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Abstract
Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys. 43, 4669 (1972)]
is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR
diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either
a kinetic pressure [Grady, Mech. Mater. 29, 181 (1998)] or a magnetic pressure [Lemke et al., Intl J. Impact Eng. 38,
480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical
component to understanding the physics of these experiments. Although VISAR can provide a precise measurement of
a flyer’s surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-
dependent pressure. The purpose of this paper is to elucidate a new method for quickly and reliably unfolding VISAR
data.
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1. Introduction

The general physics of the Velocity Interferometer System
for Any Reflector (VISAR)[1–3] system, which we assume
for this paper to be kinetic pressure driven, can be easily
illustrated as in Figure 1. In this system, a time-dependent
pressure P(t) is applied to the left-hand side (LHS) of a
thin (100–1000 μm) piece of metal called a VISAR flyer.
This pressure results in stress wave propagation through the
flyer and, eventually, motion of the right-hand side (RHS)
surface of the flyer plate. A laser beam is reflected off the
RHS, and the velocity �v of the RHS is inferred by means
of an interferometry system. Since the properties of real
materials obey an equation of state (EOS), one expects that
there will be effects, such as compressibility and time delay
(due to wave propagation with finite sound speed), which
can play a significant role in determining the velocity of the
RHS. By modeling the dynamics of the flyer, one can unfold
the measured velocity response and infer the time-dependent
pressure drive.

At Sandia National Laboratories, codes such as
ALEGRA[4], HYDRA[5] and LASNEX[6] are commonly
utilized in modeling the hydrodynamics (HD) of the VISAR
flyer. These codes enable the user to produce a velocity
output for a given pressure drive. To unfold the actual
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Figure 1. Illustration of the kinetic pressure driven VISAR diagnostic.

pressure incident on the VISAR flyer, a forward iterative
process is used to match the simulated flyer velocity
with the measured velocity. This pressure unfold is time
consuming, i.e. it often requires many forward simulations
to achieve a desired unfold accuracy, and still requires an
initial ‘guess’ at the pressure drive to initiate the process.
Another unfortunate aspect of the unfold process is that
it may not have a unique solution, thereby limiting the
accuracy of the unfold, since it falls into the general class
of inverse problems. For example, one may find that a
number of slightly different unfolded drives may produce
similar velocity outputs. This can lead to an approximation
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of the uncertainty in an unfold candidate, assuming that
there are no systematic errors associated with the VISAR
velocity measurement. Let us say, after performing the
unfold process a number of times, we arrive at a reasonable
pressure drive candidate that results in a ±5% variation in
the velocity output compared to the measured velocity. One
can then roughly estimate that the uncertainty of the drive
pressure is also ±5%. This follows from the important
property that, in the small pressure drive limit, P � ρ0c2

0,
where ρ0 is the initial mass density of the flyer and c0 is the
material sound speed in the limit of zero pressure and zero
temperature, the metal flyer can be modeled elastically, and
hence the velocity output is proportional to the pressure. We
will illustrate this property in the next section.

The initial guess pressure function is a critical component
to the unfold process. Specifically, one often finds that the
initial unfold needs to be ‘sufficiently close’ to the final
answer in order for the iterative process to actually converge
in a timely fashion. By ‘sufficiently close’, we mean that
the initial drive candidate should have roughly a similar
maximum/minimum magnitude, and a similar shape as a
function of time compared to the correct solution. If an
auxiliary measurement of the pressure drive exists, then this
would often suffice as an initial drive candidate. However, in
some experiments it may not be possible to make an auxiliary
measurement, in which case it would be necessary to find
an alternative method for initializing the unfold process. A
specific example of an auxiliary measurement is the use
of B-dot probes to measure current through a load[7], and
hence magnetic pressure on a VISAR flyer near the load, on
the Sandia National Laboratory Z machine[8] during pulsed-
power experiments. It is often found, however, that the B-
dot probes work well in the low-current regime of the pulse,
but may fail at or near peak current. Hence, the B-dots can
provide an accurate initial guess of the magnetic pressure
in the low-pressure regime, but an unfolded load VISAR
measurement would provide a more accurate representation
of the pressure at higher currents. In certain cases, such
as in recent laser blast wave experiments in support of
the MagLIF project[9], it may be possible to simulate the
pressure generated by the blast wave due to a laser pulse
entirely using a HD code, such as HYDRA. This pressure
drive function could then be used as a candidate drive in
the unfold process. We should note that other methods for
unfolding VISAR data have been developed. For example,
a Lagrangian-style backwards spatial integration method[10]

was developed for investigating dynamic materials experi-
ments at Sandia National Laboratories. In contrast to this
method, our unfold method utilizes physics at the boundaries
of the flyer without resorting to extensive simulations of the
internal flyer physics.

