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Abstract. Tides come from the fact that different parts of a system do not fall in exactly the
same way in a non-uniform gravity field. In the case of a protoplanetary disk perturbed by an
orbiting, prograde protoplanet, the protoplanet tides raise a wake in the disk which causes the
orbital elements of the planet to change over time. The most spectacular result of this process
is a change in the protoplanet’s semi-major axis, which can decrease by orders of magnitude on
timescales shorter than the disk lifetime. This drift in the semi-major axis is called planetary
migration. In a first part, we describe how the planet and disk exchange angular momentum
and energy at the Lindblad and corotation resonances. Next we review the various types of
planetary migration that have so far been contemplated: type I migration, which corresponds
to low-mass planets (less than a few Earth masses) triggering a linear disk response; type II
migration, which corresponds to massive planets (typically at least one Jupiter mass) that open
up a gap in the disk; “runaway” or type III migration, which corresponds to sub-giant planets
that orbit in massive disks; and stochastic or diffusive migration, which is the migration mode of
low- or intermediate-mass planets embedded in turbulent disks. Lastly, we present some recent
results in the field of planetary migration.

Keywords. planets and satellites: formation, planetary systems: formation, planetary systems:
protoplanetary disks

1. Introduction
The importance of the tidal interaction between a protoplanetary disk and a form-

ing planet was first recognized long before the discovery of the first extrasolar planet
in 1995. Goldreich & Tremaine (1980) discussed the case of Jupiter in a conservative
protoplanetary nebula, and found that its semi-major axis should evolve as a result of
the gravitational interaction between the planet and the nebula (although they could not
determine whether it should increase or decrease).

When the first extrasolar planet was discovered orbiting 51 Peg with a period of
4.23 days (Mayor et al. 1995) at a distance of only 0.052 AU from the central star,
theories of orbital migration received renewed attention. None of the reasonable plane-
tary formation scenarios was able to account for the formation of a planetary core that
close to the star. It therefore appeared likely that this planet had formed farther out in
the protoplanetary disk and then migrated towards the star, along the lines of predictions
made by the theoretical work of the eighties (Lin et al. 1996).

Had anyone doubted that significant planetary migration is common in forming plan-
etary systems, additional clues were provided by the discovery of planetary systems ex-
hibiting low-order mean motion resonance. Under the effect of differential migration (i.e.,
the outer planet migrates inwards faster than the inner one), two planets can converge
and be captured in a low-order mean motion resonance.
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The present contribution is organized as follows: (i) in section 2 we define the nota-
tion; (ii) in section 3, we present the torque expressions at the Lindblad and corotation
resonances; (iii) in section 4, we present the different migration modes that have been
envisaged so far; (iv) finally, in section 5 we present a list of recent results that numerical
simulations have recently brought to our knowledge of planet–disk interactions.

2. Notation
We consider a Keplerian gaseous disk with vertical scaleheight H(r), surface density

Σ(r), kinematic viscosity ν(r), and orbital frequency Ω(r), where r is the distance to
the central object. We consider a planet with a prograde orbit coplanar to the disk, of
mass Mp and orbital frequency Ωp . Whenever we consider a single azimuthal Fourier
component of a given quantity, we denote by m its azimuthal wavenumber.

3. Disk torque at an isolated resonance
The problem of determining the torque between any perturbing potential and the disk,

in the linear regime, amounts to determining the torque exerted on the disk by the Fourier
components of the potential. Goldreich & Tremaine (1979) have shown that angular
momentum exchange between the perturbing potential and the disk occurs only at the
Lindblad and corotation resonances. Lindblad resonances correspond to locations in the
disk where the perturbing potential’s frequency in the matter frame (ω̃(r) = m[Ωp−Ω(r)])
matches ±κ(r) (the epicyclic frequency). The corotation resonance occurs where the
perturbing potential’s frequency is zero in the matter frame, that is to say at a radius
where the disk material rotates along with the perturbing potential.

