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1. Introduction

Let G be a locally finite group, let k be a field of characteristic p 2: 0, and let
V be a (right) fcG-module, not necessarily of finite dimension over k. We say that
V is an 2Hc-module over kG if, for each //-subgroup H of G, the set of centralizers
in V of subgroups of H satisfies the minimal condition under the relation of set-
theoretic inclusion. Here, p' denotes the set of all primes different from p, and in
particular 0' denotes the set of all primes. It is straightforward to verify that V is
an 5Jtc-module over kG if and only if each p '-subgroup H of G contains a finite
subgroup F such that CV(F) = CV(H).

A natural context in which 9Jlc-modules arise is as chief factors of U-groups,
where U is the class of locally finite groups introduced in [1]. Slightly more
generally, we have

LEMMA 1.1. Let G e U a n d let B g A be normal subgroups of G such that
A/B is an elementary abelian p-group. Then AjB, viewed as a ZpG-module in
the natural way, is an 3Rc-module.

PROOF. Let x -> x be the natural homorphism of G onto G = G/B and let H
be any p'-subgroup of G. Then, from the definition of the class It, we have that
the Sylow p'-subgroups of AH and each of its subgroups, are conjugate. Therefore,
by [3] Lemma 4.3, if H1 is any countable subgroup of //normalizing a countable
subgroup Ax of A, then Ht contains a finite subgroup Ft such that CA^F^
= Cx^Hi). It follows easily from this that there is a finite subgroup F of H such
that CA(F) = CA(H), as claimed.

This is perhaps one of the principal reasons for studying 9Jlc-modules. Our main
interest in this paper is in obtaining sufficient conditions for an 9Jlc-module to be
completely reducible. These will yield sufficient conditions for an elementary
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abelian normal subgroup of a U-group G to be the direct product of minimal nor-
mal subgroups of G. The first result is analogous to Maschke's theorem:

THEOREM A. Let G be a locally finite group satisfying Min, let k be a
finite field, and let V be an$Rc-module over kG. Suppose that char k £ it{G). Then
V is completely reducible.

Here char k denotes the characteristic of k and n(G) the set of primes q such
that G contains an element of order q.

The crucial fact on which the proof of Theorem A rests is the following ob-
servation, which so far seems to have escaped notice:

LEMMA 2.3. Let G be a periodic abelian group such that n(G) is finite, let
k be a finite field, and let Go iS G. Then the number of (isomorphism types of)
irreducible kG-modules V such that CG(V) = Go is finite.

Of course, the number in question will be zero unless G/Go is locally cyclic,
and so Lemma 2.3 is really an observation about locally cyclic groups. We shall
also see that if G is an abelian group which satisfies Min and has a locally cyclic
subgroup of finite index and A: is a finite field of characteristic not belonging to
7t(G), then there is a natural one-to-one correspondence between the primitive
idempotents in kG and the isomorphism types of irreducible fcG-module V
such that CG(V) is finite (Lemma 2.5). It seens likely that such situations are
extremely rare for infinite groups.

Our second result on complete reducibility is

THEOREM B. Let G be a locally finite group satisfying Min, let k be a
finite field, and let V be an'$Rc-module over kG. Then V is completely reducible
if and only if O(F) = 0,

Where O(K) denotes the Frattini submodule of V.

As a consequence, we shall deduce

COROLLARY Bl. Let GeUand let Abe a locally nilpotent normal subgroup
of G such that A C\<$> (G) = 1. Suppose that n(G) is finite. Then A is the direct
product of a suitable set of minimal normal subgroups of G.

This answers a question raised by Dr. M. J. Tomkinson in a conversation
with the author.

Finally, we investigate to what extent our results remain true if the hypotheses
are weakened. Evidently if k is any field closed under taking p-th roots, than a
group G of type Cpx has 2**° inequivalent faithful one-dimensional modules over
k. If K is the intersection of the annihilators in kG of these modules, then
V = kG/K is easily seen to be a fcG-module on which every non-trivial element of
G acts fixed-point-freely. Thus V is an 3Jlc-module over kG. Since O(K) = 0 and
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the characteristic of k is at our disposal, we find that Lemma 2.3 and Theorems
A-B all may break down for infinite fields k. For since V is cyclic and has infinitely
many non-isomorphic composition factors, it cannot be completely reducible.