The remainder of this paper describes a technique that
we developed for producing the initial guess function for
the pressure drive. The method relies on both analytical

techniques, as well as implementation of well-known EOS
tables, such as the SESAME[11] table. This method proves to
be very quick, e.g. producing unfolds for our laser blast wave
experiments in under 30 s. Moreover, the method produces
a pressure drive that yields excellent agreement between
the actual VISAR data and the simulated VISAR velocity
when modeled with a HD simulation code. The difference
between the simulated velocity and the data is typically
∼1% (velocity difference/maximum VISAR velocity) for
most of the key components of our datasets. Larger errors,
∼5%–10%, become present due to the difficulty in our
method in resolving density variations due to reflections at
the VISAR surface, as well as the physics of the release
wave in the presence of very strong pressure shocks. Despite
these issues, this method has proven to be extremely effective
for unfolding kinetic pressure driven VISAR unfolds. One
should note that, in practice, a 1% error for a pressure
function using an iterative method is often times the best
that is achievable. The reason for this is that the unfold
process can be extremely nonlinear, i.e. a small change in the
pressure drive may lead to a not so small change in VISAR
velocity, particularly in the presence of a pressure shock. In
certain cases, our method is effective enough to completely
avoid employing iterative methods afterwards, and use the
initial pressure guess as the unfold itself.

The VISAR unfold method is broken into two parts,
which are separately applicable in the ‘low-pressure’ and
‘high-pressure’ regimes. The ‘low-pressure’ part utilizes a
many-body coupled harmonic oscillator model for the metal
VISAR flyer to predict the VISAR velocity response due to
a time-dependent pressure. The ‘high-pressure’ part utilizes
realistic EOS tables, such as the SESAME tables, to predict
the VISAR response due to the time-dependent velocity. As
we shall see, both parts of the method yield excellent VISAR
unfold predictions in the different pressure response regimes
that can be ‘spliced’ together to form a very accurate VISAR
unfold of the pressure.

2. ‘Low-pressure’ coupled harmonic oscillator model

Coupled harmonic oscillator models in solid-state physics
are well known, and were initially developed by Einstein[12],
Debye[13] and Gruneisen[14]. In the ‘low-pressure’ limit, in
which the density of the VISAR flyer, as well as its sound
speed remain constant, this model can be very effective. We
now illustrate how the coupled harmonic oscillator model
can be applied to the VISAR unfold process.

Suppose that a large metal flyer plate of total mass M and
thickness L is divided into N equal slices, each of mass
m = M/N and with centers spaced a distance l = L/N .
We label the center location, velocity and acceleration of the
i th slice as xi , vi and ai , respectively. In our system, the
i = 1 slice corresponds to the LHS of the system shown
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in Figure 1 (where the pressure is applied) and i = N
corresponds to the RHS of the system (where the VISAR
measurement is made). We assume that the i = 1 slice
has a time-dependent force F(t) being applied to it, and
that each slice is interacting with its neighboring slices via
a harmonic potential with spring constant k, or equivalently
a characteristic frequency ω = √

k/m. Newton’s laws yield

m
d2x1

dt2 = −k(x1 − x2 + l) + F(t)

m
d2xi

dt2 = −k(xi−1 − xi+1 + 2l) for 2 < i < N

m
d2xN

dt2 = −k(xN − xN−1 − l).

(1)

Since we are modeling the internal motion of a continuous
solid flyer, we are obviously only interested in the limit that
N → ∞. It is readily straightforward to reduce this set of
equations into one single ordinary differential equation for
xN , or equivalently aN , in terms of F . In the large-N limit,
we let aN → aRHS, where the subscript ‘RHS’ denotes the
RHS of the flyer where the VISAR measurement is made.
The final differential equation for aN → aRHS becomes

