GROUPS COVERED BY FINITELY MANY NILPOTENT SUBGROUPS

GÉRARD ENDIMIONI

Let G be a finitely generated soluble group. Lennox and Wiegold have proved that G has a finite covering by nilpotent subgroups if and only if any infinite set of elements of G contains a pair $\{x, y\}$ such that $\langle x, y \rangle$ is nilpotent. The main theorem of this paper is an improvement of the previous result: we show that G has a finite covering by nilpotent subgroups if and only if any infinite set of elements of G contains a pair $\{x, y\}$ such that [x,ny] = 1 for some integer $n = n(x, y) \ge 0$.

1. INTRODUCTION AND RESULTS

Let x and y be elements of a group G and let n be a non-negative integer. As usual, [x,ny] is defined inductively by $[x,_0y] = x$ and $[x,_{n+1}y] = [[x,_ny], y]$, where $[x, y] = x^{-1}y^{-1}xy$. We say that G is covered by a family of subgroups $(H_i)_{i\in I}$ if $G = \bigcup_{i\in I} H_i$. The family $(H_i)_{i\in I}$ is called a covering of G. The following characterisation for finitely generated soluble groups covered by finitely many nilpotent subgroups was obtained by Lennox and Wiegold [4]:

THEOREM A. Let G be a finitely generated soluble group. Then the following properties are equivalent:

- (i) G is finite-by-nilpotent (that is, G has a finite covering by nilpotent subgroups, by Lemma 5 below).
- (ii) Any infinite set of elements of G contains a pair $\{x, y\}$ which generate a nilpotent subgroup.

The main purpose of this note is to improve the previous result. We shall prove:

THEOREM 1. Let G be a finitely generated soluble group. Then the following properties are equivalent:

- (i) G has a finite covering by nilpotent subgroups.
- (ii) Any infinite set of elements of G contains a pair $\{x, y\}$ such that [x, ny] = 1 for some integer $n = n(x, y) \ge 0$.

Received 15 February 1994

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

Note that this theorem is not true for an arbitrary group: the standard wreath product of a group of prime order p and an infinite elementary abelian p-group satisfies (ii) (this group is locally nilpotent) but does not satisfy (i) by Lemma 5 below (the centre is trivial).

The origin of the previous results is a problem of P. Erdös [6]. Associate with a group G a graph $\Gamma(G)$ in this way: the vertices of $\Gamma(G)$ are the elements of G, and two vertices x, y are connected by an edge if and only if $[x, y] \neq 1$.

Suppose that $\Gamma(G)$ contains no infinite complete subgraph (that is, any infinite set of elements of G contains a pair $\{x, y\}$ such that [x, y] = 1); is there then a finite bound on the cardinality of complete subgraphs of $\Gamma(G)$?

Neumann [6] solved the problem in the affirmative by proving that if $\Gamma(G)$ contains no infinite complete subgraph, then G has a finite covering by abelian subgroups. Therefore, if G is covered by n abelian subgroups, the order of a complete subgraph of $\Gamma(G)$ is at most n. Now consider the graph $\Gamma^*(G)$, where the vertices are the elements of G, and two vertices x, y are connected by an edge if and only if $[x,ny] \neq 1$ and $[y,nx] \neq 1$ for every integer $n \ge 0$. By observing that $\Gamma^*(G)$ contains no infinite complete subgraph if and only if G satisfies the property (ii) of Theorem 1, we obtain at once the following consequence of the Theorem 1:

COROLLARY. Let G be a finitely generated soluble group. Suppose that the graph $\Gamma^*(G)$ defined above contains no infinite complete subgraph. Then, there exists a finite bound on the cardinality of complete subgraphs of $\Gamma^*(G)$.

Now, consider an infinite group G. As was observed in [5], if for every pair $\{X, Y\}$ of infinite subsets of G there exists $x \in X$, $y \in Y$ such that [x, y] = 1, then G is abelian. For finitely generated soluble groups, this result was extended in this way:

THEOREM B. [9] Let k > 0 be an integer. Let G be an infinite finitely generated soluble group such that, whenever X, Y are infinite subsets of G, there exist $x \in X$, $y \in Y$ such that [x,ky] = 1. Then G is a k-Engel group (that is, [x,ky] = 1 for all x, y in G)

By a result of Gruenberg [2], it is well-known that every finitely generated soluble Engel group is nilpotent. Therefore, under the assumptions of Theorem B, the group G is nilpotent. As a consequence of Theorem 1, we shall prove a result of a similar nature:

THEOREM 2. Let G be an infinite finitely generated soluble group such that, whenever X, Y are infinite subsets of G, there exist $x \in X$, $y \in Y$ and an integer $n \ge 0$ such that [x, ny] = 1. Then G is nilpotent.

