KERNELS OF INVERSE SEMIGROUP HOMOMORPHISMS

H. E. SCHEIBLICH

(Received 15 September 1972) Communicated by G. B. Preston

The aim of this note is to give an analogue, for an inverse semigroup S, of the theorem for a group G which says that if \mathscr{G} is the set of normal subgroups of G, then the map $N \to (N) = \{(a, b) \in G \times G : ab^{-1} \in N\}$ for $N \in \mathscr{G}$ is a 1:1 order preserving map of \mathscr{G} onto $\Lambda(G)$, the lattice of congruences on G. It will be shown that if E is the semilattice of idempotents of S, $P = \{E_{\alpha} : \alpha \in J\}$ is a normal partition of E, and \mathscr{K} is a certain collection of self conjugate inverse subsemigroups of S, then the map $K \to (K) = \{(a, b) \in S \times S : a^{-1}a, b^{-1}b \in E_{\alpha} \text{ for some } \alpha \in J \text{ and } ab^{-1} \in K\}$ for $K \in \mathscr{K}$ is a 1:1 map of \mathscr{K} onto the set of congruences on S which induce P.

0. Introduction

The reader is assumed to be familiar with standard semigroup notation and the elementary properties of inverse semigroups [1]. Throughout, S will denote an inverse semigroup with E as its semilattice of idempotents. The assumption includes a familiarity with C(E), the centralizer of E, self conjugate inverse subsemigroups of S, and the closure $H\omega$ of a subset H of S.

Preston [3] has shown that if $f: S \to T$ is a homomorphism of S onto T and af is idempotent in T, then $af = a^{-1}f = (aa^{-1})f = (a^{-1}a)f$. Thus T is inverse, $(bf)^{-1} = b^{-1}f$, and if f separates idempotents, then $f \circ f^{-1} \subset \mathcal{H}$. Also, Preston has given a complete description of all congruences on S in terms of kernel normal systems of S. In [4], a characterization has been given of the smallest and largest congruences which induce a given partition P of the set E of idempotents.

In [2], Howie has given two characterizations of μ , the largest idempotent separating congruence, neither of which depend on kernel normal systems. Recall that these descriptions are given by

$$\mu = \{(a, b) \in S \times S : a^{-1}ea = b^{-1}eb \text{ for each } e \in E\}, \text{ or equivalently}$$
$$\mu = \{(a, b) \in S \times S : a^{-1}a = b^{-1}b \text{ and } ab^{-1} \in C(E)\}.$$

This note will give a description of the congruences on S similar to Howie's second characterization of μ . In so doing, the closure operator ω will be used to show just which inverse subsemigroups of S can be the kernels of homomorphisms.

1. Kernels of groups and idempotent separating homomorphisms

The two lemmas in this section could, at least in part, be deduced respectively from [5, see also 1, Theorem 7.12; 1, Theorem 7.54]. Full proofs will be given here, however, for completeness.

Let $f: S \to G$ be a homomorphism of S onto a group G. Let $M = \text{Kernel } f = \{a \in S : af = 1_G\}$. Let $\mathscr{K} = \{K \subset S : M \subset K \text{ and } K \text{ is a closed } (K\omega = K) \text{ inverse subsemigroup of } S\}$.

LEMMA 1.1. The map $K \to Kf$ for $K \in \mathcal{K}$ is a 1:1 order preserving map of \mathcal{K} onto the set of subgroups of G. Further, K is self conjugate in S if and only if Kf is self conjugate (normal) in G.

PROOF. It is easy to see that if $K \in \mathcal{K}$, then Kf is a subgroup of G, and that $K \to Kf$ is order preserving.

Suppose then that H is a subgroup of G, $K = Hf^{-1}$, and $y \in K\omega$. Then $k \leq y$ for some $k \in K$. From $k^{-1}k = k^{-1}y$ follows that $1_G = (kf)^{-1}(yf)$. Thus kf = yf and hence $y \in K$. Thus $K \in \mathcal{K}$ and so $K \to Kf$ is an onto map.

Assume that $K, L \in \mathscr{K}$ and Kf = Lf. Let $k \in K$ and let kf = mf with $m \in L$. Then $(m^{-1}m)f = (m^{-1}k)f$ and so $m^{-1}k \in M \subset L$. Thus $mm^{-1}k \in mL \subset L$. But $mm^{-1}k \leq k$ and so $k \in L\omega = L$. Similarly, $L \subset K$ and hence K = L. Since the map $K \to Kf$ is 1:1 it is a simple matter to compute that K is self conjugate in S if and only if Kf is normal in G.