F
M

= aRHS + 1
3!ω̃2

d2aRHS

dt2 + 1
5!ω̃4

d4aRHS

dt4

+ 1
7!ω̃6

d6aRHS

dt6 + · · ·

=
∞∑

n=0

1
(2n + 1)!ω̃2n

d2naRHS

dt2n , (2)

where ω̃ = ω/N is a renormalized characteristic frequency.
We should note that the authors derived the coefficients
for Equation (2) by numerically solving the coefficients
for sequentially larger finite-N systems, and found that the
coefficients approached the values in Equation (2) as N →
∞. Equation (2) can be written into a simple expression for
the RHS velocity as

F
M

=
∞∑

n=0

1
(2n + 1)!ω̃2n

d2n+1vRHS

dt2n+1

= ω̃

2
(vRHS(t + 1/ω̃) − vRHS(t − 1/ω̃)). (3)

The final expression is immediately found through Taylor
series expansions. Therefore, the velocity of the RHS at
any time t is equal to the velocity at an earlier time t − 2/ω̃

plus a term that is linearly proportional to the force applied
to the LHS at an earlier time t − 1/ω̃. In the absence
of a viscoelastic strength model, any longitudinal pressure
pulse will propagate through the flyer with a sound speed c,
which we assume to be constant. Hence, the renormalized
frequency can be written as ω̃ = c/L . The total mass can be

written as M = ρ0 AL and the pressure is P = F/A, where
A is the surface area of the flyer. Equation (3) can then be
rewritten as

vRHS(t) = vRHS(t − 2L/c) + 2P(t − L/c)
ρ0c

=
∞∑

n=0

2P(t − (2n + 1)L/c)
ρ0c

. (4)

We should note that, since ω̃ is assumed to be constant in the
model, both c and L are also assumed to be constant. For
real materials that are undergoing a pressure drive, there will
always be a change in density and, hence, a change in L .
One can estimate the size of the density perturbation using
the above velocity equation and the continuity equation.
The density perturbation will be of the order of δρ ∼ P/c.
Additionally, since the speed of sound for real materials is
a function of density and temperature, there will also be a
change in c. In order to justify our fixed density and fixed
sound speed model, it is sufficient to ensure that the density
perturbation is small compared to the initial density when
the pressure is zero. This ‘low pressure’ is achieved when
the pressure satisfies P � ρ0c2

0.
We now show an example in order to illustrate the utility

of Equation (4) by comparing its prediction to a full hydro-
dynamic simulation using the arbitrary-Lagrangian–Eulerian
multimaterial code ALEGRA developed at Sandia National
Laboratories. In this example, we use a time-dependent
pressure, shown in Figure 2(a), to drive a L = 200 μm
thick aluminum VISAR flyer. In order to demonstrate the
effectiveness of Equation (4), the pressure profile that we
use is derived from actual VISAR velocity data (up to a
scaling factor) from experiments at Sandia studying the
effects of a blast wave driven by the deposition of laser
energy (2 kJ total) into an underdense gas in a MagLIF
target[15]. The code uses the SESAME 3700 EOS table and
the Lee–More–Desjarlais (LMD)[16] model for computing
conductivities. The ALEGRA simulation is run in a 1D
Lagrangian mode, and the flyer is resolved with 1000 cells
throughout the bulk of the flyer. In these simulations, the
density and sound speed of the aluminum are given by
ρ0 = 2700 kg m−3 and c = 5216 m s−1, and material
strength effects have been turned off. For aluminum, our
‘low-pressure’ criterion yields P � 73 GPa, and this is
satisfied within the simulation in which P < 500 kPa.
In Figure 2(b), we show the excellent agreement between
ALEGRA (red) and the velocity prediction for the coupled
harmonic oscillator model in Equation (4) (green). It is
immediately obvious that in this ‘low-pressure’ regime, the
coupled harmonic oscillator model is extremely powerful,
and can be used to accurately predict the VISAR velocity
response due to a time-dependent pressure drive.

In order to illustrate how the coupled harmonic oscilla-
tor model breaks down, suppose that we take an identical
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Figure 2. (a) Example of a low-pressure drive. (b) The RHS velocity for the low-pressure drive computed by ALEGRA (red) and by Equation (4) (green).

