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Abstract

We study the dynamics of a family of third-order iterative methods that are used to find
roots of nonlinear equations applied to complex polynomials of degrees three and four.
This family includes, as particular cases, the Chebyshev, the Halley and the super-Halley
root-finding algorithms, as well as the so-called c-methods. The conjugacy classes of these
iterative methods are found explicitly.
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1. Introduction

One of the most important applications of an iterative method is the search for roots

of a nonlinear equation f(z) = 0. We begin with an initial guess Zo, which is then

improved by means of an iterative function <J>, that is, zn+\ = ®(zn)- Conditions are

imposed on z0 (and, eventually, on / or <t>) to ensure the convergence of the sequence

of iterates (zn)«>o to a solution z* of the equation f(z) = 0, as well as to establish the

order of convergence of the iterative method defined by <t>.

For example, Newton's root-finding algorithm

f(Zn)
Zn+\ =Zn~ J \Zn)

and other second-order root-finding algorithms have been extensively used and studied,

see [30] and the references therein. For the polynomial equations p{z) = 0, the
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iterative function Np defines a rational mapping on the Riemann sphere C = C U {00}.
The simple roots of p, that is, the roots that are not critical points are superattracting
fixed points of Np, which means that, if z* is a simple root of p, then Np(z*) = z* and
N'p(z*) = 0. This implies that if z0 is chosen conveniently near z*, then the sequence
zn+l = Np(zn) converges quadratically to z*. For the dynamics of Newton's method,
see [30].

Although third-order root-finding algorithms require more computational cost than
simpler algorithms, in some cases they are preferred on account of greater speed of
convergence of the sequence iterates when the initial guess is chosen conveniently.
For instance, these algorithms have been successfully used in the search for solutions
of nonlinear integral equations [11, 12]. They have also been used to solve quadratic
equations in a very fast way [3]. On the other hand, third-order root-finding algorithms
are also interesting from a theoretical point of view because they provide a variety of
results on existence and uniqueness of solutions that improve, by and large, the results
obtained by using Newton-type algorithms, see [25] or [6].

In this paper, we are interested in understanding a family of classical third-order
root-finding algorithms from the point of view of their dynamics.

The paper is organized as follows. In Section 2, we review the basic notions on
complex dynamics to be used. For a comprehensive study of the theory of iteration of
rational maps, see [9], [28] and [29]. In Section 3, we introduce a general family of
third-order root-finding algorithms whose dynamics we are interested in understand-
ing. These root-finding algorithms are induced by iterative methods. The conjugacy
classes of the family of iterative methods presented in Section 3 are constructed in
Section 4. Finally, in Section 5, the equations of the critical points and additional
fixed points of the iterative methods under study are obtained.

2. Basic notions

Before presenting the iterative methods we are interested in, we shall recall some
basic notions of complex dynamics. Let

be a rational map on the Riemann sphere, where P and Q are complex polynomials
with no common factors. We say that z0 is a fixed point of R if R(zo) = Zo- For z 6 C,
we define its forward orbit as the set orb(z) = {z, R(z), R2(z), ..., Rk(z), ...} where
Rk, for k € N, means the k-fold iterate of R. A periodic point of period n is a point
Zo such that R"(zo) = Zo and Rj(zo) # Zo for 0 < j < n. Observe that if z0 e C
is a periodic point of period n > 1, then zo is a fixed point of R". Also, recall that
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a fixed point zo is, respectively, attracting, repelling or indifferent in the case where
l^'(zo)l is less than, greater than, or equal to 1. A periodic point of period n is said
to be attracting, repelling or indifferent if, as a fixed point of R", it is respectively
attracting, repelling or indifferent. A superattracting fixed point of R is a fixed point
which is also a zero of the derivative R'. A periodic point of period n is said to be a
superattracting periodic point of R if, as a fixed point of R", it is superattracting.

