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The aim of this note is to give an analogue, for an inverse semigroup S,
of the theorem for a group G which says that if & is the set of normal subgroups
of G, then the map N -> (JV) = {(a,b)eG x G-.ab'^N} for Ne^ is a 1:1
order preserving map of <3 onto A(G), the lattice of congruences on G. It will
be shown that if E is the semilattice of idempotents of S, P = {£„: ae J] is a
normal partition of E, and Jf is a certain collection of self conjugate inverse
subsemigroups of S, then the map K ->(X) = {(a,b)eS x S: a~la, b~1beEa

for some a e J and ab~l e K) for K e Jf is a 1:1 map of X onto the set of con-
gruences on S which induce P.

0. Introduction

The reader is assumed to be familiar with standard semigroup notation and
the elementary properties of inverse semigroups [1]. Throughout, S will denote
an inverse semigroup with E as its semilattice of idempotents. The assumption
includes a familiarity with C(E), the centralizer of E, self conjugate inverse
subsemigroups of S, and the closure Ha> of a subset H of S.

Preston [3] has shown that if / : S -> T is a homomorphism of S onto T
and af is idempotent in T, then af = a'1/ = {aa~l)f = (a-la)f. Thus T is
inverse, (bf)'1 = b~lf, and if / separates idempotents, then / o / " 1 c= ^f.
Also, Preston has given a complete description of all congruences on S in terms
of kernel normal systems of S. In [4], a characterization has been given of the
smallest and largest congruences which induce a given partition P of the set E
of idempotents.

In [2], Howie has given two characterizations of n, the largest idempotent
separating congruence, neither of which depend on kernel normal systems.
Recall that these descriptions are given by

H = {(a,b)eS x S: a~1ea = b~1eb foreacheeE}, orequivalently

H = {(a,!»)6SxS:(i-1fl = b'^ and ab-leC(E)}.
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This note will give a description of the congruences on S similar to Howie's
second characterization of \i. In so doing, the closure operator a> will be used
to show just which inverse subsemigroups of S can be the kernels of homo-
morphisms.

1. Kernels of groups and idempotent separating homomorphisms

The two lemmas in this section could, at least in part, be deduced respectively
from [5, see also 1, Theorem 7.12; 1, Theorem 7.54]. Full proofs will be given
here, however, for completeness.

Let f:S -+ G be a homomorphism of S onto a group G. Let
M = Kernel/ = {a e S: af = 1G}. Let Jf = {K c S: M <= K and K is a closed
(Kco = K) inverse subsemigroup of S}.

LEMMA 1.1. The map K -* Kf for KeJf is a 1:1 order preserving map
of C#~ onto the set of subgroups of G. Further, K is self conjugate in S if and
only if Kf is self conjugate (normal) in G.

PROOF. It is easy to see that if K e JT, then Kf is a subgroup of G, and
that K -* Kf is order preserving.

Suppose then that H is a subgroup of G, K = Hf~l, and yeK<o. Then
k ^ y for some keK. From k~1k = k~ly follows that 1G = (kf)-\yf).
Thus kf = yf and hence y e K. Thus K e Jf" and so K -> Kf is an onto map.

Assume that K, L e Jf and Kf = Lf. Let k 6 K and let kf = mf with meL.
Then (m~1m)f — (m~ik)f and so m~xkeM c: L. Thus mm~1kemL c: L. But
mm~1k ^ k and so keLco = L. Similarly, L c K and hence K = L. Since
the map K -> K/is 1:1 it is a simple matter to compute that K is self conjugate
in S if and only if Kf is normal in G.

Now let <£ = {KcS: EcKc C(E) and K is a self conjugate inverse
subsemigroup of S}.

LEMMA 1.2. T^e map K -> (K) = {(a,b)eS x S: a~la = h"1*? and
afr"1 eK}forKe'tf is a 1:1 order preserving map of & onto the set of idempotent
separating congruences on S.

PROOF. The relation (K) for K e % is obviously reflexive on S, and easily
symmetric. Suppose then that (a,b),(b,c)e(K). Then a~la = b~1b = c~lc and
ab~\ bc'^K. Thus a~la = cr'c and ac-1 = aa-1ac~1 = (o t - ^k - ' l eM
c.K, i.e., (fl,c)e(X). Assume now that (a,b},(x,y)e(K). Then (ax'^ax) =
jc~1a~1ox = x"1^-1^* = j " 1 ^ " 1 ^ (since (x,y)6(JC) cz/i) = (by)~1(by), and

Thus (K) e A(S), the set of all congruences on S.
Suppose that pe A(S), p separates idempotents, and let K = {aeS: ap is

dempotent in Sjp}. Then X is easily a self conjugate inverse subsemigroup

https://doi.org/10.1017/S1446788700022862 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022862


