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ABSTRACT. At Taylor Glacier, a cold-based outlet glacier of the East Antarctic ice sheet, observed
surface speeds in the terminus region are 20 times greater than those predicted using Glen’s flow law
for cold (–17°C), thin (100m) ice. Rheological properties of the clean meteoric glacier ice and the
underlying deformable debris-rich basal ice can be inferred from surface-velocity and ablation-rate
profiles using inverse theory. Here, with limited data, we use a two-layer flowband model to examine
two end-member assumptions about the basal-ice properties: (1) uniform softness with spatially
variable thickness and (2) uniform thickness with spatially variable softness. We find that the basal ice
contributes 85–98% to the observed surface velocity in the terminus region. We also find that the
basal-ice layer must be 10–15m thick and 20–40 times softer than clean Holocene-age glacier ice in
order to match the observations. Because significant deformation occurs in the basal ice, our inverse
problem is not sensitive to variations in the softness of the meteoric ice. Our results suggest that despite
low temperatures, highly deformable basal ice may dominate flow of cold-based glaciers and
rheologically distinct layers should be incorporated in models of polar-glacier flow.
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1. INTRODUCTION
Many cold-based glaciers and ice sheets have prominent
debris-rich basal-ice layers that crop out at the margins
(Fig. 1). Basal ice is distinguished from ice formed from
compression of snow at the glacier surface by spatially and
compositionally diverse debris layers, distinct gas composi-
tions, high solute concentrations and the presence of
deformation structures (Fitzsimons, 2006). Several studies
have shown that debris-rich basal ice can deform more
easily in horizontal shear than the overlying clean ice
(Echelmeyer and Wang, 1987; Cuffey and others, 2000a;
Samyn and others, 2005a). Field observations by Echel-
meyer and Wang (1987) at Ürümqi Glacier No. 1, China,
demonstrated that 60–80% of the glacier deformation was
accommodated within the lowermost 1–2% of the glacier
thickness at –5°C. The enhanced deformation occurred
within the debris-rich basal ice, in discrete shear bands and
planes, including sliding along the ice/sediment boundaries.

At Taylor Glacier, McMurdo Dry Valleys, Antarctica, we
observe surface velocities >5ma� 1, nearly two orders of
magnitude faster than expected for deformation of cold
(–17°C), thin (�<100m) ice with low surface slope (�0.1).
Detailed studies of ice-crystal textures and gas content of the
debris-rich basal ice show that significant shearing has
occurred within this basal ice (Samyn and others, 2005b).
Furthermore, sliding velocities of 167mma� 1 were meas-
ured at sliding interfaces along clasts within the basal-ice
sequence (Fitzsimons, 2006). Our surface-velocity obser-
vations and these past studies suggest that a significant
majority of the total ice deformation is concentrated in the
basal ice.

Examining basal and subglacial sediment deformation
processes is difficult, due to the inaccessibility of the basal
region, which hinders direct observations except at the

glacier margins. In addition, it is likely that the behavior of
the basal ice varies over time and space, making it difficult
to capture with sparse borehole and tunnel measurements.
Previous basal-process studies have either sought to under-
stand the rheological behavior of the basal ice or, given
some rheological properties, to determine its contribution to
the overall glacier behavior (Fitzsimons, 2006). Our inverse
approach addresses both of these goals simultaneously and
circumvents the logistical difficulties of gathering direct field
observations from the basal ice and subglacial sediment.

The aim of this paper is to further understand how the
debris-rich basal ice contributes to the overall deformation
of Taylor Glacier (Figs 2 and 3) and to place bounds on the
rheological properties of the basal ice. To do this, we
formulate an inverse problem to infer the softness and
thickness of the basal ice relative to the clean, overlying
meteoric ice using a two-dimensional (2-D) shallow-ice
approximation flowband model constrained by field meas-
urements in the terminus region of Taylor Glacier. Our
model results show that the observed surface velocities are
largely due to deformation of the basal ice, which con-
tributes well over 85% of the total deformation. Current
models of cold-based ice flow often neglect rapid deform-
ation in the basal ice. A cold-based glacier with easily
deformable basal ice will have higher surface velocities and
a thinner surface profile than a cold-based glacier without
easily deformable basal ice. We show that it may be
necessary to incorporate these effects into models in order to
accurately represent the deformation in cold-based glaciers
that are underlain by soft, easily deformable debris-rich
basal ice. Given the characteristics of the basal ice that we
infer for Taylor Glacier (at least 10m thick and 40 times
softer than clean glacier ice), we estimate that the total
thickness of the glacier or ice-sheet ice must be at least
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1000m before the error in predicting surface velocities that
is introduced by ignoring the basal ice falls below �2%.

2. BACKGROUND
Glacier-ice flow is typically modeled using Glen’s flow law
(Glen, 1958), which is an empirically derived function
defining the strain rate as a nonlinear function of the
deviatoric stress:

_�ij ¼ EA0 exp ð� Q=RTÞ�n� 1�ij, ð1Þ

where _�ij is the strain-rate tensor, �ij is the deviatoric-stress
tensor and � is the square-root of the second invariant of the
deviatoric stress tensor. The flow-law exponent, n, is
generally assumed to be 3, based on field and laboratory
data (Cuffey and Paterson, 2010). A0 is an empirically
derived softness parameter for clean, isotropic Holocene
ice. The effects of temperature follow an Arrhenius relation-
ship, where T is the temperature, Q is the thermal activation
energy for creep (usually 60 kJmol� 1) and R is the universal
gas constant (8.314 J K� 1 mol� 1). The enhancement factor,
E, accounts for any significant strain-rate variations that
cannot be described by Glen’s law alone. Budd and Jacka
(1989) identified several ice properties, in addition to
temperature, that can affect strain rate; these include crystal
size and orientation, chemical and solid impurities, and
water content.

Numerous field and experimental studies show that a
preferred orientation of crystal c-axes, also called fabric,
accounts for large variations in strain rates, due to the strong
anisotropic behavior of a single ice crystal undergoing
deformation (e.g. Budd and Jacka, 1989; Alley, 1992). Ice
fabric can explain as much as 75% of measured strain-rate
deviations from Glen’s law at some ice-core sites (Thor-
steinsson and others, 1999). Uniaxial-compression labora-
tory experiments on polycrystalline ice indicate that ice with
c-axes favorably oriented to the direction of maximum shear
can strain at rates up to 40 times greater than isotropic ice
(Miyamoto and others, 1999). Enhancement values for
anisotropic ice of 8–10 are, however, more widely accepted
(e.g. Budd and Jacka, 1989), based on the theory of crystal
deformation. Cuffey and others (2000a,b) have further
suggested that strain rate depends on crystal size. Their
model indicates that both crystal size and soluble ion
concentrations must be included to account for strain-rate
variations (Cuffey and others, 2000b).

Thorsteinsson and others (1999) and Cuffey and others
(2000b) attribute residual variations (strain-rate variations
not explained by the crystal size or fabric) primarily to
chemical and solid impurities in the ice.

Chemical impurities concentrate in and increase the
thickness of liquid-water films along ice-crystal boundaries
(Paren and Walker, 1971) and likely enhance ice-flow
mechanisms (e.g. grain-boundary sliding; Holdsworth and
Bull, 1970; Barnes and others, 1971; Fisher and Koerner,
1986). Thin films that facilitate grain-boundary sliding have
been observed in situ at –17°C (Cuffey and others, 1999).
Paterson (1991) determined that chloride and sulfate ions
increase ice softness, and postulated that these soluble
impurities limit grain size by impeding crystal growth.
Cuffey and others (2000a) found that sulfate and calcium
ions cause the greatest increase in ice softness.

The influence of solid impurities on the mechanical
behavior of ice has not been well constrained because there
are few studies, and results are often conflicting. Ice-
deformation experiments on samples with 10% rock content
by volume have shown both increases and decreases in ice
viscosity (Lawson, 1996). However, analysis of strain rates
and debris concentrations in the debris-rich basal ice at
Meserve Glacier, Antarctica, suggested that the low viscosity
of the debris-rich ice was not directly related to the solid
impurities (Cuffey and others, 2000a).

Samyn and others (2008) showed that the competence
(resistence to deformation) of debris-rich ice compared to

Fig. 2. NASA satellite image of Taylor Valley and Taylor Glacier. Field site is 105 km nearly due west of McMurdo Station.