Let £ be an attracting fixed point of R. The basin of attraction of f is the set
B(£) = {z € C : R"(z) —> £ as n —> oo}. The immediate basin of attraction of
an attracting fixed point £ of R, denoted B*(£)> is the connected component of
containing £. Finally, if z0 is an attracting periodic point of period n of R, the
of attraction of the orbit orb(z0) is the set fi(orb(z0)) = U"=o ^ ;( f i (zo)) , where B(ZQ)
is the attraction basin of z0 as a fixed point of R". The Julia set of a rational map R,
denoted ^/(R), is the closure of the set of repelling periodic points. Its complement
is the Fatou set £?{R). If/? has an attracting, fixed point zo, then the basin of attraction
B(zo) is contained in the Fatou set and ^/(R) = 3B(z0). Therefore, the chaotic
dynamics of R are contained in its Julia set (see [9]).

In what follows, we will assume that / : U —> C is an analytic function where
U C C is an open set. Our main interest is the case where U — € and / is a
polynomial function.

DEFINITION 1. We say that a map / -> Tf carrying a complex-valued function /
to a function Tf : C —>• C is a one-point iterative root-finding algorithm if every root
of / is an attracting fixed point of Tf. It is convergent if, given an initial guess Zo.
the sequence of iterates (Zk)k>o, where Zk+\ = 7/(zt), converges to a root z* € C of /
whenever z0 is sufficiently close to z*.

3. The third-order family

We consider the family of iterative root-finding algorithms given for n > 0 by

Zn+\ = MffiAZn) = Zn~ [1 + —f ^ " .v + c[Lf(zn)f ) U f{zn)
\ 2{l -&Lf{Zn)) j

where Zo is an initial guess, Lf(z) = f(z)f"(z)/f'(z)2, uf(z) = f(z)/f'(z), if
f'(z) ^ 0, and 6, c are complex parameters, both to be chosen conveniently in
each case. This iterative root-finding algorithm is induced by the family of iterative
functions

(3-D
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Observe that when we apply any of these iterative functions (3.1) to a polynomial,
we obtain a rational map on the Riemann sphere.

This family of third-order iterative algorithms includes, as particular cases, the
following (see [2]).

(1) When c = 0 and the parameter 6 is real and nonnegative, we obtain the family
of third-order iterative functions Mf0(z) = Afji9i0(z) studied in [23]

In particular, we have that

(a) The well-known Chebyshev iteration function

Cf{z) = z-

is obtained from family (3.2) when 9 = 0.
(b) The well-known Halley iterative method

2/'(z)2 - /(z)/"(z)

is obtained from family (3.2) when 9 — 1/2. The dynamics of Halley's iterative
method have been studied in [10] and [31].

(c) Another third-order iterative method perhaps not as well known as the previous
two is the so-called super-Halley iterative method (see [24]), which is given by

and which is obtained from family (3.2) when 9 = 1.

(2) When c is a nonzero parameter and 9 = 0, we obtain the so-called c-iterative
methods

Mf,c(z) = z-(l+ ]-Lf(z) + cLf(zA uf(z).

This class of iterative methods has been introduced in [1] and [22], where we can find
a study of their convergence for 0 < c < 2.

Many papers have been published on the convergence of third-order iterative root-
finding algorithms. Thus, for Chebyshev's method we have [7, 12, 26]; for Halley's
method [11, 15]; for the super-Halley method [16, 24], for the c-methods [1]; as well
as for Laguerre's iterative root-finding algorithm, [20] and the references therein.
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4. Conjugacy classes

We recall the definition of conjugacy.

DEFINITION 2. Let Ru R2 : C -> C be two rational maps. We say that Rt and R2

are conjugated if there exists a Mobius transformation (an analytic homeomorphism
of the Riemann sphere) </> : C ->• C such that R2 o (p (z) = <j> o R{(z), for all z € C.

The maps Rt and R2 can be regarded as the same map viewed in different coordinate
systems.

An important feature of conjugation of rational maps is given by the following
classical result.