We shall also see that Lemma 2.3 and Theorems A-B may break down
when k is finite and G is a direct product of cyclic groups of distinct prime orders,
and that Corollary Bl fails when n(G) is infinite.

2. Modules for abelian almost locally cyclic groups

We begin with an elementary number theoretic remark.
LEMMA 2.1. Let r, m, n, k be natural numbers such that m21 r" — 1. Then

1 + r» + ... + , * * - » = fc {mod m2)
fc-1

PROOF. 1 + r" + ••• + r**-" - k = E (rBi - 1), and r"' - 1 = (rn - 1)

( r" ( i ~ n + ••• + 1) (i ^ 1), which is divisible by m2 by assumption.
We now consider the effect of inducing irreducible modules from subgroups

of an abelian group up to the whole group and show that, under suitable (very
restrictive) conditions, irreducible modules are obtained.

LEMMA 2.2. Let G be a periodic abelian group and let Go be a subgroup of
G such that GjG0 is locally cyclic and satisfies Min. Further, let k be a finite field
of characteristic not belonging to n(GjG0). Then there is a subgroup H ^ Go of
G with the following properties:

(i) HjG0 is finite.
(ii) / / V is any irreducible kH-module such that Go = CH(K), then Va

is irreducible.

PROOF. It suffices to consider the case Go = 1. For, having dealt with this
case, we may assert that there is a finite subgroup H/Go of GIG0 such that any irre-
ducible k(HIGo) — module which is faithful for H/Go, remains irreducible when
induced up to GIG0. Let V be any irreducible fcff-module such that Go = CH(V).
Then V may be viewed in a natural way as an irreducible k{HjGo) — module
faithful for HjG0, and when so viewed and induced up to GjG0, V ields an irre-
ducible module. We may then view this module as a /cG-module again, and the
various definitions show that it is isomophic to Va. Thus Va is irreducible.

Suppose then that Go = 1. Then G is a locally cyclic group with Min,
and may obviously be supposed infinite. Let 7t(G) = {pu ••• , pk}. Then
G = Gt x ••• x G b where Gt is a cyclic or quasicyclic prgroup. Suppose that H
is any finite subgroup of G containing all the elements of G of order dividing
Pi ••" Pk • We can express G as the union G = U ^ o Hi of a tower

H = H0<H1< —

of finite (cyclic) subgroups such that \Ht : H,_ xj is a prime q{ for each i k 1.
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Then as ql e {pu •••, pk}, we have qt | \H\. Hence q? j \H,\. Therefore H, has
elements of order qf, and so in fact

(1) «?| \HO\ ( i £ l ) .

We now make a special choice for H in the following way. Let L be the sub-
group of G consisting precisely of the elements of G of order dividing pi •••pi.
Suppose that \k\ = r = p', and let n be the smallest natural number such that
| L | divides r" — 1. Since (p, | L |) = 1, such a number n exists. Now let H be the
unique largest subgroup of G of order dividing r" - 1. Then H ^ L and so « is
in addition the smallest natural number such that \H\ divides r" - 1. Let g0

= n. We show by induction on i that, if nt = q^^ ••• qh then ^ is the largest
subgroup of G of order dividing r"' - 1, and n< is the smallest natural number j
such that | / / f | divides r'— 1.

Suppose that this holds for some J" ̂  0. First, let X be any finite subgroup of
G containing # . and such that \x\ divides r"1 + 1 - 1. Then r"1 + 1 - 1 = r"""+'-l
= ( r - ' - l X r 1 " " ' * ' - 1 ' + ••• + l ) , a n d | z :ff,| divides r " ' 9 ' ^ - 0 + ••• + 1. Let
s be any prime divisor of \X : H^. Then by (1), s2\ \HO\, and so s21r"' - 1.
Hence by Lemma 2.1,

(2) r»«c,, + 1 -D + ... + l 3 q.+ 1(mo<i S2).