Fig. 1. Example of the layered structure of the debris-rich basal ice,
as exposed on the south side of Taylor Glacier with person for
scale.
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clean ice may depend on whether deformation is confined
to centimeter-thick or millimeter-thick ice layers. Strain
experiments on centimeter-scale samples from Taylor Gla-
cier clean-ice and basal-ice sequences indicate that the
debris-rich ice is up to twice as strong as the clean ice during
compression at temperatures below –5°C (Lawson, 1996).
Samyn and others (2008) point out that the compressive-
stress tests do not correspond to the combined vertical pure
and simple-shear stress regime at Taylor Glacier. Fitzsimons
and others (2001), however, show that direct shear
experiments on layers with >70% debris content have twice
the shear strength of basal ice with low debris content,
which reinforces Lawson’s conclusion.

The analysis we present here assumes a bulk enhance-
ment factor for the full thickness of the basal-ice sequence.
We do not distinguish the causes for softness of the basal ice;
rather we aim to show the relative importance of the basal-
ice softness on a larger scale than has been reported before.

3. THE INVERSE PROBLEM
3.1. The challenge of basal inference
All glacier motion depends heavily on processes at the base,
but the base is difficult to observe directly, except in a few
widely distributed boreholes. Over extended areas, par-
ameters describing basal characteristics must be inferred
using inverse theory. Solving an inverse problem for basal
characteristics requires data and a forward algorithm that
describes the mechanics of ice flow. For a glacier, we are
typically limited to surface data (e.g. topography, velocities,
temperatures and accumulation rates) borehole data (e.g.
shear deformation, ice properties and temperature) and
remotely sensed data (e.g. ice-penetrating radar profiles).
The forward model must be a well-defined analytical or
numerical algorithm, describing physical processes in which
estimates of the desired basal parameters can be used in
order to predict values of the observed surface data.

Van der Veen and Whillans (1989a,b) advanced the
estimation of basal properties from surface measurements by

developing a direct procedure to calculate basal shear
stresses and velocities at depth, based on force balance, a
constitutive law for ice and an assumption of depth-
invariant strain rates. However, Whillans and Van der Veen
(1993) found that their calculated basal drag could some-
times push the glacier downstream rather than resisting
sliding motion. They rejected several possible explanations
for this apparently unphysical result, including data errors,
depth-variable strain rates and stiffness variability due to
spatial variations in firn depth or crevasse distributions. They
were unable to exclude stress-bridging effects or rheological
variations related to the assumed form of the flow law (e.g.
crystal anisotropy effects). Lliboutry (1995) suggested that
the effect could be real and caused by warm, soft, near-basal
ice forced by pressure gradients to flow rapidly through the
gaps between bedrock bumps and unbending cold and stiff
overlying ice. Although the process of capped extrusion
flow (Waddington, 2010) has been observed (e.g. Carol,
1947; Hooke and others, 1987) and modeled (e.g.
Gudmundsson, 1997a,b), Whillans and Van der Veen
(1995) showed that the forces it could create would not
significantly alter their inferred negative shear stresses.

MacAyeal (1997) subsequently showed that the negative
basal stresses arose from a failure to include small but
significant higher-order terms in the inferred velocity pattern,
i.e. the assumption of uniform strain rate was unphysical for
flow over bumps or sticky spots (e.g. Balise and Raymond,
1985; Gudmundsson, 2003). With the realization that
inference of basal properties from surface data could be an
ill-posed problem, it became necessary to frame this as an
inverse problem, in which the data are not fit exactly, in
order to ensure physically reasonable solutions.

MacAyeal (1992, 1993) and MacAyeal and others (1995)
introduced control methods to infer a basal-friction par-
ameter from surface-velocity data. Control methods have
been used subsequently to infer basal shear stresses (e.g.
Joughin and others, 2004) and slipperiness and bed
topography (e.g. Vieli and Payne, 2003; Goldberg and
Sergienko, 2011). Using surface elevation and velocity data,

Fig. 3. Hillshade representation of digital elevation model (DEM) (Schenk and others, 2004) for the Taylor Glacier terminus. Red arrows and
corresponding numbers show velocities measured by repeat GPS measurements of surface stakes. Black curve shows location of flowband
bounded by sites Nirvana and Grace, which were locations of shallow ice cores. DEM uncertainty estimated at <0.3m. DEM elevations
provided in ITRF-93.
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Thorsteinsson and others (2003) applied perturbation meth-
ods to separate bed topography from bed lubrication on
MacAyeal Ice Stream, Antarctica. Maxwell and others (2008)
solved an inverse problem for basal stress and velocity by
reformulating an iterative series of well-posed forward
problems. Raymond and Gudmundsson (2009) and Pralong
and Gudmundsson (2011) used a Bayesian approach to infer
bedrock topography and slipperiness under ice streams.
Petra and others (2012) summarized previous work to infer
basal properties from surface data using inverse approaches,
and presented an efficient adjoint-based algorithm to infer
basal properties and the Glen flow law exponent, n, with a
three-dimensional full-Stokes flow model.

The goal of our inverse problem is also to infer basal
properties from surface data; however, we address flow on a
much smaller, colder and slower glacier. Furthermore,
rather than investigating an interface, we seek properties
of a layer of distinct basal ice that may exceed 10% or more
of the total glacier thickness. We present a general inverse
procedure for this type of problem before applying the
method to Taylor Glacier (based on concepts described
more fully by Waddington and others, 2007).

We infer basal-ice thickness, �ðxÞ, enhancement factor
for basal ice, EBðxÞ, and enhancement factor for overlying
clean ice, ECðxÞ, along a flowband to the terminus of Taylor
Glacier. These unknown properties comprise a model-
parameter set, m ¼ EBðxÞ, ECðxÞ,�ðxÞ½ �, along a flowband
defined by horizontal position x.

The data for the inverse problem are discrete measure-
ments, us

ðdÞ
j , of the surface horizontal velocity profile, uðdÞs ðxÞ,

and discrete measurements, _bðdÞk , of the ablation-rate profile,
_bðdÞðxÞ, following the flowband. These observations can be

combined into a single data vector, oðdÞ ¼ us
ðdÞ
j , _bðdÞk

h i
. The

flowband width,WðxÞ, and the depth to the top of the debris-
rich basal ice, hðxÞ, we accept as given by velocity azimuths,
surface slopes and ground-penetrating radar (GPR).

With three profiles of unknown parameters, m ¼ EBðxÞ,½

ECðxÞ,�ðxÞ�, to be inferred from two (potentially sparse)

datasets, uðdÞs ðxÞ and _bðdÞðxÞ, the problem is under-deter-
mined. Therefore, we need to impose some regularization on
the parameters in order to obtain a unique solution. The
options we consider include smoothness constraints on some
or all of the parameters and preconceptions or limits on the
parameters based on other studies. Obtaining a unique
solution is further challenged by loss of basal information as
ice thickness increases (Bahr and others, 1994).

3.2. Forward model
The forward algorithm must produce modeled estimates,

oðmÞ ¼ uðmÞs ðxÞ, _bðmÞðxÞ
h i

, of all the observed quantities that

form the data vector, oðdÞ, when given a parameter vector,m.
Because the top of the basal ice is relatively flat (Fig. 4),

the ice thickness varies slowly and the ice temperature is
close to isothermal, we base our forward algorithm on the
isothermal shallow-ice approximation (SIA). The z-axis is
vertical (z ¼ 0 at the base of the debris-rich ice) and the
x-axis is horizontal following the flowband (Fig. 5).

Modeled surface velocity, uðmÞs ðxÞ
The surface velocity, uðmÞs ðxÞ, can be calculated from the
flowband geometry and m:

uðmÞs ðxÞ ¼
Z �ðxÞ

0
EB
@U
@z

dzþ
Z HðxÞ

�ðxÞ
EC
@U
@z

dz, ð2Þ

where HðxÞ ¼ ½hðxÞ þ �ðxÞ� is the total glacier thickness,
Uðx, zÞ is the vertical profile of horizontal velocity for
‘standard’ Holocene ice with thickness HðxÞ and E ¼ 1, and
EB and EC are the enhancement factors for the basal ice and
the overlying clean (meteoric) ice, respectively. Using the
SIA, the velocity, Uðx, zÞ, of clean, Holocene ice at height z
can be written as

Uðx, zÞ ¼ UsðxÞ 1 � 1 �
z

HðxÞ

� �nþ1
" #

, ð3Þ

Fig. 4. Radar profile of transect along flowband from Nirvana to Grace. (a) The unmigrated radar data. The thin blue horizontal line shows
the elevation of the surface of Benchmark TP01 on the shore of Lake Bonney for reference (73.44ma.s.l. and 18.39 ITRF-93). (b) Our
interpretation: red line shows the reflector, which we interpret as the bottom of the clean ice assuming this reflector obscures any reflection
from the bottom of the basal ice.
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where UsðxÞ, the velocity at the surface, is given by