THEOREM 4.1. Let R\ and R2 be two rational maps, and let </> be a Mobius transfor-
mation conjugating Rt and R2, that is, R2 — <t> ° R\ ° <P~l- Then J?(R2) = <j>{jP(R\))
and J? (R2) = 4>(J> (/?,))•

Conjugacy plays a central role in understanding the behaviour of classes of maps
from the point of view of dynamical systems in the following sense. Suppose that
one wishes to describe both the quantitative and the qualitative behaviour of a map
z i-> Qfiz), where <t>/ is some iteration function as in Section 3. Since conjugacy
preserves fixed and periodic points and their types as well as basins of attraction, the
dynamical features concerning / are carried by the fixed points of <t>/ as well as by
the nature of such fixed points which may be (super)attracting, repelling or indifferent.
Therefore, it is worthwhile to build up, for polynomials of degree two and three, a
parameterized family consisting of polynomials which are as simple as possible such
that a conjugacy exists between the corresponding iterative methods.

For the family of iterative methods (3.1), we begin with a useful result.

THEOREM 4.2 (Scaling). Let f(z) be an analytic map on the Riemann sphere, and
let T(z) = az + f$, with a ^0, be an affine map. lfg(z) = k(f o T(z)), where X e C
is a nonzero constant, then T o Mg S c o T~l(z) = M/,e,c(z). That is, Mf,e,c and Mg6c

are conjugated by T.

PROOF. See [4]. D

The scaling theorem allows us, via suitable changes of coordinates, to reduce the
study of the dynamics of iterative methods Mj^.c to the study of specific families of
iteration functions of simpler maps.

We recall that a polynomial is said to be generic when all of its roots are simple.
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4.1. Quadratic polynomials It is well known that every quadratic polynomial
p(z) = az2 + Ifiz + y (a 5̂  0), reduces, via the affine change of coordinates
L(z) = (z — P)/a, to the polynomial p^{z) = z2 — /z, where \x = fi2 — ay — /3,
that is, any quadratic polynomial, via an affine change of coordinates, reduces to a
polynomial belonging to the one-parameter family of quadratic polynomials {/>M}M.
Note that pM is generic if fx ^ 0. Now we have the following result.

THEOREM 4.3. Let p(z) = az2 + 2f$z + y, with a ^ 0, be a generic quadratic
polynomial, and let /?M(z) = z2 — fx, where /x = /32 — ay — f). Then the affine scaling
of coordinates L(z) = (z — f$)a provides a conjugacy between Mpgc and MPii gc.

PROOF. It is straightforward. D

REMARK. For the non-generic polynomial p(z) = z2, the iterative method Mp6ijC(z)
reduces to the simpler linear iterative method

z(6-49-2c + c9)
G(Z) = 80^2) '

which has z0 = 0 as its unique attracting fixed point.

DEFINITION 3 (Universal Julia set). We say that an iterative root-finding algorithm
/ —» Tf has a universal Julia set for polynomials of degree d if there exists a rational
map R such that for every polynomial / of degree d, J? {Tf) is conjugated by a
Mobius transformation <p to J(R), that is, ./{Tf) = 4>{/{R)).

The result that follows, due to Cayley [13, 14] and to Schroder [32], has great
historical importance. In an attempt to understand the dynamics of Newton's method
in the complex plane, Cayley investigated the dynamics of Newton's method applied
to polynomials of a particularly simple form. He realized that major difficulties would
arise when attempting to extend the following result for quadratics to cubics and
beyond. It is believed that this circumstance motivated further work of P. Fatou and
G. Julia along these lines.

THEOREM 4.4. Let
z2 - ab

Np(z) =
2z-(b + a)

be the rational map obtained from Newton's method applied to a generic quadratic
polynomial p(z) = (z — a)(z~ b). Then Np is conjugated to the map R(z) = z2 by the
Mobius transformation M(z) = (z — a)/(z — b), that is, R(z) = M o Np o M~\z)-
Moreover, J?\NP) is the straight line in the complex plane corresponding to the locus
of points equidistant from a and b.
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It follows from Theorem 4.4 that the Julia set of Newton's algorithm applied to a
quadratic polynomial, up to a change of coordinates, is the unit circle in the complex
plane. That is, Newton's iteration function has a universal Julia set when it is applied
to quadratic polynomials.

We also have extensions of this theorem due to K. Kneisl.