Figure 3. (a) Example of a high-pressure drive. (b) The RHS velocity for the high-pressure drive computed by ALEGRA (red) and by Equation (4) (green).

pressure drive and multiply it by 104, so that the maximum
pressure is of the order of 5 GPa, as shown in Figure 3(a).
Figure 3(b) shows a comparison of the ALEGRA simulation
(red) and the harmonic oscillator model (green). A few
things are immediately apparent from Figure 3(b). First,
there is a time shift between the velocity traces, which
is small for the lower velocities that correspond to lower
pressures, and becomes more significant for high velocities
that correspond to high pressure. The time shift is due to
two effects: (1) the VISAR thickness contracts (smaller L)
for higher-pressure drives and (2) the speed of sound is
a function of density. For aluminum, as is true for most
solids, the speed of sound increases as the density increases
(higher c). Both of these effects contribute to a smaller
time delay in the velocity response. However, despite the
small time shift in the low-velocity regime, one still finds
very good agreement between the two results in the low-
velocity regime, particularly when the pressure is <1 GPa for

aluminum VISAR flyers. The other effect is that the velocity
predicted by this model is significantly higher than the
ALEGRA simulation result. This effect is due to momentum
conservation. In the coupled harmonic oscillator model, the
density was assumed to be constant, when in reality the
density is increasing under compression. As momentum
propagates through the flyer from the LHS to the RHS, a
local increase in density would necessarily be accompanied
by a local decrease in velocity, which would not be seen in
the oscillator model.

For our laser driven blast wave experiments at Sandia,
typical pressure drives will have maxima in the 1–10 GPa
regime. So we expect that the coupled harmonic oscillator
model would give accurate results in regimes corresponding
to low pressure (often times in the ‘initial foot’ of the
pressure drive), but would need to be modified to incorporate
higher-pressure drives.
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3. ‘High-pressure’ model

In this section, we show an improved model, which ac-
counts for the changes in thickness of the VISAR flyer,
as well as the density dependence of the material sound
speed. However, we still limit our discussion to the constant
temperature approximation, which in our case corresponds
to room temperature at T = 298 K. For the laser blast wave
experiments, ALEGRA simulations indicate that the VISAR
flyer temperature (ignoring radiation surface ablation effects)
will vary by less than 100 K throughout the spatial extent of
the flyer during 100 ns of the laser blast wave. This relatively
small change in temperature results in little change of the
pressure, as well as the sound speed. This approximation
significantly simplifies the unfold model. Although the
constant temperature approximation works very well in the
pressure drive regime of <10 GPa, it is not immediately
clear how high a pressure drive is possible before this
approximation, and hence the present unfold process, yield
significant errors. For large pressures, which can result in
significant changes in the flyer temperature, full simulations
of the flyer may be required using a code such as ALEGRA.

We make an additional simplification by ignoring the
effects of density and pressure reflections in the system.
The main drawback of this approximation is that it limits
the length of time over which the unfold can be applied,
since reflections that make it back to the LHS can affect the
density along with the external pressure. If one knows ap-
proximately the characteristic time of the pressure response,
then the VISAR flyer can be made sufficiently thick so as to
reduce the effect of the reflections. Despite this additional
assumption, we find that it still offers a useful unfold that is
highly relevant for our experimental data.

The model utilizes mass and momentum conservation, as
well as pressure boundary conditions applied at the LHS
and RHS. In order to capture the correct physics of the
density dependence of the sound speed within the flyer, it
is necessary to incorporate well-known EOS tables, such as
the SESAME tables. These tables provide material pressure
as a function of density and temperature, i.e. P(ρ, T ), as
well as the energy per mass ε(ρ, T ), from which the sound
speed can also be found c(ρ, T ). However, because we are
only considering a fixed temperature model at T = 298 K,
our model uses constant temperature curves for pressure and
sound speed at T = 298 K, i.e., P(ρ, T = 298 K) and
c(ρ, T = 298 K).

Assume that the external pressure drive on the LHS is
given by Pext(t). Since the pressure is continuous across the
material surface then one immediately obtains the density on
the LHS, namely

Pext(t) = P(ρLHS(t)), (5)

ρLHS(t) = P−1(Pext(t)). (6)

The velocity of the LHS, which is assumed to be starting
from rest, can be found in the following way. We imagine
that Pext(t) is starting from 0 at t = 0, and can be divided
into small pressure steps of value, Pi , where i = 1, 2, 3,
etc. at time locations ti . As the number of steps increases
to infinity, we can model a continuous pressure drive. When
the pressure is increased from P = 0 to P1, the density of
the LHS increases from its initial density ρ0 to ρ1 > ρ0. A
shock front propagates from the LHS to the RHS moving
at a speed c(ρ0). All material in front of the shock is at a
density ρ0, and material behind the shock is at a density ρ1
moving with a new speed v1. The amount of momentum per
area externally imparted on the material is P1(t2−t1), and the
total momentum per area of the material is ρ0v1c(ρ0)(t2−t1).
Hence momentum conservation yields

v1 = P1

ρ0c(ρ0)
. (7)