UsðxÞ ¼
2AðTÞ
nþ 1

�g
dS
dx

� �n

HðxÞnþ1: ð4Þ

Modeled ablation rate, _bðmÞðxÞ
The ice flux, QðmÞd ðxÞ, can be calculated from the glacier
geometry and the model-parameter vector, m,

QðmÞd ðxÞ ¼WðxÞHðxÞuðmÞðxÞ, ð5Þ

where WðxÞ is the flowband width and uðmÞðxÞ is the depth-
averaged velocity given by

uðmÞðxÞ ¼UsðxÞ

(

EB � ECð Þ
�ðxÞ
HðxÞ

þ
1

nþ 2

�

EB � ECð Þ 1 �
�ðxÞ
HðxÞ

� �ðnþ2Þ�

þ EC �
EB

nþ 2

� �)

:

ð6Þ

Note that when EB ¼ EC, when �ðxÞ ¼ 0 or when
�ðxÞ ¼ HðxÞ, Eqn (6) reduces to the standard SIA result for
depth-averaged velocity

uðmÞðxÞ ¼
ðnþ 1Þ
ðnþ 2Þ

E� UsðxÞ, ð7Þ

where E� is the appropriate enhancement factor.
The modeled dynamic flux, QðmÞd ðxÞ (Eqn (5)), produces

an estimate, _bðmÞðxÞ, of the accumulation-rate profile
required to achieve steady-state flow, through the steady-
state mass-conservation equation,

_bðmÞðxÞ ¼
1

WðxÞ
@QðmÞd
@x

: ð8Þ

The spatial derivative, @QðmÞd =@x, can be obtained from
Eqn (5) using the product rule for differentiation.

3.3. Inverse algorithm
Our goal is to infer model parameters, m, comprising the
basal-ice thickness, �ðxÞ, the enhancement factor for basal
ice, EBðxÞ, and the enhancement factor for overlying clean
ice, ECðxÞ, along a flowband. Here, we outline a formulation
of this inverse problem and one way to solve it. To formalize
this adjustment procedure, we form a data norm, jjdjj,
composed of residuals resulting from comparing model
predictions with observations, and a model norm, jjmjj,
which incorporates the smoothness conditions we use to
regularize the solution.

3.3.1. Data norm
Because observations of velocity, uðdÞs , and mass balance,
_bðdÞ, are discrete, the NðdÞ observations in the data vector
oðdÞ can be represented as oðdÞj , where index j indicates the
jth discrete observation. An estimate of m will produce
predicted model quantities, oðmÞ, that do not perfectly match
the observed quantities in the data vector, oðdÞ. Their
difference can be used to form residuals, which are the
portions of the data unexplained by the model:

rj ¼
oðdÞj � oðmÞj

�
ðdÞ
j

, ð9Þ

where �ðdÞj is the standard deviation of the jth observation,

oðdÞj .
The data norm, jjdjj, is defined as the sum of all the

squared data residuals:

jjdjj2 ¼
XNðdÞ

j¼1
wjr2j : ð10Þ

Weights, wj, different from unity can also be applied to the
residuals from various data types if desired.

3.3.2. Model norm
The three model-parameter profiles, m ¼ ½EBðxÞ, ECðxÞ,�ðxÞ�,
can, in practice, also be treated as discrete series of NðmÞ
parameters, such that mi is the ith model parameter. The
model norm, jjmjj, measures the degree of regularization
imposed on the solution (e.g. the amount of smoothness
imposed on each profile). Smoothness can be represented
through a finite-difference second-derivative relationship
among all triplets of adjacent points. For example, when the
model parameters are equally spaced and separated by �x,
the second derivative at the ith model parameter is
approximated by

d2m
dx2

" #

i

¼
miþ1 � 2mi þmi� 1

�x2
: ð11Þ

Just as a data residual represents deviation from a targeted
data profile, a parameter curvature represents deviation from
a targeted profile of zero curvature. And just as the data
residuals in Eqn (9) are nondimensionalized with the data
standard deviation, which is a measure of characteristic
variability, so too the curvature ‘residuals’ can be non-
dimensionalized with characteristic values, mðcÞ, of the
parameter and the lengths, LðcÞ, over which they can vary.

Fig. 5. The geometry of the flowband model, showing surface
elevation profile, SðxÞ, clean-ice thickness, hðxÞ, top of the basal
ice, DðxÞ, thickness of the basal ice, �ðxÞ, bottom of the basal ice,
BðxÞ, and flowband width, WðxÞ.
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These curvatures, ci, are

ci ¼
LðcÞ2

mðcÞ
d2m
dx2

 !

i

ð12Þ

and the collection of curvatures (and possibly other model
constraints) can be written as a vector, c, and a model norm,
jjmjj, can be written as

jjmjj2 ¼
XN
ðmÞ

i¼1
wjc2i : ð13Þ

Of course, other variations are possible. For example, EC
could be treated as a uniform adjustable scalar, or simply set
equal to unity.

The model parameters, m, are selected to minimize these
data residuals, rj, and smoothness residuals, ci, in some
sense. One way to achieve this is to minimize a scalar
functional, J jdjj, jjmjjð Þ, of the norms, which could, for
example, take the form

J ¼ jjmjj2 þ � jjdjj2 � T2
� �

: ð14Þ

In this example, the tolerance, T2 � NðdÞ (Parker, 1994,
p. 124), is the expected root-mean-square residual mismatch
to be expected if all the normalized residuals in Eqn (10)
were random variables from a normal distribution with zero
mean and unit variance, and the trade-off parameter, �,
expresses the balance between obtaining a smooth model
and fitting the data exactly; it can be adjusted until
jjdjj2 � T2 ¼ 0 when J is minimized. This regularization
procedure is often called ‘Tikhonov regularization’ (e.g.
Aster and others, 2013).

3.4. Solution procedure
Because the forward problem is nonlinear in the model-
parameter set, m, an iterative linearized solution procedure
can be used to solve the inverse problem, using a gradient
method to find the most appropriatem. The simplest solution
procedure is as follows. To find the kth estimate from the
ðk � 1Þth estimate, we need to find the corrections, �mðkÞ:

mðkÞ ¼ mðk� 1Þ þ�mðkÞ: ð15Þ

Starting from an initial guess, mð0Þ, for parameter set m, and
an initial guess for �, we find corrections, �m, by solving a
linearized set of algebraic equations

Wc 0
0 Wr

� �
Jc
Jr

� �

�m½ � ¼ �
Wc 0
0 Wr

� �
c
r

� �

, ð16Þ

where matrix Jc creates the second-derivative vector

d2m=dx2
� �

i
in Eqn (11) from the parameter vector m; Jr

is a Jacobian matrix containing the partial derivatives
@oðmÞj =@mi; the matrices Wc and Wr are weights arising from
the curvature and residual equations, respectively. Wr, in
particular, includes � as part of the weighting (if all
observations are weighted the same, then Wr ¼ �

1=2).
This system can be solved, for example, using singular-
value decomposition, but ultimately, the best solution
method depends on the complexity and nonlinearity of the
forward model.

This solution procedure will satisfy Eqn (14) given a value
of �; therefore, a solution also needs to iterate towards
finding the best value of �. If � is too small, then the
minimization of J overemphasizes the model norm, which

includes our expectations for model smoothness or nearness
to a specific value. If � is too large, J results in overemphasis
on fitting the data. We aim for a value of � that minimizes J
while allowing jjdjj2 � T2 to approach zero, which means
that we are fitting the data to within our uncertainties.
Waddington and others (2007) explain this solution pro-
cedure more fully, applied to a similar inverse problem.

3.5. Resolution
A straightforward way to judge the resolving ability of the
inverse problem is to use the forward model to generate
synthetic observations based on a prescribed model-par-
ameter set that contains a spike (one value significantly
different to the others). Then we can use the synthetic data
and the inverse algorithm to see how well it reproduces the
prescribed model parameters.

4. APPLICATION TO TAYLOR GLACIER

4.1. Field site characteristics
Taylor Glacier (–77.725° S, 162.26° E), located in the
McMurdo Dry Valleys, is an outlet glacier of Taylor Dome,
part of the East Antarctic ice sheet. Taylor Glacier extends
100 km from Taylor Dome to its terminus in Lake Bonney, a
perennially frozen lake (Fig. 2). Figure 3 shows a detail of our
field site with pertinent locations, Nirvana (inland, upstream
site) and Grace (near cliff, downstream site), identified.