Since s divides the left-hand side of (2) we find that s = qi+1 ; it also follows that
qf+ j does not divide the left-hand side of (2), and hence that | X : Ht | is either 1
or qi+l. Since G has at most one subgroup of any given finite order, it follows
that X gi Hi+1. On the other hand, (1) and Lemma 2.1 show that (2) holds with
s = qi+1. From this it follows that \Hi+11 divides r"' + 1 - 1, so that Ht+1 is the
largest subgroup of G with that property. Furthermore, if \HI+11 divides r' - 1,
then the inductive hypothesis shows that / has the form n-u for some natural num-
ber u. We then find that qi+1 divides r"'*""1' + ••• + 1 , which is congruent to
u mod q?+15 and hence that qi+x | u. This completes the inductive proof.

Now let kj be the Galois field of order r"'. Then as \Ht\ divides r"' - 1,
there is a monomorphism <j> of Ht into the multiplicative group k(* of kt, and using
the definition vh = v.h<}> (v e kt, h e Ht), we can make the additive group of kt into
a kHrmodu\e, faithful for Hr Since | Hf | divides rl — 1 if and only if n,-1 /, it fol-
lows that Ht(j) generates the field kt, and so we obtain in this way an irreducible
fcH,-module faithful for Ht. Since, as is well known, all such modules arise thus,
we have

(3) dim V = nt if V is any irreducible kHrmodule faithful for Ht.

If V is such a module, then the induced module v"'*1 is a fcif(+1-module of
dimension ntqi+l = ni+1, over k. Since VH'*' restricted to Ht is a direct sum of
copies of V, every element of prime order in Hi+1 acts fixed-point freely on
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V"'*' , and so every irreducible submodule of VH' + ' is faithful for Hl+1. It fol-
lows from (3) that VHt + t is in fact irreducible.Using this repeatedly, we find that
VHj is irreducible for any j > i, and so VG, which can be viewed as the union of
the IcHj-modules VHj for j > i, is also irreducible. Taking i = 0 w e obtain the
result.

PROOF OF LEMMA 2.3. Since an elementary abelian group of order p 2 cannot
operate fixed-point-freely on a vector space, a periodic abelian group admitting a
faithful irreducible representation is locally cyclic. Therefore it is sufficient to show
that there are only a finite number of isomorphism types of irreducible fcG-modules
faithful for G, where k is a finite field and G a periodic locally cyclic group satis-
fying Min, or equivalently, with n(G) finite. Let char k = p. If p e n(G) there are
no such modules, and so the lemma follows by taking Go = 1 in the following re-
sult, since the group algebra of a finite group over a finite field obviously only
contains a finite number of primitive idempotents.

LEMMA 2.4. Let G be an abelian group containing a finite subgroup Go such
that GjG0 is locally cyclic and satisfies Min, and let k be a finite field of charac-
teristic p$n{G). Then there is a finite subgroup H ofG with the following prop-
erties, where B = kH, A = kG:

(i) / / e is a primitive idempotent in B such that CH(eB) = Go, then e is
primitive in A and eA is a minimal ideal of A such that C0(eA) = Go.

(ii) / / V is any irreducible A-module such that CG{V) = Go, then V s eA
for some primitive idempotent e e B such that CH(eB) = Go.

PROOF. We choose H to have the properties (i) and (ii) of Lemma 2.2; thus H
is finite since Go is.

(i) Since e is primitive in B and char k $ n(H), eB is a minimal ideal of B
and so is an irreducible B-module. Now it is immediate from the definitions that
eA is isomorphic as right y4-module to the module obtained by inducing the kH-
module eB up to G. Since CH(eB) = Go, the choice of H and Lemma 2.2 imply
that eA is an irreducible y4-module, and so is a minimal ideal of A. Therefore e is
primitive in A. Since eA s {eB)°, a straightforward calculation gives CG(eA) = G .

(ii) We have that V is .4 isomorphic to AIM, where M is a suitable maximal
ideal of A. Let W be any irreducible submodule of the restricted module VH. The
existence of W is clear since H is finite. Then Vu = S^g Wx, and Wx s W as
fc/f-modules, since G is abelian. It follows that Vu, and any fc//-submodule of it,
is a direct sum of copies of W. Hence CH( W) = Go.