3.1. Torque at a Lindblad resonance
3.1.1. Torque expression

The torque expression at a Lindblad resonance by a single Fourier component of the
potential with m-fold symmetry is (Goldreich & Tremaine 1979, Meyer-Vernet & Sicardy
1987, Artymowicz 1993)

Γm = − mπ2Σ
rdD/dr

(
r
dΦm

dr
+

2Ω
Ω − Ωp

Φm

)2

, (3.1)

where Γm is the torque exerted on the disk material by the perturbing potential, D =
κ(r)2 −m2 [Ω(r)−Ωp ]2 represents a distance to the resonance and Φm (r) is the amplitude
of the potential component. In Eq. (3.1), the term in brackets and rdD/dr are both to be
evaluated at the resonance location. In a Keplerian disk, rdD/dr is positive at the ILR
(Inner Lindblad Resonance, where ω̃ = −κ) and negative at the OLR (Outer Lindblad
Resonance, where ω̃ = +κ). The perturbing potential therefore exerts a negative torque
on the disk at the ILR, and a positive torque at the OLR. Newton’s third law thus implies
that the disk exerts a positive (negative) torque on the perturber at the ILR (OLR).

3.1.2. Lindblad resonance location
In order to evaluate the torques given by Eq. (3.1), one has to know the location

of the Lindblad resonances. As stated previously, a Lindblad resonance is found where
ω̃ = ±κ (the upper sign stands for the OLR, while the lower sign stands for the ILR).
Using the fact that κ = Ω in a Keplerian disk, we obtain: Ω(rLR) = m

m±1 Ωp . Note that
owing to pressure effects, the waves launched by the potential components are slightly
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offset from the resonance locations. In particular, as m → ∞ the turning point locations
tend to pile up at a radius given by: r = rc ± Ω

2A H where A = (1/2)rΩ dΩ/dr is Oort’s
first constant. These points of accumulation correspond to the radius at which the flow
becomes supersonic in the corotating frame (Goodman & Rafikov 2001). In the case of
a Keplerian disk, these points are located ±(2/3)H away from the corotation radius.

3.2. Torque at a corotation resonance
The angular momentum exchange at a corotation resonance and a Lindblad resonance
are due to different physical processes. In the latter case the perturbing potential tends
to excite epicyclic motion, and the angular momentum deposited is evacuated through
pressure-supported waves. On the other hand, these waves are evanescent in the coro-
tation region and therefore unable to remove the angular momentum brought there by
the perturber (Goldreich & Tremaine 1979). In the linear regime, the corotation torque
exerted by a perturbing potential with m-fold symmetry on the disk is

ΓC =
π2m

2

[
Φ2

m

dΩ/dr

d

dr

(
Σ
B

)]
rc

, (3.2)

where the term in brackets is to be evaluated at the corotation radius. The corotation
torque is thus proportional to the gradient of Σ/B, evaluated at the corotation radius,
where B is equal to half the flow vorticity. The corotation torque is therefore proportional
to the gradient of the vortensity (ratio of the vorticity to the surface density). The
corotation torque is therefore zero in a disk with Σ ∝ r−3/2 , such as the minimum mass
solar nebula (MMSN).

The physical picture of the flow at a corotation resonance with azimuthal wavenumber
m is characterized by a set of m eye-shaped libration islands in which fluid elements
move along closed streamlines. The corotation torque is prone to saturation, which can
be described as follows: when the disk viscosity is close to zero, the vortensity is conserved
along a fluid element’s path. The libration of fluid elements redistributes the vortensity
within the libration islands. Once the vortensity has been sufficiently stirred up, even an
infinitesimally small amount of viscosity suffices to render the vortensity uniform over the
whole libration island. The corotation torque then goes to zero (i.e., saturates), because
it scales with the vortensity gradient.

In order to avoid saturation, the viscosity must be high enough to prevent the vortensity
from becoming uniform over the libration islands. This is possible if the viscous timescale
across these islands is smaller than the libration timescale, as shown by Ogilvie & Lubow
(2003). In this case, viscous diffusion across the libration islands permanently imposes the
large-scale vortensity gradient over the libration islands. Finally, it should be noted that
saturation properties cannot be captured by a linear analysis, since saturation requires
a finite libration time, and thus a finite resonance width.