The glacier flows on frozen unconsolidated sediments
and fills the western part of Taylor Valley (Mager and others,
2007). A layer of prominent debris-rich basal ice (Fig. 1)
overlain by clean ice is observed along the 20–30m high ice
cliffs that characterize the glacier margin, although the basal
ice is often obscured by an ice apron produced from dry
calving. Because the average annual air temperature is
–17.8°C (for 2004/05, from a meteorological station near the
glacier terminus; also Nylen and others, 2004), the
conservation of energy for thin ice with a typical value of
geothermal flux suggests that the glacier is frozen to its bed.
Approximately 6 km upstream there is an overdeepening,
where the basal ice may reach the local pressure-melting
point for marine-based sediments with high salt content
(Robinson, 1984; Hubbard and others, 2004). Along the
65 km ablation zone, sublimation accounts for 40–80% of
mass loss, with the remaining mass removed by melting
during the short summer (Lewis and others, 1998; Hoffman
and others, 2008; Bliss and others, 2011). In the terminus
region, summertime ephemeral streams flow down three
large surface channels parallel to ice flow and into Lake
Bonney, dominating the summer ablation process (Johnston
and others, 2005).

4.2. The forward model
As explained above, we use a 2-D flowband model with the
geometry shown in Figure 5 and velocities predicted by the
SIA. The SIA states that when the ice thickness is much
smaller than the horizontal ice extent and the wavelength of
bedrock and glacier surface undulations is long relative to
ice thickness, then the horizontal derivatives of stress,
temperature and horizontal velocity are negligible com-
pared with the vertical derivatives (Cuffey and Paterson,
2010). We feel this is a reasonable approximation along the
flowband, because the ice is thin relative to the length scale
of changes along the flowband, the boundary between the
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basal ice and the clean ice is smooth and we assume that the
bed topography along the flowband is also relatively
smooth.

To further show that the SIA is a reasonable approxima-
tion, we can estimate components of the deviatoric-stress
tensor by estimating corresponding components of the
strain-rate tensor, using characteristic thicknesses and vel-
ocities, with an assumption of uniform effective viscosity
across the region. The vertical deviatoric shear stress can be
approximated as �xz / �@u=@z. Where the SIA is valid, this
component of the deviatoric-stress tensor is at least one
order of magnitude larger than all other components –
preferably more than one order of magnitude. At the
upstream end of our flowband, the horizontal velocity at
the surface is �5ma� 1, this ice is �125m thick and
@u=@z � 0:04. Towards the terminus, @u=@z � 3=30 ¼ 0:1.
The longitudinal deviatoric stress can be approximated as
�xx / 2�@u=@x. The change in surface horizontal velocity
along the flowband is 2ma� 1 over �700m distance, which
gives an average strain rate of @u=@x � 2=700 � 0:003, an
order of magnitude smaller than the vertical shear strain
rate, @u=@z. Similarly, the lateral extension along the
flowband is also an order of magnitude smaller than the
vertical shear stress, @v=@y � 0:0025, based on the rate at
which the flowband widens. Our flowband SIA model
incorporates this lateral extension component of stress
through mass conservation, as described by Eqns (5) and
(8). While one order of magnitude is perhaps the minimum
acceptable criterion, the ability to use a numerically simpler
model allows us to explore a wider range of model
parameters.

The SIA is inadequate within one to two ice thicknesses
from the ice cliff at the glacier margin; ice deformation in
this immediate cliff region must be treated using a more
sophisticated approach (e.g. one that solves for all com-
ponents of the stress and strain tensors (full-Stokes model)).

Due to limited observations, we cannot solve the
complete inverse problem as described in Section 3. In the
calculations presented here, we approach the solution from
two end-member assumptions that allow us to simplify the
model-parameter set, m:

We assume that the softness of the basal ice and that of
clean ice are spatially uniform, and we allow the
thickness of the basal ice to vary along the flowband:
m� ¼ ½EB, EC,�ðxÞ�.

We assume that the thickness of the basal ice is uniform,
the softness of the clean ice is uniform and we allow the
softness of the basal ice to vary along the flowband:
mEB ¼ ½EBðxÞ, EC,��.

Because the true behavior of basal ice is more complex, as
demonstrated by tunnel observations of fold and boudinage
structures within basal ice (Fitzsimons, 2006), these two
assumption are considered end members of a continuum of
possible behaviors.

4.3. Regularization
The straightforward calculation of the velocity profile along
the flowband as described above is an underdetermined
problem, because we do not have measurements of the
thickness or softness of the basal ice. In order to determine
the most likely solutions, we impose regularization on the
model-parameter set to find a unique solution. The data

norm includes the observed discrete measurements of
accumulation rate, _bðdÞk , the surface velocities, us

ðdÞ
j , and

their respective uncertainties which depend on the measure-
ment method (discussed below).

Accepting that a complex material, such as basal ice,
may change thickness or softness relatively suddenly due to
shear band formation or folding processes, we choose to
weakly constrain the smoothness of the basal-ice thickness
profile or the basal-ice softness profile. We set the
characteristic length and magnitude for changes in the basal
thickness profile at LðcÞ ¼ 10m and mðcÞ ¼ 5 (Eqn (12)).
Because the only measurement of basal-ice thickness is that
of Samyn and others (2005a), which does not provide a
confirmed maximum thickness, we do not constrain the
maximum thickness. We choose models that satisfy min-
imum thickness at the terminus (estimated as 4.5m by
Samyn and others, 2005a) for end member 1. Similarly for
end member 2, we set the characteristic length and
magnitude for changes in basal softness at LðcÞ ¼ 10m and
mðcÞ ¼ 10.

Despite only weakly constraining the smoothness of the
basal-ice characteristics, we assume that the surface-
velocity and ablation-rate profiles should vary smoothly,
because they are a function of the depth-integrated velocity.
Therefore, in making the final choice among best-fitting
model parameters from among all valid solutions using the
data norm and model norm as defined above, we also
constrain the smoothness of the predicted surface-velocity
and the ablation-rate profiles as a curvature constraint
within the model norm. The characteristic length and mag-
nitude for changes in these are LðcÞ ¼ 100m and mðcÞ ¼ 0:5
for surface velocity, and LðcÞ ¼ 100m and mðcÞ ¼ 0:25 for
ablation rate. We do this because the smoothness of the
predicted velocity and ablation-rate profiles is not guaran-
teed without explicitly including this in the model norm,
because the data norm does not distinguish between a
positive and a negative residual for a particular location, x,
therefore at xi we could have a positive residual (e.g.
velocity predicted higher than observed), while at xiþ1 we
could have a negative residual (e.g. velocity predicted lower
than observed). By minimizing the square of these residuals,
the solution cannot distinguish between a smooth velocity
profile that is consistently above that observed and one that
jumps above and below it. In a full-Stokes ice-flow model
that includes longitudinal stresses, the smoothness of the
surface velocity and ablation rate will arise from the physics
of ice flow; but our mathematically simpler model does not
efficiently impose this smoothness without our explicitly
incorporating it into the inverse problem. By requiring the
predicted velocity and accumulation to vary smoothly, we
can distinguish between these otherwise equivalently
valid solutions.

4.4. Solution method
The two end members of our analysis have model-par-
ameter sets m� ¼ ½EB, EC,�ðxÞ� for variable basal-ice thick-
ness (end member 1) and mEB ¼ ½EBðxÞ, EC,�� for variable
basal-ice softness (end member 2). To increase compu-
tational efficiency and because of our limited observations,
we limit the x values to 11 discrete positions along the
flowband and we limit the trade-off parameter to � ¼ 1,
based on initial runs. Although solving for the best � value
would allow us to narrow the best solutions given the
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observations in the problem, we feel our limited obser-
vations at this stage lead to more general conclusions that
are not sensitive to �, as long as it is within an order of
magnitude of unity.

To solve for m�, we solved for �ðxÞ for given combina-
tions of 2 � EB � 100 and 1 � EC � 10. For each combin-
ation of EB and EC, we started from five different initial �ðxÞ
profiles to ensure the model converges towards a global
minimum. Each of the five initial �ðxÞ profiles consists of 11
randomly chosen values ranging from 2.5 to 7.5m. We
solve this nonlinear constrained inverse problem using a
computationally efficient interior point method (using
MATLAB®’s fmincon function), which is based on the
gradient method described in Section 3.4.

Similarly, to solve for mEB , we solved for EBðxÞ for given
combinations of 0 � � � 20 and 1 � EC � 10. We again
begin with five different initial profiles, EB, consisting of 11
randomly chosen values ranging from 20 to 40.