[3] Kernels of homomorphisms 291

of S. Also, if aeK, then (a,a~1a)e p c / i so that a(a~1a) = aeC(E). Thus
K e V. If (a, b)e(K), then a'1 a = b'^ and ab'1 eK. Thus ap = (aa~1a)p =
(ab~1b)p = (ab-^a-^pi^p = (bb-^b-^pibp) (since (a,b)efi) = bp, i.e.,
(a,b)ep. On the other hand, if (a,b)ep, then ( a ' ^ t ' ^ j e p c / and so
a- 1a = b""1^. Further, (afr"1, fefr^ep and so (ab~1)p is idempotent, i.e.,
afc- 'eK. Thus (X) = p .

Finally, suppose that K,Le^ with (K) = (L) and fceK. Then
(fc,fc-1A:)e(X) = (L) and hence IceL Symmetrically, Lc K and hence K = L.

2. Kernels of homomorphisms

In this section, the elements K of # in Lemma 1.2 will be called full (for
E c K) central (for K <= C(£)) self conjugate inverse subsemigroups of S.

A partition P = {£„: ae J) is called normal provided that for each a, fieJ
and aeS, there exist y,5eJ such that £a£B c: £Y and aEaa~l <= £a [4, Defini-
tion 4.1]. Whenever P is normal, there is a smallest congruence a on S which
induces P [4, Theorem 4.2]. It follows that if Ta is the largest inverse subsemi-
group of S with £„, as its set of idempotents [4, Theorem 1.5], then Taa" is a
group JF class of S/cr, say Ha with identity a.

Now let P = {£„,: ae J} be a normal partition of E. Let 6(P) be the set of
congruences on S which induce P and let a be the smallest element of 6{P). For
each aeJ, let Ta be the largest inverse subsemigroup of S with £a as its set of
idempotents. Let Ma = Eaai C\Ta and let Na = {ae Ta: £a£p c £Y implies
cuEpa-1 <= £Y}. Let M(P) = u {Ma: ae J} and let JV(P) = u {Na: ae J}. Let
JT(P) = { X c S : M ( P ) c K <=N(P), K is a self conjugate inverse subsemi-
group of S, and Ka = K n Ta is closed in T^X^ = Kaco n TJ} .

THEOREM 2.1. The map K -»(K) = {(a,fo)e5 x S:a~la,b-ibeEa for
some a e J and u t ^ e X } is a 1:1 order preserving map of Jf(P) onto 0(P).
Furthermore, M(P), N(P)eJf(P).

PROOF. Since p -»• pja (= {(aa, ba): (a, fe) e p}) for p e 0(P) is a 1:1 order
preserving map of 0(P) onto the set of idempotent separating congruences of
S/<7, it is enough by Lemma 1.2 to show that K -> Ko* for K e Jf (P) is a 1:1
order preserving map of Jf(P) onto the set of full central self conjugate subsemi-
groups of S/o-.

Since Mx is the smallest closed self conjugate inverse subsemigroup of Ta

which contains £„ [2, Lemma 3.4], then M^a" = a by Lemma 1.1. Thus
M(P)<7 = £(S/CT) , the set of idempotents of S/a. Assume now that K e df{P),
and let k e K, say keKacNa. Let P e J and let aj? = y. Then {ka)P =
(ko)P(ko)-\ko) = y{ka) = Pa{k<r) = P(ka). Thus * V , and also JV(P)ff',
c C(£(S/c)). Hence Xo1* is a full central self conjugate inverse subsemigroup] of
Sja.
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Suppose now that H is a full central self conjugate inverse subsemigroup
of S/cr and let K = H(a" ~*). Immediately, K is self conjugate and inverse.
Since {E{Sja))a" ~x = M(P) by Lemma 1.1, M{P)<=K. Now let IceK. Since
ka is a group element of S/<x, say kaeHa, then (ceT,. Also if ajff = y, then
(fcEufc-V = (ko)P(ka)-L = fa = y. Thus /cE^fe"1 c EY and so feeJVa. Hence
X c JV(P). Now let Ka = KnTa, i.e., Ka = (H nHx)a *~\ Since fl nHa is
a subgroup of Ha, then Kais closed in Ta by Lemma 1.1. This completes the argu-
ment that M(P), N(P) e Jf(P) and K -> Ka is a map of X(P) onto the set of
full central self conjugate inverse subsemigroups of Sja.

Finally, if K, Le JT(P) and Ka" = La", then Ka" n H , = La" OHx for
each OCGJ. Thus Kx = La for each a again by Lemma 1.1 and so K = L.
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