4. Planetary migration
4.1. Type I migration

We consider the case of a low-mass planet, so that the overall disk response can be
treated as a linear superposition of its responses to individual Fourier components of the
potential. Each component torques the disk at its Lindblad and corotation resonances.
We denote by Γm

ILR the torque of the mth potential component at its ILR, and adopt
similar notation for the torques at the Outer Lindblad Resonance (Γm

OLR ) and corotation
resonance (Γm

C R ). The total tidal torque exerted by the disk on the planet, which is equal
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Figure 1. The absolute value of individual inner (triangle) and outer (diamond) torques as a
function of m. The torques are normalized to the value Γ0 = πq2Σa4Ω2

p h−3 , where q is the planet
mass to star mass ratio. The one-sided Lindblad torques scale as (H/r)−3 , hence the total areas
under each curve are of the same order of magnitude. The differential Lindblad torque scales as
(H/r)−2 .

and opposite to the torque exerted by the planet on the disk, can therefore be written as

Γ =
∑
m>0

Γm
ILR +

∑
m>0

Γm
OLR +

∑
m>0

Γm
C R . (4.1)

The first series in this sum is the total Inner Lindblad torque, and the second is the total
Outer Lindblad torque. The absolute value of either term is also called the one-sided
Lindblad torque. The last term is called the coorbital corotation torque. The sum of the
two Lindblad torques is referred to as the differential Lindblad torque.

4.1.1. Differential Lindblad torque
The acoustic shift of the effective Lindblad resonances mentioned at section 3 has an

important consequence: there is a sharp cut-off in the high-m torque components (for
m � r/H) as shown by Artymowicz (1993), since the high-m potential components
become localized in increasingly narrow annuli around the perturber orbit. The value of
a potential component at the accumulation point (where the torque is exerted) therefore
tends to zero as m tends to infinity.

Fig. 1 illustrates the behavior the one-sided Lindblad torques. In particular, one can
see that the cutoff occurs at larger m in a thinner disk. Also, for both disk aspect ratios
there is a very apparent mismatch between the inner and the outer torques; the former is
systematically smaller than the later. If we consider the torque of the disk acting on the
planet, then the outer torque is negative and the inner torque is positive; the total torque
on the planet is therefore negative. As a consequence, migration is directed inwards and
the orbit decays towards the central object (Ward 1986).
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4.1.2. Pressure buffer
One remarkable feature of the differential Lindblad torque is its weak dependence on

the slope of the surface density function. This is not what one would naively expect, since
as one increases the slope the surface density increases at the Inner Lindblad Resonances
and decreases at the Outer Lindblad Resonances. As one increases the surface density
gradient, however, one simultaneously increases the radial pressure gradient. This makes
the disk more and more sub-Keplerian. As a consequence, the Outer Lindblad Resonances
approach the planet’s orbit while the Inner Lindblad Resonances recede from it. This
process plays against the more obvious effect of the surface density. This effect is known
as the pressure buffer (Ward 1997, Tanaka et al. 2002), and frustrates any reasonable
attempt to revert the differential Lindblad torque by tuning the power law indexes of the
surface density and temperature profiles. This makes inward type I migration inevitable,
at least in disks where the surface density and temperature are power laws of the radius.

4.1.3. Type I migration timescale
The most up-to-date estimate of the total (i.e. Lindblad plus corotation) tidal torque in

the linear regime between a three dimensional disk and a low mass planet is the estimate
by Tanaka (2002). It yields a migration timescale of 8×105 yrs for an Earth-mass object
embedded at 5 AU in the MMSN. This is much shorter than the disk lifetime.

4.2. Type II migration
4.2.1. Shock appearance and horseshoe asymmetry

The wake excited by a planet eventually turns into a shock. The location at which
profile steepening produces a shock depends on the planet mass; the larger the mass,
the closer the shock will be to the orbit. For planets above some critical mass, the
wake becomes a shock within the excitation region. Under these circumstances, the fluid
elements circulating just outside the co-orbital region receive a kick of angular momentum
every time they cross the wake. This is represented in Fig. 2. As a consequence horseshoe
U-turns are not symmetric. A fluid element initially located inside the libration region
thus progressively recedes from the orbit as it performs a sequence of horseshoe U-turns,
until it ends up in the inner disk or the outer disk (Lubow et al. 1999). The co-orbital
region is thereby emptied, and an annular gap eventually appears around the orbit.
The timescale for emptying the co-orbital region can readily be estimated from Fig. 2.
After each horseshoe U-turn, the distance of a fluid element from the orbit increases
by an amount between 10 and 20 %. The characteristic emptying time of the horseshoe
region is therefore between 5 and 10 times half the libration time, which is given by
τlib/2 = 2πa/(3/2)Ωpxs = (2/3)To(a/xs). Here we can estimate from the figure that
xs ≈ 0.16, so τlib/2 ≈ 4 T0 . In this particular example, the co-orbital region is therefore
emptied after about 20 to 40 orbits. This simple estimate also shows that the smaller the
planet mass, the longer the gap clearance timescale. Indeed, as the planet mass decreases,
the horseshoe region becomes more and more symmetric so that more libration times are
needed to get rid of the co-orbital material, while the libration time itself increases. For
a 1 MJ planet orbiting in a disk with H/r = 0.05, the clearance timescale of the gap is
about 100 orbits.