5. MEASUREMENTS
Our data were drawn from measurements made during two
consecutive austral summers (2004/05 and 2005/06) and a
subset of measurements that were repeated in the next
austral summer (2006/07). Our measurements and obser-
vations focused on terminus dynamics and clean-ice
properties of Taylor Glacier, which provide the core
assumptions and constraints to guide our inverse problem.
Our assumptions were also guided by studies on upstream
dynamics by Aciego and others (2007), Robinson (1984)
and Hubbard and others (2004); on the basal ice of Taylor
Glacier by Samyn and others (2005a); and on the basal ice
of nearby Meserve Glacier by Cuffey and others (2000a).

5.1. Properties of clean ice
In order to constrain the properties of the clean ice, which is
more accessible than the basal ice, we used samples from
two shallow cores: an ice core to 16m depth at Nirvana and
an ice core to 13m depth at the Grace field site (Fig. 3).
These cores were transported to the US National Ice Core
Laboratory, where we measured electrical conductivity, cut
thin sections to measure ice fabric using an automatic fabric
analyzer (Wilen, 2000) and cut samples for measuring ice
chemistry.

The clean ice of Taylor Glacier originates from Taylor
Dome. The ice is white and bubbly without any layers
present in the visual stratigraphy or electrical conductivity
measurements. Using an ice-flow model and the analysis of
oxygen stable isotopes of ice samples collected along the
length of Taylor Glacier, Aciego and others (2007)
concluded that ice from the Last Glacial Maximum is
exposed on the lower 25 km of the ablation area, and ice in
the terminus region may be older than 28 ka. Our measure-
ments agree that this ice has typical properties of Ice Age ice
(Paterson, 1991), including high solute concentrations
(mean values of 0.363mg L� 1 chloride, 0.292mg L� 1 sulfate
and 0.206mg L� 1 nitrate). In comparison with values
summarized by Paterson (1991), we measured concen-
trations of chloride 3.9 times higher than Ice Age ice from
the Vostok ice core (which is 22 times higher than Holocene
ice at Vostok); concentrations of sulfate 1.6 times higher
than Vostok Ice Age ice (which is 2.4 times higher than
Holocene ice); and concentrations of nitrate 4 times higher
than Vostok Ice Age ice (which is 14 times higher than

Holocene ice). The accumulation area for Taylor Glacier
(including Taylor Dome) has higher concentrations of
marine-based solutes, such as chloride, than Vostok due to
proximity to McMurdo Sound (Mayewski and others, 1996).
Several studies (e.g. Paterson, 1991) suggest that these ions
have the greatest effect on softening of the ice. We did not
measure debris concentration directly, but assume that it is
low, based on previous studies (0.05–0.1% by volume;
Samyn and others, 2005b).

All thin sections show generally small (<2mm diameter)
ice crystals and have a near-vertical, single-maximum
fabric. Figure 6 shows two example thin sections from these
samples. Fabric results from the Nirvana ice core suggest
migration recrystallization is active, due to the presence of
some larger crystals with c-axes at high angles from the
vertical; this may be because of seasonally elevated
temperatures, due to the proximity of this core to the
meltwater channel. The age of the ice at the terminus and
the long distance from the accumulation zone contribute to
the development of the observed fabric. As other researchers
have shown, these properties enhance strain in bed-parallel
shear and inhibit strain in vertical compression in the clean
ice relative to Holocene isotropic ice (e.g. Budd and Jacka,
1989; Miyamoto and others, 1999; Cuffey and Paterson,
2010, ch. 3). Because our model assumes the flow is
predominantly in bed-parallel shear, we do not incorporate
a full description of anisotropic ice flow in the forward
model. Instead, we assume an enhancement factor (Eqn (1))
within the range expected for isotropic to highly anisotropic
ice (Budd and Jacka, 1989). In our analysis, we test clean-ice
softness values between 1 and 10 (1 � EC � 10).

5.2. Properties of debris-rich basal ice
Because detailed information about the basal-ice sequence
is known from other studies, we did not make any new
measurements on the basal ice (Cuffey and others, 2000c;
Samyn and others, 2005a; Mager and others, 2007). The
best published constraint on the basal-ice thickness comes
from a vertical shaft dug by Samyn and others (2005a,b) at
the end of a tunnel dug 25m horizontally into the ice 1.4 km
upstream of the terminus. The vertical shaft exposing the
debris-rich basal-ice sequence was 4m deep; however, they
did not reach a distinct contact that defines a ‘bed’. The
basal-ice sequence is likely a gradual change in the ice/
sediment mixture, and a distinct contact between debris-rich
ice and ice-rich subglacial sediment may not exist. We
assume 4m is the minimum thickness of the basal ice near
the terminus.

The basal ice is composed of a sequence of visually
distinct ice facies, with varying ice properties that have been
described from tunnel observations at two Taylor Glacier
sites (Samyn and others, 2005a; Mager and others, 2007).
The debris-rich basal ice contrasts sharply with the clean
meteoric ice which stratigraphically overlies it. Bands of
clean ice also intermix with the stratified debris-rich basal
ice. From the base of the vertical shaft upwards, the basal-
ice sequence is composed of a 0.7m thick dispersed facies
(silt particles in plurimillimetric ice layers), a 0.8m thick
clean facies, a >2m thick stratified facies that can be
distinguished as two sections, a massive facies (>50% of
debris by volume) and a laminated facies, which consists of
debris-laden layers (2–20mm thick) that alternate with
clean-ice layers of similar thicknesses. The dispersed facies
was not excavated all the way to the bed, and may be up to
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1–2m thicker than described (Samyn and others, 2005a,b;
Mager and others, 2007). Because our measurements and
model design cannot predict deformation within each of
these layers, we infer only the bulk properties of the entire
basal-ice sequence using our model. Furthermore, it is likely
that the basal-ice thickness is spatially variable, due to
variable longitudinal and transverse stress regimes along a
flowband, and that the Taylor Glacier terminus rests on
frozen unconsolidated sediments.

5.3. Geometry
We extracted surface elevation and slopes from a lidar 2m
DEM collected by NASA/US Geological Survey (USGS)
(Fig. 3; Schenk and others, 2004). To determine the
flowband surface elevation, and surface slope between sites
Nirvana and Grace, we neglect the small-scale roughness of
the surface by smoothing the DEM surface profile using a
horizontal smoothing length approximately equal to one ice
thickness (40–100m). We calculate two parallel flowlines
by the steepest-descent method (perpendicular to the
contours) and use the lateral distance between these
contours as the flowband width.

We collected GPR data using a 100MHz MALÅ
GeoScience RAMAC system, with trace locations defined
by precision Trimble GPS units. The system stacked 64
traces approximately every 1m using wheel triggering. Due
to the rough surface topography, the radar transects were
not collected in straight lines; however, when extracting ice-
thickness data from these observations, we consolidated the
small horizontal deviations into a smoothly curving profile
along our flowband. The post-processing was limited to
bandpass filtering (50–120MHz) and gain applied to high-
light the basal reflector (Fig. 4). We calculated the depth
using a velocity of 0.168mns� 1; we did not migrate the
data. We estimate uncertainty in radar-measured depths at
�1m. The radar data show a single strong reflector, which
we interpret as the uppermost debris-rich layer within the
basal ice (Fig. 4). This is supported by observations of the
basal ice at the ice cliff; if the reflector were extended
horizontally �20m to the cliff outcrop at Grace, its depth
would be within �2m of the observed top of the basal ice.
Although some of our radar data show stratified sediments
below the strong reflector, it is not possible to determine
directly the thickness of the deforming basal ice from these
data. The geometry inputs (surface profile, surface slope,
flowband width and clean-ice thickness) into the model are
shown in Figure 7a–c.

5.4. Temperature
The mean annual air temperature at Taylor Glacier is –17.8°
C (Nylen and others, 2004). Our thermistor measurements
in a 13m deep borehole drilled at Grace indicate an average
ice temperature of –18.9°C at depths of 10–13m. Tunnel
thermistor measurements confirm the basal ice within 25m
of the terminus is at –17°C (Samyn and others, 2005b;
Mager and others, 2007). Based on these measurements, we
assume the average ice temperature along the flowband is
–17°C.