Now BjB n M is naturally isomorphic to a submodule of VH. On the other
hand, as B is finite dimensional and semisimple,B = (£ D M ) © e l B © ••• ©ekB,
where the e, are primitive idempotents in B. Since the efi are pairwise non-iso-
morphic as J3-modules, it follows that k = 1. Hence, if e = eit then eB s W and
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CH(eB) = Go. By part (i) of the lemma, eA is a minimal ideal of A. Therefore, as
eA £ M, we must have A = M © eA, and hence AjM = eA as ^4-modules. This
establishes Lemma 2.4.

LEMMA 2.5. Let G be an abelian almost locally cyclic group satisfying Min
and let k be a finite field of characteristic p<fcn(G). Let V be an irreducible kG-
module such that CG(V) is finite. Then there is a uniquely determined primitive
idempotent eekG such that V s eA. This correspondence determines a bijec-
tion between isomorphism classes of irreducible kG-modules V with CG(V) fi-
nite and primitive idempotents in kG.

PROOF. Since V is irreducible, G/Cti(V) is locally cyclic. Therefore the exis-
tence of e follows from Lemma 2.2 (ii). Since G is abelian, eA and (1 — e)A are
mutual annihilators in A = kG, whence, if / is an idempotent in A such that
fA s eA as vl-modules, we obtain (1 — e)A = (1 —f)A and eA = fA. Therefore,
since each of e and / i s the identity of the ring eA, we have e = / .

Finally, let e be any primitive idempotent in A. Then e e kH = B for some
finite subgroup H of G and since eA S (eB)G, a direct calculation gives Ca{eA)
^ H. This completes the proof.

3. Proofs of Theorems A-B

Two preliminary results will be required for the proofs of these theorems.

LEMMA 3.1. Let G be a periodic abelian group, let kbe a field of character-
istic p 2: 0, and let V be a kG-module with annihilator K in A = kG. Then

(i) / / V is irreducible, AjK is a field.

(ii) / / V has a composition series whose factors fall into finitely many iso-
morphism types, then AjK is the direct sum of finitely many fields and V is
completely reducible.

PROOF (i) Let E = End^ V. Then £ is a division algebra over k (by Schur's
lemma) and as G is abelian, the natural map of A into End^F determines an em-
bedding of AjK into the centre C of E. Now C is a field extension of k, and the
image of AjK in C is a ring generated over k by roots of unity, and so is a field.

(ii) Let {Aa, Va; aeQ] be a composition series of V (here the word
"series" is understood in its general sense, cf. [2], so that Q is simply a totally
ordered set) and suppose that each of its factors is isomorphic to one of the finitely
many pairwise non isomorphic y4-modules Xu ••• Xn. Let K, be the annihilator of
Xt in A and L = D1= i Kt. Then the natural embedding of A jL into
B = ©f= i A/Kj is both a ring homomorphism and an ^-module homomor-
phism. Since the ^4-modules A/Kf are irreducible and pairwise non-isomorphic,
every /1-submodule of B is the direct sum of a selection of them, and since the

https://doi.org/10.1017/S144678870001541X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001541X


[7] A class of modules 437

image of A/L in B projects onto each summand A\K{, it must be the whole of B.
Hence A[L ^ B as rings, and so, by (i), AjL is the direct sum of finitely many
fields.

Now clearly L S; K, and we claim that equality holds. This will show that
AjK is the direct sum of finitely many fields and hence is a semisimple Artinian
ring; therefore V, which is naturally an ;4/.K-module, is completely reducible.

Let a e L. Then a e kH, where H is some finitely generated subgroup of G.
By Maschke's theorem, VH is completely reducible. Let W be an irreducible
submodule of it and choose 0 # w e W. Then w eAff — Va for some oeQ., and the
irreducibility of W shows that Aff ^ W, Va n W = 0, so that W is isomorphic to a
submodule of {\JVa)H. Since o e l n fcH it follows that Wa = 0 and since V is a
direct sum of such fcH-submodules W it follows that Va = 0. Therefore aeK
and we have proved Lemma 3.1.

LEMMA 3.2. Let {Kx : AeA} be an infinite set of (distinct) subgroups of an
abelian group G satisfying Min. Then there is a subgroup B Sj G such that

(i) B is contained only finitely many Kx.