THEOREM 4.5 (See [27]). Let

z3 - 3abz + ab(a + b)
Hp(z) =

3z2 - 3(a + b)z

be the rational map obtained from Halley's iterative root-finding algorithm applied
to a generic quadratic polynomial p(z) = (z — a)(z — b). Then Hp is conjugated to
the map Q{z) = z3 by the Mobius transformation M(z) = (z — a)/(z — b), that is,
Q(z) = M o Hpo M~l(z). Moreover, J1(Hp) is the straight line in the complex plane
corresponding to the locus of points equidistant from a and b.

Theorem 4.5 shows that the Julia set of Halley's iterative root-finding algorithm
applied to a quadratic polynomial, up to a change of coordinates, is the unit circle in
the complex plane. That is, Halley's iterative method has a universal Julia set when it
is applied to quadratic polynomials.

For Chebyshev's iterative root-finding algorithm, also known as the super-Newton
algorithm, the following result holds.

THEOREM 4.6 (See [27]). Let

3z4 - 2(a + 6)z3 - 6abz2 + 6ab(a + b)z - ab(a2 + lab + b2)
(2z-a- b)3

be the rational map obtained from the super-Newton algorithm applied to a generic
quadratic polynomial p(z) — (z — a)(z — b). Then Cp is conjugated to the map
53(z) = (z4 + 2z3)/(2z + 1) via the Mobius transformation M{z) = (z - a)/(z - b).
That is, S3(z) = MoCpo M~l(z).

Theorem 4.6 shows that the Julia set of Chebyshev's iterative root-finding algorithm
applied to a quadratic polynomial, up to a change of coordinates, is the same as that of
the rational map S3(z) = (z4 + 2z3)/(2z + 1). This means that Chebyshev's iterative
method has a universal Julia set when it is applied to quadratic polynomials.

Now we have the following extension of the above theorems.

THEOREM 4.7. The rational map obtained from the A//,e,c(z) algorithm applied to
a generic quadratic polynomial p(z) = (z — a){z — b) is conjugated to the rational
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map

R(z) = zHz5 + (6 - 20)z4 + (14 - S9)z3 + (16 -Ac- \29)z2

+ (9 - 8c - 80 + ScO)z + 2-4c- 29)/((2 -Ac- 26)z5

+ (9 - 8c - 80 + 8c(9)z4 + (16 - Ac - \29)z3

+ (14 - W)z2 + (6 - 29)z + 1)

via the Mo'bius transformation M(z) = (z — a)/(z — b). In particular, for the super-
Halley algorithm we obtain the simplest rational map T(z) = z4, and for the c-
algorithms we obtain the following rational map:

z3(z3+4z2 + 5z + 2 - 4 c )
U ) ~ (2-4c)z 3 + 5z2+4z + T

The proof of Theorem 4.7 is straightforward.
Theorem 4.7 shows that the Julia set of the super-Halley iterative root-finding

algorithm applied to a quadratic polynomial, up to a change of coordinates, is the unit
circle in the complex plane. This means that the super-Halley iteration function has
a universal Julia set when it is applied to quadratic polynomials. The c-algorithms
also have the properties of a universal Julia set when they are applied to quadratic
polynomials.

4.2. Cubic polynomials For cubic polynomials we have the following result.

THEOREM 4.8. Let p(z) = (z — Zo)(z — Zi)(z — Zi) be a generic cubic polynomial
with roots ordered as follows: 0 < |zo| < |zi| < \zi\- Let T(z) = (z2 — Zo)z + Zo and
k = (zi — Zo)/fe ~ Zo)- Using the affine change of coordinates T, the polynomial p
reduces to an element belonging to the parameterized family {qp}p&c, where qp{z) =
z(z — l)(z — p). Moreover, T is a conjugacy between Mp#,c and Mq^e<c, or in other

pfix.words, T~] o Mqific oT = M

The proof of Theorem 4.8 is straightforward.
It is easy to show that the one-parameter family qp(z) = z(z — l)(z — p) reduces