5.5. Ice flow
We deployed stake arrays on the ice to measure ice deform-
ation, velocity and ablation. At both Nirvana and Grace,
arrays consisted of 13 stakes in a grid with 5m spacing, from
which we measured displacement over 1 or 2 years using

repeat static GPS measurements (�4mm) from a base station
<1 km away. This array was designed to provide strain
information within the grid. The average displacement of all
stakes within the arrays provided constraints for the flowband
velocities. Similar arrays (unlabeled point clusters in Fig. 3)
were deployed at two other sites, which help constrain our
interpolation. In addition, we measured displacements of
stakes spaced 100m apart along a transect perpendicular to
ice flow at Nirvana. The measurements from the transect
stakes exhibit a near-parabolic shape (Fig. 3), where velocity
is smallest at the margin and greatest at the glacier center; this
pattern is typical for glacier deformation. A second-order
polynomial was fitted to the transect velocity data. This
velocity profile shape was scaled with the decreasing width
of the glacier and adjusted to match magnitudes of measured
stake arrays to interpolate the velocities between measured
points and to estimate the velocity field across the entire
terminus region below Nirvana. The interpolation between
measured data points increases the uncertainty of those data
beyond that stated above. The uncertainty is shown
graphically in Figure 7.

5.6. Ablation
The ice-surface heights relative to the stakes were measured
several times over 2 years. Annual ablation was calculated
from these measurements and interpolated along the
flowband between Nirvana and Grace by scaling the
change in ablation rate between stakes to change in the
surface slope. Again, we neglect small-scale surface
undulations and assume that surface slope drives variation
in ablation rate along the flowband; this surface slope
maintains a nearly constant geographical aspect along the
flowband. Ablation measurements (with uncertainty
�0.5 cma� 1) at both ends of the flowband constrained our

Fig. 6. Two examples of the crystal fabric from vertical thin sections
of the ice core from Taylor Glacier. These sections are �10 cm tall.
For Schmidt plots, the vertical axis is up; some uncertainty in the true
vertical exists because of the drilling process; borehole inclination
was not measured but is likely <5°. (a) 7.9m below the surface at the
interior site Nirvana. (b) 13.6m below the surface at the site Grace,
near the cliff.
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ablation-rate profile. The resulting ablation-rate profile is
shown in Figure 7d. Similarly to the surface velocity, we
assume that the uncertainty in the ablation rate parabolically
increases with distance from the measured stakes (Fig. 7).
Because this input to the model requires interpolation from
the two end points and we measured ablation for only
2 years, we test the sensitivity of our results to the ablation
magnitude, but not the slope or curvature of the ablation
interpolation (this is outside the scope of this paper).

6. RESULTS
We begin the analysis using a one-dimensional model at our
two sites, Nirvana and Grace. We then explore the full
flowline using the inverse approach outlined above.

6.1. One-dimensional model results
6.1.1. No deformable basal ice
If we assume that basal ice is not deforming or is not present
beneath the flowband (or glacier terminus), then the clean
meteoric ice must be much softer than is typically assumed
for glacier ice in order to match the measured surface
velocity at Nirvana (5.1ma� 1) or at Grace (3.0ma� 1).
Figure 8a shows that for ice at –17°C, the observed ice
temperature, the model requires clean-ice softness of at least
EC ¼ 21 at Nirvana to reach 90% of the observed velocity.
That same softness, however, is not sufficient to allow the
ice flow to also match the observed surface velocities at
Grace (Fig. 8b).

If we allow for higher temperatures (because the ice
nearest the bed may be warmer due to geothermal flux), a
temperature of at least –8°C is necessary to match the
surface velocity with a clean-ice softness, EC, within the
range expected from theory (EC < 10, as described above). If
we limit the clean-ice softness to EC < 5, which is in the
recommended range for Ice Age ice (Cuffey and Paterson,
2010, p. 77), then the modeled surface velocity is too low
for any reasonable temperature assumption (depending on
the value of EC). Furthermore, temperature and clean-ice
softness combinations that can match the surface velocity at
Nirvana cannot also match the surface velocity at Grace
(Fig. 8b). Although the softness of clean glacier ice can vary
spatially, we do not expect it to vary substantially over the
�700m between Nirvana and Grace. Also, the presence of
the cliff within two ice thicknesses of Grace may affect its
velocity by a modest amount compared with the SIA
solution; however, the difference between the relative
velocities at these two sites is nearly an order of magnitude
– too large to be accounted for by longitudinal stresses near
the cliff. This difference between the two sites suggests a
significant variation in flow properties between Nirvana and
Grace that cannot be explained by typical ice-flow assump-
tions; therefore, we suggest that basal ice must provide the
faster deformation necessary to match the surface velocities

Fig. 7. (a) Observations of the geometry along the flowband from
DEM, GPS and GPR (surface is smoothed over a distance equal to
the local average thickness of the ice. Upper line is the surface
(smoothed from the DEM) and lower line is the boundary between
clean ice and the debris-rich ice (not smoothed, from radar picks).
Clean ice thickness is the difference between these two lines.
(b–e) Observations of (b) the surface slope from DEM after
smoothing; (c) the flowband width from following steepest-descent
surface slope directions in DEM after smoothing; (d) the ablation
rate from stakes and interpolation procedure and (e) the horizontal
surface velocities from stakes and interpolation method. For
horizontal velocity and ablation rate, the dashed curve indicates
the uncertainty; the uncertainty at the end points is smaller than
the thickness of the lines drawn (see Sections 5.5 and 5.6 for
further discussion).

Fig. 8. Predicted velocity profiles relative to the measured surface
velocity for sites (a) Nirvana and (b) Grace. Colored curves show
various temperature and clean-ice softness combinations, as
labeled, and assume no basal-ice deformation; colors represent
the same parameters in both plots. Black curves are results from
selected best-fitting parameters from experiment 3, which includes
basal-ice deformation. Profile A has clean-ice softness of 3.5,
basal-ice softness of 53 and a basal-ice thickness of 9.5m at
Nirvana and 18.0m at Grace. Profile B has clean-ice softness of 1,
basal-ice softness of 72 and basal-ice thickness 7.6m at Nirvana
and 14.9m at Grace.
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and variability over this short flowline and the softening
required to match the observed surface velocities.

6.1.2. Including deformable basal ice
The two black curves in Figure 8a and b show how the
predicted surface horizontal velocities can match the
observed surface horizontal velocities at Nirvana with
reasonable assumptions for the clean-ice properties
(1< EC < 10) if we assume a nonzero thickness for basal
ice that is significantly softer than the clean ice.

6.2. Flowband model results
As discussed above, we explore two end member model-
parameter sets to describe the behavior of the basal ice: first,
assuming constant softness for the basal ice while allowing
thickness to vary spatially and, second, assuming constant
thickness for the basal ice while allowing its softness to vary
spatially. In reality, the best solution likely involves vari-
ations in both. In all models, the clean-ice thickness is fixed
by the geometry derived from radar, and its softness is
assumed spatially uniform, but allowed to vary within
expected values (Section 5.1). Because the temperature at
depth may be a few degrees above the measured tempera-
tures, we ran selected experiments at –17°C, –15°C and
–13°C, in order to determine the sensitivity of the results to
the ice temperature. We also decreased the ablation rate by
10, 20 and up to 50% for selected experiments in order to
determine the sensitivity of the results to ablation rate.
Finally, we modified the shape of the ablation profile based
on initial results for specific positions where our ablation-
rate data are less constrained. Table 1 lists the experiments
that resulted in successfully matching the data and associ-
ated model parameters.

6.2.1. Spike resolving test
To test the resolving power of our inverse problem, we
generated synthetic data using a �ðxÞ that is uniform, except
for a spike at one x location (red in Fig. 9a). We used the
forward model to calculate _bðdÞk and us

ðdÞ
j (red curves in

Fig. 9b and c). Using these synthetic observations, we
followed the inverse procedure to recreate our given �ðxÞ
profile (black curves). The size of the spike was chosen to be
as large as possible, while not triggering model instability
when the basal-ice thickness approaches the clean-ice
thickness. Similar experiments were conducted with the
spike in different positions along the flowline, and using
different combinations of EC and EB, all achieving similar
results. These tests confirm that given surface velocity and
ablation rate, the variation in basal-ice thickness is
resolvable.