(ii) B — UT=i #i> where 5 t ^ B2 ^ ---and each Bt is contained in infi-
nitely many Kx.

PROOF. We use induction on the sum of the ranks of the Sylow p-subgroups
ofG.

Since G contains only a finite number of elements of prime order, it follows
that some such element lies in infinitely many of the subgroups Kx. Therefore
there is a subgroup Xt ^ 1 of G which is contained in infinitely many of the Kx.
Then infinitely many of the subgroups K^X^ of GjXx are distinct and there is a
non-trivial subgroup X2/Xt of G/Xl which lies in infinitely many of them. Ap-
plying this argument repeatedly, we obtain a tower 1 ^ Xt < X2 < ---of sub-
groups of G, each of which is contained in infinitely many of the Kx. Let X
= U J°= i Xt. Then we may take X = B, Xi = Bh unless X is contained in infi-
nitely many of the ATA. In that case, the result follows by applying induction to GjX.

PROOF OF THEOREM A. Consider first the case when G is abelian. Let
{Aff, Va : crefi} be any composition series of V and for each aed. let Ka =
CG{AJVB). Suppose, if possible, that infinitely many distinct subgroups of G occur
among the Ka. Then by Lemma 3.2 there is a subgroup B = \J r=iBi which is
contained in only finitely many subgroups of G of the form Ka, while each Bt is
contained in infinitely many. Since V is an 9ftc-module, there is a finite subgroup
F of B such that CV(B) = CV(F). Then F ^ Bt for some i, and so, for some
a efi, we have F g Ko but B ^ Ka. However, since char k^n(F),v/e have Cx IV(F)
= CAa(F) + VJVa — 3i straightforward local argument allows us to deduce this
for modules of arbitrary dimension from the corresponding result for finite-di-
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mensional modules, which follows from elementary representation theory. Since
F ^ Ka, we obtain AJVa = CAJy (F) = CA (F) + VJVa = CA.(B) + VJVa

^ CA /v (B), and hence B ^ Ka, a contradiction.
Therefore, only finitely many subgroups of G occur among the Ka. From

this and Lemma 2.3 it follows that the composition factors \JVa fall into finitely
many isomorphism types as kG-modules. Hence, by Lemma 3.1, Vis completely
reducible.

To deal with the general case we use a deep result of Kegel-Wehrfritz-Sunkov
([7], [8]) according to which a locally finite group G satisfying Min has an abelian
normal subgroup A of finite index. Obviously VA is an 9JZc-module over kA and so
VA is completely reducible by the first part of the proof. The argument is com-
pleted by the following elementary lemma, which is essentially Maschke's theorem.

LEMMA 3.3. Let V be a kG-module, where k is any field and G any group.
Suppose that H is a subgroup of G such that | G : H\ = n < oo. Suppose further
that char k does not divide n, and that Va is completely reducible. Then V is
completely reducible.

PROOF. This is an immediate consequence of a theorem of Gaschiitz ([6] p.
121). A direct proof may be constructed as follows, along the lines of a standard
proof of Maschke's theorem.

Let U be any fcG-submodule of V. Then, by hypothesis, U is complemented
in VH, and so there exists an idempotent fc//-endomorphism e of V such that U
= Vs. Let T be a right transveral to H in G, so that G = U,eTHt, and let e
= l/\T\'LteTt~1et, in which elements of G are identified with their natural
images in End kV. It is easy to see that I is a /cG-endomorphism of V. If ve V then
vt~l eeU, which is a feG-module, and so vt~1eteU. Hence Ve ^ U. And if
ueU then ut~l eU and so ut~let = ut~lt = u. Thus ue = u. Hence e is
idempotent and Ve. = U. Therefore U has a fcG-complement in V, namely F(l - E).

PROOF OF THEOREM B. That the complete reducibility of V implies <D(F) = 0
is clear, and so suppose thatO(F) = 0. Let char k = p > 0. Then [V, OP(G)\
^ M for every maximal submodule M of V ([1] Lemma 3.2.) and hence
[V, OJfi)~\ g 0>(F) = 0. We may therefore, by viewing Fas a module for GIOP(G),
suppose that OP(G) = 1. By the theorem of Kegel-Wehrfritz-Sunkov ([7], [8]),
G has a normal abelian subgroup H of finite index. Then as OP(G) = 1, the char-
acteristic of k does not belong to n(H). Clearly VH is an 2Rc-module, and so by
Theorem A, VH is completely reducible.