2. Some preliminary lemmas

Let u be an element of a group G. An element x of G is called a right Engel element with respect to u if there exists an integer $n \ge 0$ such that $[x_{,n}u] = 1$. Let $R_u(G)$ denote the set of all such elements. An element of $R(G) := \bigcap_{u \in G} R_u(G)$ is called a right Engel element. If the derived subgroup G' is nilpotent (in particular if G is metabelian), then $R_u(G)$ is a subgroup of G [7].

LEMMA 1. Let u, u_1, \ldots, u_k be arbitrary elements of a metabelian group G. Then

(i)
$$R_{u^{-1}}(G) = R_u(G)$$
.
(ii) $\bigcap_{t \in G} t^{-1} \{ R_{u_1}(G) \cap \ldots \cap R_{u_k}(G) \} t \subseteq \bigcap_{t \in G} t^{-1} R_{u_1 \dots u_k}(G) t$.
(iii) If $G = \langle w_1, \dots, w_q \rangle$ is finitely generated, we have

$$R(G) = \bigcap_{t \in G} t^{-1} \{ R_{w_1}(G) \cap \ldots \cap R_{w_q}(G) \} t.$$

PROOF: (i) It suffices to show the relation

$$[x, u^{-1}] = u^n [x, u^{-1}]^n u^{-n}$$

for arbitrary $u, x \in G$ and $n \ge 0$. Observe that our relation is true for $n \in \{0, 1\}$ and suppose that $[x_{n-1}u^{-1}] = u^{n-1}[x_{n-1}u]^{(-1)^{n-1}}u^{-n+1}$ for an integer n > 1. Then

$$[x_{,n}u^{-1}] = [[x_{,n-1}u^{-1}], u^{-1}] = [u^{n-1}[x_{,n-1}u]^{(-1)^{n-1}}u^{-n+1}, u^{-1}]$$
$$= u^{n-1}[[x_{,n-1}u]^{(-1)^{n-1}}, u^{-1}]u^{-n+1}.$$

Since $[x_{n-1}u]$ commutes with its conjugates, we can write

$$[x, u^{-1}] = u^{n-1}[[x, u^{-1}], u^{-1}]^{(-1)^{n-1}}u^{-n+1}$$

But $[[x_{n-1}u], u^{-1}] = u[[x_{n-1}u], u]^{-1}u^{-1}$, hence we obtain

$$[x, u^{-1}] = u^{n-1} \{ u[[x, u^{-1}u], u]^{-1} u^{-1} \}^{(-1)^{n-1}} u^{-n+1} = u^n [x, u^{-1}]^{(-1)^n} u^{-n}$$

(ii) We show the assertion in the case k = 2: the assertion in the general case will follow at once by an easy induction on k. For convenience denote u_1 by u and u_2 by v. Let x be an element of $\bigcap_{t \in G} t^{-1}\{R_u(G) \cap R_v(G)\}t$. Since $\bigcap_{t \in G} t^{-1}\{R_u(G) \cap R_v(G)\}t$ is a normal subgroup of G, it suffices to prove that x belongs to $R_{uv}(G)$. First note that [x, uv] is an element of $\bigcap_{t \in G} t^{-1}\{R_u(G) \cap R_v(G)\}t$. Thus there exists an integer n > 0

[4]

Π

0

such that $[x, uv_n u] = [x, uv_n v] = 1$. From the relations [y, uv] = [y, u][y, v][y, u, v]and $[y, u, v] = [y, v, u](y \in G')$, we deduce that $[x_{2n}uv]$ is a product of commutators of the form $[x, uv_r u', v']$, where $r + s \ge 2n - 1$, $r \ge s$ and $\{u', v'\} = \{u, v\}$. But the previous inequalities imply $r \ge n$, hence $[x_{2n}uv] = 1$ and so $x \in R_{uv}(G)$ as required.