to the well-known one-parameter family PA(Z) = z3 + (A — l)z — A (see [17])
by an affine change of coordinates. Therefore, we have reduced the study of the
dynamics of Mq^e_c to the study of the dynamics of MPA#tC, and since every cubic
polynomial p(z) = az3 + bz2 + cz + d reduces, via an affine change of coordinates,
to a polynomial belonging to either the one-parameter family pA for a suitable choice
of the parameter A or to z3, it follows that an appropriate scaling puts MPtgiC inside
the conjugacy class of MQ9C, where Q stands for either pA or z3 in each case. Now
for the polynomial p(z) = z3, we have

z(45 - 12c - 360 + 8c6>)
M"$AZ) = 27(3 - 29) '
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The relationship between the parameter A and the parameter p is given above and
the relationship between the parameter p and the roots of the original polynomial is
given in the statement of the theorem. A study of the A-parameter space for Newton's
iterative method associated to the one-parameter family pA can be found in [17].
Recall that Konig's iterative method applied to a complex function / is given by

= z + ( a - 1 ) (a-1) (a = 2, 3,. . .) .

This is a family of iterative methods depending on the parameter a. It includes
Halley's iterative method as a member. A fair amount of progress in the study of the
A -parameter space when this family of root-finding algorithms is applied to the cubic
polynomials pA has been achieved in [5, 33, 34].

A = 1 A = 2

FIGURE 1. Attraction basins of the roots of pA and the Julia set of the rational obtained when Chebyshev's
iterative method is applied to pA.

A=0 A = 1 A = 2

FIGURE 2. Attraction basins of the roots of pA and the Julia set of the rational obtained when Halley's
iterative method is applied to pA.
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FIGURE 3. Attraction basins of the roots of pA and the Julia set of the rational obtained when the
super-Halley iterative method is applied to pA.

FIGURE 4. Attraction basins of the roots of p^ and of pA, and the corresponding Julia set when the
omethod, for c = 2, is applied to p^, with /z = 2; and to pA, with A = 1, respectively.

4.3. Quartic polynomials
holds.

In the case of quartic polynomials, the following result

THEOREM 4.9. Let p(z) = (z - Zo)(z - Zi)(z - Z2)(z -u)bea degree four generic
polynomial having its roots ordered as follows: 0 < |zo| < |zi| < IZ2I < IZ31-
Letr) = (zi - Zo)/(Z3 - Zo) and £ = (z2 - Zo)/fe - Zo)- t/^/ng ffte a#me change of
coordinates T, the polynomial p reduces to an element belonging to the parameterized
family of quartic polynomials { p̂,M}p,̂ ec where qp,^{z) = z{z — l)(z — p){z — fi).
Moreover, T is a conjugacy between Mp#c and MqnK#iC.

The proof of Theorem 4.9 is straightforward.
The degree four case is somewhat less well understood. However, some computa-

tional progress has been made concerning the description of the parameter space for
the family of polynomials pk(z) = z4 + (A. - l)z2 - X = (z - l)(z -I- I)(z2- + A.), where
A. is a complex parameter. This is achieved in [8] for Newton's method.
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5. Equation of critical and additional fixed points
for the third-order family of iterative methods

In this section, we give the equations for critical points and for additional fixed
points, if any, for the iterative methods MPt$iC, when p is a generic polynomial.

Let p be a generic polynomial. The derivative of the iterative method Mp6c is
given by

= ' " ( [2(1 -

Therefore, if p(z) = 0 and p'(z) £ 0, then Mp6c{z) = 0. Hence, the roots of p
are superattracting fixed points of Afp,e,c. The solutions of the equation M'p g c(z) = 0,
other than the roots of p, are called free critical points.