Between time t2 and t3, when the pressure has changed to
P2, one finds that the LHS density is ρ2. Again, momentum
conservation yields the new speed of the LHS

v2 = v1 + P2 − P1

ρ1c(ρ1)
. (8)

At each pressure step, conservation of momentum can be
applied and, after n steps, we find

vn = vn−1 + Pn − Pn−1

ρn−1c(ρn−1)
. (9)

In the limit of infinitesimally small pressure changes, Equa-
tion (9) becomes differentials in v and P , and one finds that

vLHS(t) =
∫ Pext(t)

0

dP
ρLHSc(ρLHS)

, (10)

where the dependence of the LHS density on pressure is
found from Equation (6). We should note that in deriving
Equation (10) we have ignored the effect of reflections,
which in general can affect the density at the LHS.

The next important component of this unfold is deter-
mining the time-delay factor, i.e. the time for a pressure
drive at the LHS to be received at the RHS. Suppose that
at time t the density of the LHS due to the pressure drive is
ρLHS(t). We know that this pressure signal will propagate
with a speed c(ρLHS) through the VISAR flyer. However,
since the density has been increased from the initial density
ρ0 (accordingly the thickness has decreased from the original
thickness of L), the propagation distance has decreased,
leading to a reduction in the time delay. The total time-delay
factor for the signal to reach the RHS starting from the LHS
is Lρ0/c(ρLHS)ρLHS.

Since there is no pressure being applied to the RHS, the
density of the RHS must stay fixed at ρRHS = ρ0 for all time.
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The material velocity of the signal is given by vLHS. Since
the signal is reflected at the RHS boundary with the density
held constant, the velocity of the RHS must be twice that
of the incoming velocity. The velocity response of the RHS
or VISAR measurement due to the time-dependent pressure
drive with appropriate time-delay factor is given by

vRHS(t) = 2vLHS

(
t − Lρ0

c (ρLHS(t)) ρLHS(t)

)
. (11)

What we have just described is a method for inferring the
velocity of a VISAR signal from a time-dependent pressure
drive. However, for most of our experiments we are actually
interested in the inverse problem of taking the measured
VISAR velocity data and finding the pressure drive. Our
method can be readily run in reverse to produce a VISAR
unfold, in the following manner. Using Equations (10)
and (11), we can relate the RHS VISAR velocity to an
appropriately time-shifted LHS pressure drive, i.e.

vRHS(t) =
∫ Pext

(
t− Lρ0

c(ρLHS)ρLHS

)

0

2dP
ρLHSc(ρLHS)

=
∫ ρLHS

(
t− Lρ0

c(ρLHS)ρLHS

)

ρ0

2c(ρ)dρ

ρ
, (12)

where in Equation (12) we have used the relation c2 =
dP/dρ. For each time t , the integral in Equation (12) is
performed numerically to determine the correct ρLHS and,
hence, the Pext that produces the RHS VISAR velocity. This
provides the correct time-shift factor for Pext as shown in the
integrand of Equation (12). Hence from Equation (12), the
RHS VISAR velocity immediately determines the desired
pressure drive Pext(t).

As an aside, it is worth noting that in the limit of small
pressure, Equation (12) recovers Equation (4) without the
inclusion of reflections. In particular, ρLHS → ρ0 and
c(ρLHS) → c (constant sound speed), so that Equation (12)
becomes

vRHS(t) → 1
ρ0c

∫ Pext

(
t− L

c

)

0
2dP = 2Pext

(
t − L

c

)
ρ0c

. (13)

4. Implementation of the unfold process

In this section, we show how we can use both the ‘high-
pressure’ model in Equation (12), which implements realistic
EOS tables and accounts for the changes in thickness and
sound speed of the material, as well as the ‘low-pressure’
coupled oscillator model in Equation (4) to produce an
accurate unfold of the pressure. An obvious question that
one may ask is why should the coupled oscillator model be
used at all, since Equation (12) should be applicable in both
the high- and low-pressure regimes. The answer is that, in

Figure 4. Schematic of the MagLIF laser blast wave experiment.

general, it can be challenging to interpolate the sound speed
of the flyer as P approaches zero for a given EOS table.
This property is readily connected to the fact that the sound
speed has a discontinuous derivative as P approaches zero.
However, since the low-pressure regime can be resolved
using Equation (13), which is identical (without reflections)
to the coupled oscillator result in Equation (4), then one
can use the coupled oscillator result (or equivalently Equa-
tion (13)) to unfold the VISAR data in low-pressure regimes.
This requires that we choose an appropriate velocity/drive
pressure cutoff below which we use Equation (4) or (13) and
above which we use Equation (12) to unfold the pressure.
For aluminum, choosing a velocity cutoff to be 100 m s−1

and the associated pressure cutoff to be 0.7 GPa provides
excellent results.