(iii) Clearly, we have the inclusion $R(G) \subseteq \bigcap_{t \in G} t^{-1} \{R_{w_1}(G) \cap \ldots \cap R_{w_q}(G)\} t$. Conversely, to prove the inclusion $\bigcap_{t \in G} t^{-1} \{R_{w_1}(G) \cap \ldots \cap R_{w_q}(G)\} t \subseteq R(G)$, it must be shown that $\bigcap_{t \in G} t^{-1} \{R_{w_1}(G) \cap \ldots \cap R_{w_q}(G)\} t \subseteq R_u(G)$ for an arbitrary element $u \in G$. Write u in the form of a product of elements in $\{w_1, \ldots, w_q\} \cup \{w_1^{-1}, \ldots, w_q^{-1}\}$ and apply (i) (ii): it follows that

$$\bigcap_{t\in G} t^{-1}\{R_{w_1}(G)\cap\ldots\cap R_{w_q}(G)\}t\subseteq \bigcap_{t\in G} t^{-1}R_u(G)t.$$

Hence $\bigcap_{t \in G} t^{-1} \{ R_{w_1}(G) \cap \ldots \cap R_{w_q}(G) \} t \subseteq R_u(G)$, so (iii) is proved.

LEMMA 2. Let G be a metabelian group satisfying the property (ii) of Theorem 1. Then

- (i) $R_u(G)$ has finite index in G for every $u \in G$.
- (ii) If G is finitely generated, R(G) has finite index in G.

PROOF: (i) Suppose there exists $u \in G$ such that $|G: R_u(G)|$ is infinite and choose a right transversal T of $R_u(G)$ in G. If $x^{-1}ux = y^{-1}uy$ $(x, y \in T)$, then $[xy^{-1}, u] = 1$, hence x = y since $xy^{-1} \in R_u(G)$. Therefore, the set of conjugates of uby elements of T is infinite. Hence there exist $x, y \in T$ $(x \neq y)$ and n > 0 such that $[x^{-1}ux, ny^{-1}uy] = 1$. We have

$$1 = [yx^{-1}uxy^{-1}, u] = [u[u, xy^{-1}], u] = [[u, xy^{-1}], u]$$

= $[[xy^{-1}, u]^{-1}, u] = [[xy^{-1}, u], u]^{-1} = [xy^{-1}, u_{+1}u]^{-1}$

and so $xy^{-1} \in R_u(G)$, a contradiction.

(ii) Suppose that $G = \langle w_1, \ldots, w_q \rangle$. By (i), every subgroup $R_{w_1}(G), \ldots, R_{w_q}(G)$ has finite index in G, hence also $R_{w_1}(G) \cap \ldots \cap R_{w_q}(G)$ and $\bigcap_{t \in G} t^{-1} \{R_{w_1}(G) \cap \ldots \cap R_{w_q}(G)\}$

 $R_{w_q}(G)$ t. Using Lemma 1 (iii), we obtain the required result.

The following result is due to Lennox [4]:

LEMMA 3. Let G be a finitely generated soluble group and A an abelian normal subgroup such that G/A is polycyclic and (a, x) is polycyclic whenever $a \in A$, $x \in G$. Then G is polycyclic.

LEMMA 4. Let G be a finitely generated soluble group satisfying the property (ii) of Theorem 1. Then G is polycyclic.

PROOF: Denote by d the derived length of G. First we show the lemma in the case $d \leq 2$. If $d \leq 1$, the result is obvious. Suppose now that d = 2. By Lemma 2, |G: R(G)| is finite; hence R(G) is finitely generated. Moreover R(G) is a soluble Engel group and hence R(G) is nilpotent [2]. Therefore we can say that G is polycyclic-by-polycyclic so G is polycyclic. Finally, use induction on d in the general case. If d > 0, put $A = G^{(d-1)}$. It follows from the inductive hypothesis that G/A is polycyclic. Clearly, the derived length of $\langle a, x \rangle$ is at most 2 whenever $a \in A$, $x \in G$, hence $\langle a, x \rangle$ is polycyclic. Lemma 3 permits us to conclude that G is polycyclic.

Finally, we shall need the following characterisation of groups covered by finitely many nilpotent subgroups (see [10] for the equivalence of (i) and (ii) and [3] for the equivalence of (ii) and (iii)):

LEMMA 5. For an arbitrary group G, the following properties are equivalent:

- (i) G has a finite covering by nilpotent subgroups.
- (ii) For some integer c≥ 0, the term ζ_c(G) of the upper central series of G has finite index in G.
- (iii) G is finite-by-nilpotent.