Now let $\mathscr{C} = \{K \subset S : E \subset K \subset C(E) \text{ and } K \text{ is a self conjugate inverse subsemigroup of } S\}.$

LEMMA 1.2. The map $K \to (K) = \{(a, b) \in S \times S: a^{-1}a = b^{-1}b \text{ and } ab^{-1} \in K\}$ for $K \in \mathscr{C}$ is a 1:1 order preserving map of \mathscr{C} onto the set of idempotent separating congruences on S.

PROOF. The relation (K) for $K \in \mathscr{C}$ is obviously reflexive on S, and easily symmetric. Suppose then that $(a, b), (b, c) \in (K)$. Then $a^{-1}a = b^{-1}b = c^{-1}c$ and $ab^{-1}, bc^{-1} \in K$. Thus $a^{-1}a = c^{-1}c$ and $ac^{-1} = aa^{-1}ac^{-1} = (ab^{-1})(bc^{-1}) \in KK$ $\subset K$, i.e., $(a, c) \in (K)$. Assume now that $(a, b), (x, y) \in (K)$. Then $(ax^{-1})(ax) = x^{-1}a^{-1}ax = x^{-1}b^{-1}bx = y^{-1}b^{-1}by$ (since $(x, y) \in (K) \subset \mu$) = $(by)^{-1}(by)$, and further $(ax)(by)^{-1} = axy^{-1}b^{-1}bb^{-1} = (axy^{-1}a^{-1})(ab^{-1}) \in aKa^{-1}K \subset KK \subset K$. Thus $(K) \in \Lambda(S)$, the set of all congruences on S.

Suppose that $\rho \in \Lambda(S)$, ρ separates idempotents, and let $K = \{a \in S : a\rho \text{ is dempotent in } S/\rho\}$. Then K is easily a self conjugate inverse subsemigroup

of S. Also, if $a \in K$, then $(a, a^{-1}a) \in \rho \subset \mu$ so that $a(a^{-1}a) = a \in C(E)$. Thus $K \in \mathscr{C}$. If $(a, b) \in (K)$, then $a^{-1}a = b^{-1}b$ and $ab^{-1} \in K$. Thus $a\rho = (aa^{-1}a)\rho = (ab^{-1}b)\rho = (ab^{-1}ba^{-1})\rho(b)\rho = (bb^{-1}bb^{-1})\rho(b\rho)$ (since $(a, b) \in \mu$) = $b\rho$, i.e., $(a, b) \in \rho$. On the other hand, if $(a, b) \in \rho$, then $(a^{-1}a, b^{-1}b) \in \rho \subset \mathscr{H}$ and so $a^{-1}a = b^{-1}b$. Further, $(ab^{-1}, bb^{-1}) \in \rho$ and so $(ab^{-1})\rho$ is idempotent, i.e., $ab^{-1} \in K$. Thus $(K) = \rho$.

Finally, suppose that $K, L \in \mathscr{C}$ with (K) = (L) and $k \in K$. Then $(k, k^{-1}k) \in (K) = (L)$ and hence $k \in L$. Symmetrically, $L \subset K$ and hence K = L.

2. Kernels of homomorphisms

In this section, the elements K of \mathscr{C} in Lemma 1.2 will be called full (for $E \subset K$) central (for $K \subset C(E)$) self conjugate inverse subsemigroups of S.

A partition $P = \{E_{\alpha} : \alpha \in J\}$ is called *normal* provided that for each α , $\beta \in J$ and $a \in S$, there exist $\gamma, \delta \in J$ such that $E_{\alpha}E_{\beta} \subset E_{\gamma}$ and $aE_{\alpha}a^{-1} \subset E_{\delta}$ [4, Definition 4.1]. Whenever P is normal, there is a smallest congruence σ on S which induces P [4, Theorem 4.2]. It follows that if T_{α} is the largest inverse subsemigroup of S with E_{α} as its set of idempotents [4, Theorem 1.5], then $T_{\alpha}\sigma^{\alpha}$ is a group \mathscr{H} class of S/σ , say H_{α} with identity α .

Now let $P = \{E_{\alpha} : \alpha \in J\}$ be a normal partition of E. Let $\theta(P)$ be the set of congruences on S which induce P and let σ be the smallest element of $\theta(P)$. For each $\alpha \in J$, let T_{α} be the largest inverse subsemigroup of S with E_{α} as its set of idempotents. Let $M_{\alpha} = E_{\alpha}\omega \cap T_{\alpha}$ and let $N_{\alpha} = \{a \in T_{\alpha} : E_{\alpha}E_{\beta} \subset E_{\gamma} \text{ implies } aE_{\beta}a^{-1} \subset E_{\gamma}\}$. Let $M(P) = \bigcup \{M_{\alpha} : \alpha \in J\}$ and let $N(P) = \bigcup \{N_{\alpha} : \alpha \in J\}$. Let $\mathcal{K}(P) = \{K \subset S : M(P) \subset K \subset N(P), K \text{ is a self conjugate inverse subsemigroup of <math>S$, and $K_{\alpha} = K \cap T_{\alpha}$ is closed in $T_{\alpha}(K_{\alpha} = K_{\alpha}\omega \cap T_{\alpha})\}$.