We illustrate this unfold process using actual data from
a series of experiments, which investigated the properties of
the laser blast wave found in the Sandia MagLIF experiment.
In these experiments, a 200 μm thick aluminum tube with
an initial radius of 2.8 mm contains a D2 gas fill at 57 psi.
A 2 kJ laser pulse from the Sandia Z-Beamlet[17] laser
was used to heat the gas, and set up a blast wave which
pushes on the inside wall of the tube. A pair of Helmholtz
coils[18] provided a uniform axial magnetic field of 9 T to
the experiment. A VISAR diagnostic was placed on the
outside of the aluminum tube at multiple axial and azimuthal
locations, in order to measure the velocity outside surface of
the tube. The tube itself represents the VISAR flyer in these
experiments. Figure 4 shows a schematic of the MagLIF
laser blast wave experiment.
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Figure 5. (a) Pressure unfold for laser blast wave experiment at 3.59 mm from LEH. (b) Pressure unfold for laser blast wave experiment at 5.71 mm from
LEH. (c) Pressure unfold for laser blast wave experiment at 7.84 mm from LEH.

Figure 5(a–c) show the unfolded pressure using our unfold
method and incorporating the Al3700 SESAME EOS table
for the high-pressure section (>0.7 GPa) at axial locations
3.59 mm, 5.71 mm and 7.84 mm below the laser entrance
hole (LEH) respectively. For pressures below 0.7 GPa, the
oscillator model in Equation (4) was utilized. The unfolded
pressures are produced numerically using a Python script,
which runs in less than 30 s. When implementing Equation
(12) to convert all RHS VISAR data points into Pext(t) data
points, we find that there is a subset of data points in which
the time shift may be too great, giving rise to a Pext(t) which
is multivalued in certain sections. As part of our method,
we filter out data points later in the Pext(t) list that would
give rise to a multivalued behavior. Typically, this behavior
occurs near strong shocking events, such as near the pressure
peak at 30 ns in Figure 5(a). Filtering the pressure data yields
a single-valued pressure function that provides a velocity
response in excellent agreement with the VISAR data, as we
will now demonstrate.

Using the unfolded pressure drives in Figure 5(a–c), we
run ALEGRA simulations to produce RHS VISAR velocity

outputs. Figure 6(a–c) show comparisons of the actual
VISAR data with the ALEGRA simulation using the un-
folded pressure drive. As one can see, the unfolded pressures
produce RHS velocities that are in excellent agreement
with the measured VISAR data. The low-pressure ‘foot’
of the pressure drive as well as the main pressure pulse
give accurate comparisons to the VISAR data. However,
there is a discrepancy, which occurs after the pressure peak.
This is most likely due to effects at the RHS such as
density reflections, which can vary nonlinearly the velocity
and strength of incoming shocks, as well as the release
wave, which can produce low-density regions in the flyer.
Nevertheless, the unfold method that we just described
provides a quick and accurate method for unfolding the
pressure drive. Depending on the accuracy requirements of
the unfold, this method may provide a final answer for the
pressure history or could be used as a starting point for a
more rigorous forward iterative unfold process using a HD
simulation code, such as ALEGRA, in conjunction with an
optimization code, such as DAKOTA[19]. A figure of merit,
such as a least squares comparison of the simulated velocity
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Figure 6. (a) Comparison of VISAR data (red) with velocity output from ALEGRA using the unfolded pressure (green) at 3.59 mm from LEH.
(b) Comparison of VISAR data (red) with velocity output from ALEGRA using unfolded pressure (green) at 5.71 mm from LEH. (c) Comparison of
VISAR data (red) with velocity output from ALEGRA using unfolded pressure (green) at 7.84 mm from LEH.

and VISAR data, can be used to determine how to update the
pressure drive with the optimization software.
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