fi is a finite group. Let pi be the projection

of G into Fi. As G is divisible and Fi is finite, Pi(G) is a finite divisible group and
hence is the trivial group. Thus, G is trivial, which is a contradiction. Therefore, G is
not residually finite. D

From Lemma 3.2, we know for example that M, the additive group of real numbers,

is not a residually finite group since it is divisible. However, every free group is residually

finite [4, p. 116].

We now turn to the variety of all T(K0)-groups and we are able to prove the main

result of this section.

THEOREM 3 . 3 . Let TN0 be the variety of all T(N0)-groups and let 2lNo be the

variety of all Abelian T(Ho)-groups. Then | 1N O | 2
 and J2l«o |2 are not varieties of groups.

PROOF: By the remark above and Lemma 3.1, TN0 contains each free group with
some Hausdorff group topology. So each free group is in |TNO|2. Suppose that |Tno|2
is a variety of groups. Then |TNO|2 must be the variety of all groups, as every group
is a quotient of a free group. However, as remarked above, R is not residually finite
and hence by Lemma 3.1 is not contained in |TNO|2- Thus, |TNO|2 is not a variety of
groups. The Abelian case is proved similarly. U

4. T(m)-GROUPS

In this section, we shall examine T(m)-groups for m > No and see that there is
a proper class of varieties of topological groups 5J such that |2J|2 is not a variety of
groups. However, we shall find that there is also a proper class of varieties of topological
groups QJ such that |5J|2 is a variety of groups.
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THEOREM 4 . 1 . Let m be an infinite cardinal and let 1m be the variety of all
T(m)-groups. Then the class of groups |Xm|2 is not a variety.of groups.

PROOF: Every free group is a T(N0)-group and therefore is a T(m)-group. Suppose
|Tm|2 is a variety of groups. Then |Tm|2 contains all groups. However, by [2] for
example, for each cardinal m there exists a simple group G of cardinality strictly
greater than m. Thus G is not contained in |Tm|2 and so |Tm|2 is not a variety of
groups. D

Up to this point we have only presented varieties of topological groups 93 where

the class of groups underlying Hausdorff groups contained in 93 do not form varieties

of groups. However, this is not always the case, as we see in Theorem 4.2.

We shall denote by Z(p°°) the set of all complex numbers exp (27rik/pn), where p

is a fixed prime, k runs through all integers, and n through all nonnegative integers.

Note that Z(p°°) is a (countable) Abelian group under multiplication.

THEOREM 4 . 2 . Let m be any cardinal number such that m > No and let Qlm
be the variety of all Abelian T(m)-groups. Then the class of groups |2lm|2 is a variety

of groups; indeed |2lm|2 is the variety of all Abelian groups.

PROOF: We know that the group of rational numbers Q under addition is an

Abelian group of cardinality No < m. Therefore, Q with the discrete topology forms a

(Hausdorff) T(m)-group. Hence, Q € |2lm|2. Similarly, Z(p°°) e |2lm|2.

Let G be an Abelian group. Then G can be embedded in a divisible Abelian group

H (see, for example, [1, Theorem A. 15]). Further, H is isomorphic to a subgroup of

a product of copies of Q and Z(p°°) where p ranges over all primes (see, for example,

[1, Theorem A.14]). Now, G with the topology induced by the product of copies of <Q>

and Z(p°°) each with the discrete topology forms a Hausdorff T(m)-group. Therefore,

G 6 |2lm|2- Thus, \%n\2 ls ^ae variety of all Abelian groups. D

Theorems 3.3, 4.1 and 4.2 lead us to ask the following question.

OPEN QUESTION. Let m be an infinite cardinal. In the notation of Proposition 2.2,
for what varieties of groups V is |93m|2 a variety of groups? When the answer is in the
affirmative, is |93m|2 = V?

REFERENCES

[1] E. Hewitt and K.A. Ross, Abstract harmonic analysis I (Springer-Verlag, Berlin, Heidel-
berg, New York, 1963).

[2] G. Higman, 'On finite simple permutation groups', Publ. Math. Debrecen 3 (1954),
221-226.

[3] R.D. Kopperman, M.W. Mislove, S.A. Morris, P. Nickolas, V. Pestov and S. Svetlichny,
'Limit laws for wide varieties of topological groups', Houston J. Math 2 (1996), 307-328.

https://doi.org/10.1017/S000497270003149X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003149X


[5] Hausdorffness in topological groups 151

[4] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of
groups in terms of generators and relations (Dover Publications Inc., New York, 1976).

[5] S.A. Morris, 'Varieties of topological groups', Bull. Austral. Math. Soc. 1 (1969), 145-160.
[6] S.A. Morris, 'Varieties of topological groups III', Bull. Austral. Math. Soc. 2 (1970),

165-178.
[7] S.A. Morris, Pontryagin duality and the structure of locally compact Abelian groups (Cam-

bridge University Press, Cambridge, 1977).
[8] S.A. Morris, 'Varieties of topological groups - A survey', Colloq. Math. 46 (1982), 147-165.
[9] H. Neumann, Varieties of groups (Springer-Verlag, Berlin, Heidelberg, New York, 1967).

Department of Mathematics
University of Wollongong
Wollongong NSW 2522
Australia
e-mail: caz_mcphail@uow.edu.au

https://doi.org/10.1017/S000497270003149X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003149X