6.2.2. Basal-ice thickness variation (end member 1)
The first six experiments we ran involved determining the
basal-ice thickness variation assuming a constant basal
softness, EB. Figure 10 shows the goodness of fit for each
experiment. For each combination of clean-ice and basal-
ice softness, we started from five randomly chosen initial
basal-thickness profiles. The most robust solutions are those
in which the five initial guesses resulted in similar final
profiles – suggesting that the minimization process found a
global minimum rather than local minima. The color of each
point in these plots, however, is the smallest of the five cost
functions, J. If a cluster of points form a global minimum, the
five cost functions for each point will be similar and the
smallest J will vary more smoothly from point to point in
Figure 10. Where nearby points have strongly varying
colors, it is more likely that the minimization process found

Table 1. The primary experimetns. The basal thickness variation group is for models where we assumed the basal-ice softness was spatially
uniform and we varied the basal-ice thickness, �ðxÞ. The basal softness variation group is for the models where we assumed the basal-ice
thickness was spatially uniform and we varied the basal-ice softness EBðxÞ

Basal thickness variation

Experiment EC range EB range Temperature Ablation Best fitting

°C %

1 1–10 2–100 � 13 100 18 � EB � 40
2 1–10 2–100 � 15 100 22 � EB � 50
3 1–10 2–100 � 17 100 26 � EB � 60
4 1–10 2–100 � 15 90 22 � EB � 50
5 1–10 2–100 � 15 80 22 � EB � 50 and 6 � EC � 10
6 1–10 2–100 � 17 Modified profile 26 � EB � 70

Basal softness variation

Experiment EC range � range Temperature Ablation Best fitting

m °C %

7 1–10 0–20 � 13 100 � � 12
8 1–10 0–20 � 15 100 12 � � � 18
9 1–10 0–20 � 17 100 14 � � � 20
10 1–10 2–20 � 15 90 12 � � � 18
11 1–10 2–20 � 15 80 12 � � � 18
12 1–10 2–20 � 17 Modified ablation 14 � � � 20
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several local minima. The best-fitting solutions are among
those with a consistent global minimum: those within the
bluer regions. The darker the blue, the better the solution fit
is. The ranges we identify as the best-fitting solutions are
specified in Table 1.

The clean-ice softness (the vertical axis in each plot) does
not have a strong influence on the best-fitting solutions. The
inverse problem, as we have defined it, can find equally
good solutions over the whole range of clean-ice softness.
This lack of sensitivity exists because most of the deform-
ation happens in the deepest ice, which is the basal ice in
this case; the clean ice contributes very little to the
deformation (<10% in most cases). The softness of the clean
ice, therefore, has a negligible effect on choosing a best-
fitting solution.

The results in Figure 10 are spatially arranged such that
the effect of increasing temperature is shown on the vertical
axis and the effect of increasing ablation is shown on the
horizontal axis. Because temperature acts to soften the ice,
there is a trade off between increasing temperature and
increasing the basal-ice softness, EB, to produce similar
dynamics in the ice. This is seen most clearly in the dark red
bands on the left of experiments 1–3. At lower temperatures
(experiment 3) there is no solution possible without a basal-
ice softness of at least EB ¼ 22; however with higher
temperatures (experiment 1) a minimum of EB ¼ 14 is
required to find a solution. The entire pattern of colors to
the right of these dark-red bands is shifted to the left as
temperatures increase.

Because we have very few ablation measurements and
our interpolation scheme between those measurements is
based on weak assumptions, we test the sensitivity to
ablation magnitude and shape (the horizontal axis in
Fig. 10). Experiments 2, 4 and 5 show the effect of
decreasing the magnitude of the ablation by a uniform

percentage along the entire profile: the blue region becomes
larger and darker as ablation is decreased from 100% to
80%. Decreasing the ablation to 80% of the measured
values increases the goodness of fit to the observations
(decreases the value of the cost function). Decreasing the
ablation any further results in solutions that do not fit the
observations sufficiently to satisfy our criteria. An alternative
to a percentage decrease in ablation is to modify the shape
of the ablation-rate profile. In reviewing the best-fitting
solutions, we found a consistent shape of the predicted
ablation-rate profiles. Figure 11a–c show selected results
from experiment 3. Figure 11a shows the basal thickness
profiles for four values of EB (20, 30, 40 and 50) and EC ¼ 3.
Despite the measured ablation-rate profile gradually in-
creasing along the flowband (red curve in Fig. 11b) all best-
fitting solutions predict an ablation-rate profile that de-
creases first, then increases along the profile. Because of our
lack of measurements in the central part of the flowband,
our slope-based interpolation scheme may be a poor
assumption. If we instead interpolate between our measure-
ments with a curve that is more similar to the predicted
curve, we can improve the overall best-fitting solutions.
Figure 11d–f show solutions using the modified ablation-rate
profile (red in Fig. 11e). When we adjust the curvature of the
ablation-rate profile the solution is significantly better,
suggesting this might be closer to the real ablation-rate
profile.

6.2.3. Basal-ice layer softness variation
(end member 2)
For end member 2, we assume basal ice with uniform
thickness but spatially variable softness. Experiments 7–12
target this question and test the sensitivity to temperature
and accumulation rate, in a similar way to the first six
experiments. Figure 12 shows the minimized cost function,
J, for each combination of clean-ice softness and basal-ice
thickness.

In parallel with the first set of experiments, increasing the
temperature of the ice allows thinner basal ice to
accommodate the deformation, because temperature acts
to further soften the ice. If the ice is too warm, as in
experiment 7, however, our assumption of a uniform basal-
ice thickness narrows the range of best-fitting solutions by
limiting the range of behavior. In general, it is more difficult
to find a robust global minimum in these experiments.
Figure 13a–c show example best-fitting solutions for
experiment 9. Among these four solutions, the blue curve
in Figure 13a provides the best fit (though the corresponding
predicted surface-velocity and ablation-rate profiles do not
match well). Furthermore, the scatter in the ablation-rate
profile and the basal softness profile for � ¼ 6 show that
some solutions find local rather than global minima.

Decreasing the ablation does not have as strong an effect
in experiments 7–12 as in experiments 1–6. Figure 13d–f
show solutions using a modified ablation curve to test the
sensitivity to the ablation pattern. The modified ablation-
rate profile improves the best-fitting solutions; however,
predicted surface velocities still do not match the obser-
vations well.

7. DISCUSSION
In order to fit the surface-velocity measurements and
ablation rates, all of our models required actively deforming

Fig. 9. Example of spike test. The red curve in (a) is the given basal-
ice thickness, the red curves in (b) and (c) are the synthetic ablation
rate observations and the synthetic surface velocities, respectively.
The black curves in each plot are the inferred basal thickness and
predicted ablation and velocity using the inverse method.
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basal ice with a softness in the range 20–70 and a thickness
6–20m. The general trends we observe in our results are:

The radar image shows a strong, horizontal, smooth
reflector, that we interpret as the bottom of the clean
meteoric ice. The flatness and smoothness of this reflector
alone suggests that the clean ice is behaving as a stiff
material, flowing nearly as ‘plug flow’, over a softer, more
deformable material. The soft basal material deforms and
accommodates the shape of the stiff clean ice.

This plug-like flow of the meteoric ice is confirmed by
our measurements of deformation on the cliff face within
the clean ice. Although difficult to measure, due to 2m
of calving and 1m of ablation on the cliff face each year,
we installed stakes horizontally in the cliff face to
measure outward motion of the cliff face. The results
(Sniffen, 2008) suggest that the clean ice is flowing more
as plug flow; no internal deformation was measurable
beyond the uncertainty of our measurements. These cliff-
face measurements, however, are not ideal for direct

comparison with our model, because they were made at
the ice cliff, where the shallow-ice approximation does
not hold.

None of the models can fit the observations without at
least several meters of basal ice and with a softness an
order of magnitude softer than the clean ice. As we have
shown in Figure 8, without deformable basal ice, the
softness of the clean ice must be much higher than has
been documented in the literature even for highly
anisotropic ice. Furthermore, with the given geometry,
we cannot fit the surface velocity at both ends of the
flowband (i.e. the Nirvana and Grace sites) with the same
clean-ice softness parameter. While the properties of the
clean ice may vary somewhat spatially, there is little in
the literature to suggest that clean glacier ice along a
flowline would vary enough to generate the observed
surface velocities without the presence of basal ice. To fit
the observations along our flowband without deformable
basal ice, the clean-ice softness must more than double as
the ice flows the 700m between Nirvana and Grace.

Fig. 10. Results from experiments 1–6, as defined in Table 1. Each color represents the log of the smallest cost function, J, from among the
five initial starting profiles of basal thickness for each parameter set. Solutions most likely associated with a global minimum are the
consistently blue areas. Solutions most likely associated with local minima are those surrounded by dissimilar colors. In each subplot
heading, T defines the temperature for the experiment and B defines the relative ablation rate.
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We can fit the observations best with highly active basal
ice with softness 20 � EB � 70 and thickness upwards of
20m. As expected, for a given EC, there is a strong trade
off between the basal-ice softness and thickness. We can
fit the data with either thinner basal ice that is extremely
soft (we explored up to EB ¼ 200; results for experiments
beyond 100, however, are not shown) or a thicker basal
ice that is not as soft. Experiments 1–6 show a broader
range of basal-ice characteristics that fit the data than
experiments 7–12. Ultimately, however, basal ice that
varies spatially in both thickness and softness is more
likely to capture the real behavior.