(1) For Chebyshev's iterative function Cp, the derivative is given by

Therefore, if C'p(z) = 0 then either p(z) = O(rootsof p) or 3 p" (z)2 - p(z)p'"(z) = 0.
The solutions of 3p"{z)2 - p'(z)p'"(z) = 0 that are not solutions of p(z) = 0,
if any, are the free critical points of Chebyshev's iterative method. For example,
Chebyshev's iterative method has no free critical points when it is applied to the
quadratic polynomial pM and has cx, c2 = ±y/(A — 1)/15 as its free critical points
when it is applied to the cubic polynomial pA (see [33]).
(2) For Halley's iterative method Hp{z), the derivative is given by

- p(z)p"(z))

— 2

(2[p'(zW - P(z)p"(z))
where

S(p)(z) =
2\p'(z)JP'{z)

is the Schwarzian derivative of p(z). Therefore, if H'p(z) = 0, then either p(z) = 0
(roots of p) or 3p"(z)2 - 2p'(z)p'"(z) = 0. Solutions of 3p"(z)2 - 2p'(z)p'"(z) = 0
that are not roots of p(z), if any, are the free critical points of Halley's iteration
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function. For example, Halley's iterative method has no free critical points when it is
applied to the quadratic polynomial p^ and has cx,c2 = ±y/(A — l)/6 as free critical
points when it is applied to the cubic polynomial pA. A study of the parameter space
for Halley's iterative method associated to the polynomial pA was done in [31].
(3) For the super-Halley iterative method, the derivative is given by

2 \ P ' ( z ) J (P()p()p())

Therefore, if SH'p(z) = 0, then either p{z) = 0 (roots of p) or p(z)p"(z)3 -
p'(z)3p'"(z) = 0. The solutions of p{z)p"(z)3 - p'{z)3p'"{z) = 0 that are not
roots of p(z), if any, are the free critical points of the super-Halley iterative method.
The super-Halley iterative method applied to the quadratic polynomial pM has no free
critical points and when it is applied to the cubic polynomial pA the free critical points
are the solutions of the equation

54z6 + 54(A - l)z4 - 216z3 - 54(A - 1)V - 6(A - I)3 = 0.

(4) For the c-iterative methods, the derivative is given by

)V'(z)2 - l0cp(z)P"(z)3 + p'(z)V"(z)

+ 4cp(z)p'(z)p"(.z)p'"(z)].

Therefore, for a c-iterative method the solutions of the equation

3(2c - l ) / / (z )V(z) 2 - l0cp(z)p"(z)3

+ p'(z)3p'"(z)+4cp(z)p'(z)p"(z)p"'(z) = 0

that are not roots of p, if any, are the free critical points of the c-iterative method.
For the c-iterative function applied to the quadratic polynomial pM, the free critical
points are Ci,c2 = ±V(15 — 5C)C/A/(3 — c) and when it is applied to the cubic
polynomial pA the free critical points are the solutions of the equation

2(405 - 108c)z6 + 2(243 + 144c)(A - l)z4 + 18(3(A2 + 1)

+ 20(2 - A)Ac - 2(3A + 10c))z2 + 144Ac(A - l ) z - 6(A - I)3 = 0.

The reason why free critical points are important is due to the following classical
result.

THEOREM 5.1 (Fatou-Julia). Let Rbea rational map. Ifzo is an attracting periodic
point, then the immediate basin of attraction B*(zo) contains at least one critical
point.
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Thus, as a consequence of this theorem, the existence of attracting periodic orbits
interferes with our search for roots of the equation p(z) = 0 because if this is the
case, the orbit of each free critical point must be computed and its set of limit points
determined. If the set of limit points of the orbit of some free critical point is not a
root of p, then it must be an attracting periodic orbit of Mp,gx.

We notice that the existence of an attracting periodic orbit is not all that interferes
with the basins of attraction of the roots of p(z). In some cases, there may exist
additional fixed points, that is, fixed points other than the roots of p. It is clear that the
roots of p are fixed points of Mp,ex. In fact, as we saw earlier, they are superattracting
fixed points.

To find the additional fixed points of the iterative methods MpMc, we must solve
the equation MPiex(z) = z subject to the condition p(z) ^ 0.

We have Mp#x(z) = z if and only if

Since the roots of p are fixed points of MPi(iO we may assume that p(z) ^ 0. Thus
the additional fixed points are the solutions, other than the roots of p, if any, of the
equation

2/7'(z)6 + (1 - 2e)p(z)p'(z)4p"(z)

+ 2cp(z)2p'(z)2p"(z)2 - 2c9p{z?p"{z? = 0.