3. PROOFS OF THE THEOREMS

PROOF OF THEOREM 1: We have only to show that (ii) implies (i) since the converse is clearly true. Use induction on the derived length d of G, the case d = 0 being trivial. For d > 0, it follows from the inductive hypothesis and Lemma 5 that there exists an integer $c \ge 0$ such that $|G/G^{(d-1)}: \zeta_c(G/G^{(d-1)})| < \infty$. But in a finitely generated soluble group, the hypercentre coincides with the set of right Engel elements [1]; hence $|G/G^{(d-1)}: R(G/G^{(d-1)})|$ is finite. Let e denote the exponent of the quotient group $(G/G^{(d-1)})/R(G/G^{(d-1)})$. Therefore, for all $x, y \in G$, there exists an integer $m \ge 0$ such that $[x^e, my] \in G^{(d-1)}$. The subgroup $H = \langle [x^e, my], y \rangle$ is clearly metabelian. Hence R(H) has finite index in H by Lemma 2. Denote by f the exponent of H/R(G). Thus there exists an integer $n \ge 0$ such that $[[x^e, my]^f, ny] = 1$. Since $[x^e, my]$ commutes with its conjugates, we obtain

$$[[x^{e}, y]^{f}, y] = [[x^{e}, y], y]^{f} = 1.$$

In other words, $[x^{e},_{m+n}y]$ belongs to the torsion group $\tau(G^{(d-1)})$ of $G^{(d-1)}$. This means that the quotient group $\{G/\tau(G^{(d-1)})\}/R(G/\tau(G^{(d-1)}))$ has exponent dividing e and so is finite. But $R(G/\tau(G^{(d-1)}))$ coincides with the hypercentre of $G/\tau(G^{(d-1)})$ by the result quoted above. Moreover, $G/\tau(G^{(d-1)})$ satisfies the maximal condition

G. Endimioni

on subgroups by Lemma 4. Therefore we have $R(G/\tau(G^{(d-1)})) = \zeta_{c'}(G/\tau(G^{(d-1)}))$ for some integer $c' \ge 0$ and $|G/\tau(G^{(d-1)}): \zeta_{c'}(G/\tau(G^{(d-1)}))|$ is finite. We deduce from Lemma 5 that $G/\tau(G^{(d-1)})$ is finite-by-nilpotent. But G satisfies the maximal condition (Lemma 4) hence $\tau(G^{(d-1)})$ is finite and so G is finite-by-nilpotent. Finally, Lemma 5 shows that G has a finite covering by nilpotent subgroups, as required.

PROOF OF THEOREM 2: It suffices to show that $\zeta^*(G) = G$, where $\zeta^*(G)$ is the hypercentre of G. Clearly, G satisfies the property (ii) of Theorem 1, hence G has a finite covering by nilpotent subgroups. It follows from Lemma 5 that $\zeta^*(G)$ has finite index in G. In particular, $\zeta^*(G)$ is infinite. Let x, y be elements of G. Subsets $x\zeta^*(G)$ and $y\zeta^*(G)$ are infinite, hence there exist $u, v \in \zeta^*(G), n \ge 0$, such that $[xu_nyv] = 1$. This implies $[x,ny] \in \zeta^*(G)$, so $G/\zeta^*(G)$ is an Engel group. But it is well-known that finite Engel groups are nilpotent (for example [8, 7.21]), so $G/\zeta^*(G)$ is nilpotent. Since the centre of $G/\zeta^*(G)$ is trivial, we obtain $\zeta^*(G) = G$.

References

- C.J.B. Brookes, 'Engel elements of soluble groups', Bull. London Math. Soc. 18 (1986), 7-10.
- [2] K.W. Gruenberg, 'Two theorems on Engel groups', Proc. Cambridge Philos. Soc. 49 (1953), 377-380.
- [3] P. Hall, 'Finite-by-nilpotent groups', Proc. Cambridge Philos. Soc. 52 (1956), 611-616.
- [4] J.C. Lennox and J. Wiegold, 'Extensions of a problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 31 (1981), 459-463.
- [5] P. Longobardi, M. Maj and A.H. Rhemtulla, 'Infinite groups in a given variety and Ramsey's theorem', Comm. Algebra 20 (1992), 127-139.
- [6] B.H. Neumann, 'A problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
- [7] T.A. Peng, 'On groups with nilpotent derived groups', Arch. Math. 20 (1969), 251-253.
- [8] D.J.S. Robinson, Finiteness conditions and generalized soluble groups (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- [9] L.S. Spiezia, 'Infinite locally soluble k-Engel groups', Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (9) Mat. Appl. 3 (1992), 177-183.
- [10] M.J. Tomkinson, 'Hypercentre-by-finite groups', Publ. Math. Debrecen 40 (1992), 313-321.

Université de Provence UFR-MIM URA-CNRS 225 3 place Victor Hugo F-13331 Marseille Cedex 3 France [6]