Let W be an irreducible submodule of VH, let T be a transversal to H in G,
and let W = 1,,eTWt. The Wt are irreducible &#-submodules and are finite in
number, hence W satisfies Max-// and Min-//, the maximal and minimal condi-
tions respectively on fc//-submodules. However W is clearly a A:G-module; there-
fore it satisfies Max-G and Min-G.
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Now if M is a maximal submodule of V, then either M~StWovV = W + M,
W\W nM^ V/M, an irreducible fcG-module, and W(~\ M is a maximal submodule
of W. Hence 0>{W) = 0. By Min-G, there are finitely many maximal submodules
Mi,•••, Mn of W such that C[n

i=lMl = 0. Then W is isomorphic to a submodule
of the completely reducible module ©"=1PP/M,-, and so is completely reducible.
Since V is a sum of such modules W it is a sum of irreducible submodules, and so
is completely reducible. This establishes Theorem B.

PROOF OF COROLLARY Bl. We have a group G e 11 with n(G) finite, and a locally
nilpotent normal subgroup A of G such that A n O(G) = 1. Let M be any maximal
subgroup of G not containing A. Then G = MA and M n i i s maximal among
the subgroups of A normalized by M. Therefore, by [4] Lemma 2.3, we have
M O A <i A, and hence M n A <i G = MA It follows that A/M n ,4 is a chief factor
of G, and hence is an elementary abelian group. Since

M

where M runs over the maximal subgroups of G not containing A, we find that A
is a direct product of elementary abelian p-groups Ap, one for each prime p.

Let R be the Hirsch-Plotkin radical of G and let M be as before. Then [A, R]
^ M C\A since .4/M n.4 is a chief factor of G ([1] Theorem 3.8), and hence
[A, R] = 1. Now by Lemma 1.1, 4 p is naturally an 9Jlc-module over ZpG. Since
[Ap, R~\ = 1, we may view Ap as a Zp(G/i?)-module, and it is not hard to see that
we obtain an 2Rc-module over Zp(GIR) in this way. Since n(G) is finite, G/R satis-
fies Min ([3] Theorem E), and (*) shows that the Frattini submodule of the
Zp(G/jR)-module Ap is trivial. Therefore, by Theorem B, Ap is a completely reducible
Zp(G/i?)-module, and Corollary Bl follows.

4. Counterexamples

Lemmas 2.3-2.5 are esentially concerned with irreducible fcG-modules, where
G is a periodic locally cyclic group with n{G) finite and k is a finite field of charac-
teristic not belonging to n(G). The example in this section shows that those lemmas
break down completely when the assumption that n(G) is finite is removed. It also
shows that Theorems A-B break down very rapidly if the hypotheses on G are
relaxed, and allows us to see that Corollary Bl may be false if %{G) is infinite.

EXAMPLE 4.1 Let p be a given prime. Then there exists a group G satisfying
the following conditions:

(i) G is a direct product of cyclic groups of distinct prime orders qu

q2, — , where p # qjor all i.
(ii) There are 2Xo pairwise non-isomorphic irreducible ZpG-modules which

are faithful for G.
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(iii) ZpG contains no primitive idempotents and no minimal ideals.
(iv) There is an yjlc-module V over ZpG such that <D(F) - 0 but V is not

completely reducible.
To see that Corollary Bl breaks down when n(G) is infinite we simply consider

the semidirect product X = VG, where V is the ZpG-module described above. It
is easy to see, since O(F) = 0, that <!>(X) = 1, whereas by (iv), V is not the direct
product of minimal normal subgroups of X. The argument of [3] Lemma 7.1
shows that X e U.

For the construction of our example we need a preliminary lemma.

LEMMA 4.2. Let p be a given prime. Then there exist infinitely many
primes q ^ p such thai the order of p modq is < q — 1.