(a) For Chebyshev's iterative method, the additional fixed points are the solutions,
if any, of the equation 2p'(z)2 + p(z)p"(z) = 0.

For example, Chebyshev's method applied to the quadratic polynomial /?M has
two additional fixed points given by z\, Zi = ±^/Ji/5 and when it is applied to the
cubic polynomial pA the additional fixed points are the solutions of the equation
12z4 + 9(A - \)z2 - 3Az + (A - I)2 = 0.

(b) For Halley's iterative method, the additional fixed points are given by the
solutions of the equation p'(z) = 0, that is, the additional fixed points are the critical
points of p. Since

, _ P(z)2(3p"(z)2 - 2p'{z)p"'{z))
" U ; (-2p'(z)2 - p(z)p"(z))2 '

if p(zo) ^ 0 and p'{zo) # 0, then H'f(zo) = 3, or in other words any additional fixed
points of Halley's method are repelling fixed points (see [19, Proposition 1]).

(c) For the super-Halley iterative method, the additional fixed points are the solu-
tions of the polynomial equation 2p'(z)2 — p(z)p"(z) = 0.
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The super-Halley method applied to the quadratic polynomial p^ has two additional
fixed points z\,Zi = ±y/-~JT/3 and when it is applied to the cubic polynomial pA, the
additional fixed points are the solutions of the equation

9z6 + 9(A - l)z4 - 36AZ
3 - 9(A - - (A - I)3 = 0.

(d) For the c-methods, the additional fixed points are the solutions of another
polynomial equation, namely 2p'(z)4 + p(z)p'(z)2p"(z) + 2cp(z)2p"(z)2 = 0.

When the c-methods are applied to the quadratic polynomial pM, we have four free
fixed points

2c + VI -
27TTo

and

_
Z3'u ~

+ 5)(1 + 2c - VI - 16c)fi

and when they are applied to the cubic polynomial pA, the additional fixed points are
the solutions of the equation

36(3 + c)zs + (153 + 12c)(A - l)z6 - (27 + 72c)Az5

+ (75 + 36c)(A - 1)Y - (18 - 12c)A(A - l)z3

+ (1504 - I)3 + 36A2c)z2 - 3A(A - l)2z - (A - I)4 = 0.

Chebyshev's method Halley's method Newton's method

FIGURE 5. The regions in parameter space A 6 [—2,2] x [—2, 2] in which the corresponding critical
points are attracted to some of the roots of the polynomial pA when the indicated iterative methods are
applied to it.
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6. Conclusions

357

To summarize, in this paper we study a large class of third-order methods from the
point of view of their dynamics. For each method, we establish its conjugacy classes
and find explicit formulations for both its additional fixed points and its free critical
points.

TABLE 1. x0 = 1.5, x* = 2, /«, - error, n = 100.

Iterations
1
2
3
4
5
6

Newton
0.1826
0.0146

1.06 x 10-4

1.46 x 10-8

1.24 x 10~12

0

Chebyshev
0.1474
0.0036

2.31 x 10"7

8.41 x 10-13

0

Halley
0.0408

2.59 x 10-5

4.86 x 10~13

0

c = 2
0.16206

3.86 x 10-4

1.23 x 10-12

0

We finalize with an application where the studied methods are applied to quadratic
equations of the type

F (x) = xTAx + Bx + C = 0, (6.1)

where dim(A) = (n x n) x n, dim(fi) = n x n and dim(C) = dim(x) = n.
In this case, the second Frechet derivative is constant, F"(x) = A + AT.
The above kind of equations may come from the discretization of equilibrium

problems, where interacting forces between particles determine the output. The
discretization of the Laplacian using divided differences also gives quadratic equations
[21]. Other interesting examples may be found in Fredholm equations [18] as

r e'+sx{t)2dt.

However, the actual case we are going to analyze will have an exact solution in order
to make the evaluation of errors easier. We randomly generate A and B, and then we
determine C such that X*(i) = 2, i = 1, . . . , « , is a solution of (6.1).

In Table 1 the dimension is n = 100.
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