THEOREM 2.1. The map $K \to (K) = \{(a, b) \in S \times S : a^{-1}a, b^{-1}b \in E_{\alpha} \text{ for some } \alpha \in J \text{ and } ab^{-1} \in K\}$ is a 1:1 order preserving map of $\mathscr{K}(P)$ onto $\theta(P)$. Furthermore, M(P), $N(P) \in \mathscr{K}(P)$.

PROOF. Since $\rho \to \rho/\sigma$ (= { $(a\sigma, b\sigma): (a, b) \in \rho$ }) for $\rho \in \theta(P)$ is a 1:1 order preserving map of $\theta(P)$ onto the set of idempotent separating congruences of S/σ , it is enough by Lemma 1.2 to show that $K \to K\sigma^{\sharp}$ for $K \in \mathscr{K}(P)$ is a 1:1 order preserving map of $\mathscr{K}(P)$ onto the set of full central self conjugate subsemigroups of S/σ .

Since M_{α} is the smallest closed self conjugate inverse subsemigroup of T_{α} which contains E_{α} [2, Lemma 3.4], then $M_{\alpha}\sigma^{\dagger} = \alpha$ by Lemma 1.1. Thus $M(P)\sigma = E(S/\sigma)$, the set of idempotents of S/σ . Assume now that $K \in \mathscr{K}(P)$, and let $k \in K$, say $k \in K_{\alpha} \subset N_{\alpha}$. Let $\beta \in J$ and let $\alpha\beta = \gamma$. Then $(k\sigma)\beta = (k\sigma)\beta(k\sigma)^{-1}(k\sigma) = \gamma(k\sigma) = \beta\alpha(k\sigma) = \beta(k\sigma)$. Thus $K\sigma^{\dagger}$, and also $N(P)\sigma^{\dagger}$, $\subset C(E(S/\sigma))$. Hence $K\sigma^{\dagger}$ is a full central self conjugate inverse subsemigroup) of S/σ .

Suppose now that H is a full central self conjugate inverse subsemigroup of S/σ and let $K = H(\sigma^{n-1})$. Immediately, K is self conjugate and inverse. Since $(E(S/\sigma))\sigma^{n-1} = M(P)$ by Lemma 1.1, $M(P) \subset K$. Now let $k \in K$. Since $k\sigma$ is a group element of S/σ , say $k\sigma \in H_{\alpha}$, then $k \in T_{\alpha}$. Also if $\alpha\beta = \gamma$, then $(kE_{\beta}k^{-1})\sigma = (k\sigma)\beta(k\sigma)^{-1} = \beta\alpha = \gamma$. Thus $kE_{\beta}k^{-1} \subset E_{\gamma}$ and so $k \in N_{\alpha}$. Hence $K \subset N(P)$. Now let $K_{\alpha} = K \cap T_{\alpha}$, i.e., $K_{\alpha} = (H \cap H_{\alpha})\sigma^{n-1}$. Since $H \cap H_{\alpha}$ is a subgroup of H_{α} , then K_{α} is closed in T_{α} by Lemma 1.1. This completes the argument that $M(P), N(P) \in \mathcal{H}(P)$ and $K \to K\sigma$ is a map of $\mathcal{H}(P)$ onto the set of full central self conjugate inverse subsemigroups of S/σ .

Finally, if K, $L \in \mathscr{K}(P)$ and $K\sigma^{\natural} = L\sigma^{\natural}$, then $K\sigma^{\natural} \cap H_{\alpha} = L\sigma^{\natural} \cap H_{\alpha}$ for each $\alpha \in J$. Thus $K_{\alpha} = L_{\alpha}$ for each α again by Lemma 1.1 and so K = L.

References

- A. H. Clifford, and G. B. Preston, *The Algebraic Theory of Semigroups*, (Math. Surveys No. 7, Amer. Math. Soc., Providence), Vol. I, 1961; Vol. II, 1967.
- [2] J. M. Howie, 'The maximum idempotent separating congruence on an inverse semigroup', Proc. Edinburgh Math. Soc. 14 (1964), 71-79.
- [3] G. B. Preston, 'Inverse semigroups', J. London Math. Soc. 29 (1954), 396-403.
- [4] N. R. Reilly, and H. E. Scheiblich, 'Congruences on regular semigroups', Pacific J. of Math. Leove 23 (1967), 349-360.
- [5] B. M. Schein, 'Representations of Generalized Groups', Izv. Vyss. Ucebn. Zaved. Matematika, Leove 28 (1962), 164–176 (Russian).

University of South Carolina Columbia, South Carolina 29208 U.S.A.