PROOF. If m,n are natural numbers with (m,n) = 1 then (pm — 1/p — 1,
p" — 1/p — 1) = 1. Hence, if qt, •••, qk are the first k primes, then the k natural
numbers (pqi — l/p — 1)(1 :g i S k) are relatively prime in pairs. Therefore
either pqk — l/p — 1 is prime, or the natural numbers pqi — l/p — 1 involve at
least k + 1 distinct prime factors between them.

Suppose now that k 2; 2. In the former case above, let q = pqk — 1/p — 1.
Then q > qk + 1 as qk <£ 2, and the order of p mod q divides qk < q — 1.

In the second case, one of the p" — 1/p — 1 is divisible by a prime q > qk,
and again q > qk + 1 and the order of p mod q divides q, < q — 1. It follows
from these considerations that, given any finite number of primes, a larger one
with the desired property can always be obtained.

To begin the construction required for Example 4.1, we now take an infinite
sequence qlf q2, ••• of primes q{i= p such that the order nt of p mod qt satisfies

(4) » , < « , - 1

for all i. Let C, be a cyclic group of order qh and let G = Cx x C2 x •••, so that
(i) of Example 4.1 holds.

Let k be an algebraic closure of the field of p elements, and let kt be the sub-
field of k with p"' elements. Then qt | p"' — 1 and so there are qt — I distinct mono-
morphisms of Ct into the multiplicative group kt* of kt. Since the Galois group of
kt over Zp has order nt, (4) shows that we can choose two such monomorphisms
<M° ,<f>2!) such that

(5) </><•> # <j>f v

for all elements v of the Galois group of kt over Zp.

There are 2Xo monomorphisms </> of G into k* such that <£ | c . is either <f>\l)

or 0(
2° for each i. If /t denotes the subfield of k generated by the k,, then the

definition vg = v.g<j>{vek,ge G) makes the additive group of k into an irreducible
ZpG-module faithful for G, and by [5] Lemma 2.5, the modules obtained in this
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way from monomorphisms </>, <f>' are isomorphic if and only if </>' = <j>v for some
element v of the Galois group of k over Zp. By (5), this happens if and only if
<j) = <{>', and so we obtain in this way the required 2X° pairwise non-isomorphic
ZpG-modules faithful for G.

To see that ZpG contains no primitive idempotents, we remark that if H and
K are any non-trivial finite groups, F is any field, and X is any FH-module, then
X = XH * K is not irreducible. Indeed, the set of all elements of the form
~LkeKx®k (xeX) is a proper submodule of X. If e is any idempotent in FH and
X denotes the FH-module e.FH, then e.F(H x K) s XH* K as F(H x Ky
module. If char F does not divide | H | . | K\, it follows that e cannot be primitive
in F(H x K). Hence no idempotent in Zp{Ci x ••• x Cn+1) can be primitive in
Z(Ct x ••• x Cn+l), and so ZpG contains no primitive idempotents.

It follows that ZpG contains no minimal ideal. For suppose N is such a mim-
imal ideal. Then JV O ZpH # 0 for some finite subgroup H of G. Since ZPH is
semisimple, JV O Z p / / contains a non-zero idempotent e. Then e generates JV and
so e must be primitive, which we have seen is impossible.

Now to establish (iv), let V denotes the ZpG-module ZpG / L, where L denotes
the intersection of those maximal ideals of ZpG which are annihilators of irreduc-
ible ZpG-modules faithful for G. Then by (i), V has 2*° distinct maximal submod-
ules which intersect trivially, and so 3>(F) = 0. If V were completely reducible
then, being cyclic, it would be the direct sum of finitely many irreducible submod-
ules. However this cannot be the case, since V has 2Ko pairwise non-isomorphic
homomorphic images. Thus V is not completely reducible.

From its construction, V is isomorphic to a submodule of a complete direct
sum Y of irreducible ZpG-modules faithful for G. Since every non-trivial element
of G acts fixed point freely on such an irreducible module, it is immediate that Y is
an 2Hc-module, and therefore, clearly, so is V. This completes the construction of
Example 4.1.

However, we remark finally that since V is countable, any given composition
series of B will have only countably many factors, and so there will always be a
composition factor of V not isomorphic to any factor of the given series.
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