Our conclusion that soft basal ice is necessary to explain
flow patterns for Taylor Glacier is not sensitive to the ice
temperature for a reasonable temperature range (we
explored up to T ¼ � 13�C). A change in the temperature
alters the exact trade-off relation between basal-ice
thickness and softness, but it still requires a basal-
ice softness an order of magnitude larger than the clean-
ice softness.

Our conclusion that soft basal ice is necessary to explain
flow patterns for Taylor Glacier is also not sensitive to
small changes in the magnitude of ablation. A decrease
in the magnitude of the ablation rate by 10% or 20%
actually provides more parameter sets that can predict
surface velocities and ablation rates that match our
observations, but the spatial patterns for thickness and
softness of the basal ice are similar among all well-
fitting parameter sets. When we applied a more signifi-
cant decrease in ablation magnitude (50%) to the
profile, however, no reasonable combination of

parameters could predict the observed surface velocity.
This ablation rate is too small to maintain a steady-state
surface profile.

The solutions consistently fit best with basal ice that is
thinner or stiffer in the middle columns of our flowband.
Although this may be real, it is also possibly a result of
uncertainty in our interpolated ablation-rate profiles. If
we have overestimated the ablation in the middle of the
flowband, then we are underestimating the flux of ice
within the flowband for those columns. This under-
estimation would require thinner or stiffer basal ice than
columns with a more accurate flux measurement. This is
most likely the reason that our solutions fit the obser-
vations better when we modify the shape of the ablation-
rate profile by decreasing the ablation in the middle of
the profile. This uncertainty in the ablation-rate profile
will subtly change the numbers provided in Table 1, but
not change our overall conclusions.

In all models, the basal ice must get significantly thicker
and/or softer near the terminus. This thickening/softening
of the basal ice is required to maintain the high surface
velocities (>3ma� 1) despite the thinner clean ice. Near
the terminus, the flowlines diverge as the ice spreads to
fill the valley floor. Uncertainty in our flowband width
will affect the details of the basal-ice thickening/soft-
ening closer to the terminus.

8. CONCLUSIONS
Observed surface velocities at Taylor Glacier are 30–50
times greater than that predicted by laminar flow for clean,
homogenous, isotropic ice (enhancement factor equal to
unity). This velocity anomaly can be explained by rapid
deformation of thick, debris-rich basal ice. The other
possible explanation for such high surface velocities is basal
sliding. However, from the cliff margin to �6 km up-glacier,
all evidence suggests that Taylor Glacier is cold-based and
frozen to its bed (Calkin, 1974; Robinson, 1984; Hubbard
and others, 2004), which supports the no-basal sliding
assumption in the model. A small amount of basal sliding
has been observed at Meserve Glacier (–17°C; Cuffey and
others, 2000a). The maximum sliding rate observed was
8mma� 1. If we assume this rate of sliding at Taylor Glacier,
then sliding accounts for <0.2% of the observed maximum
annual surface velocity in our domain.

Along the north margin of Taylor Glacier, the basal ice
can be clearly distinguished from the overlying clean ice; the
transition between the two ice types is abrupt. However, it is
difficult to measure the basal-ice thickness along the entire
margin for three reasons: (1) ice aprons formed from ice
blocks that have calved off the cliffs conceal the basal ice; (2)
marginal summer meltwater streams also prevent visual
observations; and (3) the lower boundary of the basal ice is
difficult to distinguish from the nearly identical frozen
sediment. Despite these challenges, the top of the basal ice
appears to be a relatively consistent depth below the surface
along marginal ice cliffs. Radar imagery confirms the flatness
of the top boundary of the basal ice (Fig. 4). The flat boundary
between the clean ice and the basal ice is evidence of a stiff
upper material flowing over a soft basal material.

Several studies of glaciers that rest on unconsolidated
valley-floor sediments in the McMurdo Dry Valleys have
indicated that the lower boundary of the debris-rich basal

Fig. 11. Comparison of predicted ablation-rate profiles and velocity
profiles for the original observed and interpolated ablation profile
(experiment 3, EC ¼ 3, EB ¼20, 30, 40 and 50) and the modified
ablation profile (experiment 6, EC ¼ 3, EB ¼20, 30, 40 and 50). Red
curves are the observed datasets;, black and blue curves are
predicted data, based on best-fitting solutions.
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ice (where it transitions to ice-rich sediment) is not clearly
defined. Compared with glaciers that do not reach the valley
floor, these glaciers have thicker basal ice, higher debris
concentrations, ice-marginal moraines and frozen blocks of
sediment within the basal ice due to accretion of the glacier
substrate (Fitzsimons, 1996, 2006; Humphreys and Fitz-
simons, 1996). Both Waller (2001) and Fitzsimons (2006)
advocate that the base of the glacier should be defined as a
zone and not as a single zero-velocity boundary. Instead,
the base of these glaciers is a continuum of physical
properties and deformation processes that vary spatially and
temporally. These variable basal conditions could explain
why we find that a thick basal ice layer is required to meet
the surface-velocity observations.

We have demonstrated that it may be crucial to
incorporate rheologically distinct layers into ice-flow
models for polar glaciers with debris-rich basal ice. Current
ice-dynamics models seldom use a two-layer approach,
particularly for cold-based polar glaciers. An alternative
approach is to incorporate a spatially variable basal shear
stress (e.g. Habermann and others, 2012), which can

capture some of the effects of spatially variable basal ice.
The basal-ice sequence observed in tunnels is composed of
different ice facies that differ in their physical structure,
solute concentration, ice fabric and debris concentration.
Presumably, these variable physical and chemical properties
alter the mechanical behavior for each facies. Observations
of both small- and large-scale strain features inside two
tunnels at Taylor Glacier indicate high strain rates occur in
the laminated section (Samyn and others, 2005a). However,
the particle-to-particle contact due to the high debris
concentrations (>50% by volume) in the massive facies
may prevent rapid deformation from occurring. The spatial
variability of the basal-ice contribution suggests that folding
of the basal ice may be an active process in debris-rich basal
ice. Our study does not include these small-scale basal-ice
structures, but allows for variation in basal-ice softness and
thickness that captures the range of possible behaviors.

Thick, deformable basal ice flowing at speeds of up to
3ma� 1 at the terminus suggests a non-negligible flux of
sediment at the terminus. For example, a 10m thick layer of
basal ice with an average of 5% by volume of sediment

Fig. 12. Results from experiments 1–6, as defined in Table 1. Each color represents the log of the smallest of the cost functions, J, from the
five initial starting profiles of basal softness for each parameter set. Solutions most likely associated with a global minimum are the
consistently blue areas. Solutions most likely associated with local minima are those surrounded by dissimilar colors.
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flowing at an average of 2ma� 1 is a flux of 1m3 a� 1 of
sediment per meter of terminus. This sediment must then
either become part of the moraine or wash down into Lake
Bonney. The sediment flux could provide a means of
confirming or constraining our results; it is difficult, however,
to measure the bulk sediment content of the basal ice.

Combined with inverse theory, the shallow-ice approx-
imation is a useful tool to explore ice-dynamics questions
without resorting to full-stress models. It is a practical
approach that provides a first-order approximation into how
the debris-rich basal ice contributes to the deformation rates
at Taylor Glacier. We can deduce properties of the basal ice
from a set of relatively simple surface-based measurements.
Here, our dataset was limited; with a more complete dataset
our method can be used to deduce additional details of
basal-ice properties. At a minimum, more complete surface-
velocity and ablation-rate profiles would allow higher
resolution analysis. Furthermore, data along multiple, longer
flowbands would provide a better assessment of the
terminus region as a whole. Finally, the finding of a weak
bed along the flowband suggests that longitudinal stresses
might be more important than we initially expected; a more
detailed future analysis of Taylor Glacier should consider
using a more advanced model.

Our results, supported by 3 years of observations, suggest
that the debris-rich basal ice (1) controls the large-scale
deformation field in the terminus region of Taylor Glacier
and (2) is spatially variable along the flowband. The basal
ice contributes an average of 90% to the flow rates observed
at Taylor. At its thickest, the basal ice may be >15m. The

model demonstrates that the observed surface velocities can
only be simulated if the basal ice is present beneath the
entire length of the flowband and is softer than the clean ice.
For example, a 10m thick basal ice with a softness of 40
times that of clean, isotropic Holocene ice will contribute
>2% to the surface velocity for ice thicknesses up to 1000m.
Because many polar glaciers and ice sheets have debris-rich
basal ice visible at their margins, and because this weak ice
can significantly increase the overall glacier flow rate, it is
essential to incorporate rheologically distinct layers in
models of polar glacier flow.
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