4.2.2. Accretion
A planet engaged in type II migration has a mass much larger than the critical mass

for runaway gas accretion (Pollack et al. 1996). It therefore accretes gas from the nebula
at the same time as it migrates. Kley (1999) has devised a scheme to simulate the
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Figure 2. Asymmetry of the horseshoe region. The circulating fluid elements C2 (moving to-
wards the left) and C1 (moving towards the right) recede from the orbit after crossing the shock
excited by the planet. Similarly, the librating fluid elements recede from the orbit after executing
their horseshoe U-turns. This particular example shows streamlines of the flow in the corotating
frame of a 2 MJ planet in a disk with h = 0.05. The planet is on a fixed circular orbit, and this
snapshot was taken after 22.5 orbits.

accretion in the planet’s vicinity, and found that a giant planet can still accrete significant
amounts of gas despite the presence of the gap. Nelson et al. (2000) have found that
the final mass of a protogiant of initially one Jupiter mass could be of several Jupiter
masses. The ability of a giant planet to accrete the surrounding gas depends on the
equation of state of the gas and its ability to get rid of the gravitational energy released
by the accretion. D’Angelo et al. (2003) and Klahr and Kley (2006) have performed high
resolution hydrodynamics calculations taking into account radiative transfer in order to
assess the dynamics of the inner Roche lobe and its impact on accretion. They still find
significant accretion but the geometry of the flow in the Roche lobe is that of a bubble
rather than a thin accretion disk.

4.2.3. Gap opening criteria
Classically, the gap opening conditions once consisted of two independent criteria (Lin

& Papaloizou 1979, Lin & Papaloizou 1993, Bryden et al. 1999) that needed to be si-
multaneously fulfilled. The first, referred to as the thermal criterion (since it imposes a
limit on the disk thickness, and hence on the disk temperature) requires that the wake
becomes a shock just as it is excited. The flow must therefore be strongly non-linear in
the planet’s vicinity, and the parameter RH /H must be larger than some critical value,
where RH is the planetary Hill radius. This critical value is ∼ 1, although its precise
value can be slightly different. The second criterion is that the viscosity is sufficiently
low, so that the surface density jump across the edges of the excavated region is a siz-
able fraction of the unperturbed surface density. This condition, which is known as the
viscous criterion, is expressed as q > 40

R where R = a2Ωp/ν is the Reynolds number.
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Crida et al. (2006) have used another condition, namely that the circulating streamline
just outside the separatrix should be closed, to derive the gap surface density profile
semi-analytically. They require that the integral of the viscous, gravitational, and pres-
sure torques cancels out over one synodic period of a given fluid element. They provide
an ansatz expression for the pressure torque that is approximately valid for a reasonable
range of planetary masses and disk thicknesses, and derive the following unique crite-
rion for gap opening: 3

4
H

RH
+ 50

qR < 1. Broadly speaking, this criterion is approximately
equivalent to the previous two except in the case where both are only marginally fulfilled.

4.2.4. Migration of planets that open a gap
A “clean” gap (i.e., a gap with little residual surface density) splits the disk material

into an outer disk and an inner disk. Therefore, the planet must drift inwards at the
same rate that the outer disk spreads inwards. In other words, the migration rate of a
giant planet that has opened a gap in the disk is the same as the viscous drift rate of the
disk (Lin & Papaloizou 1986). This type of migration is referred to as type II migration
(Nelson et al. 2000 and refs. therein). It is usually said that in this regime, the planet’s
orbit is locked to the disk’s viscous evolution. The migration drift rate of the planet is
therefore

da

dt
∼ −ν

a
. (4.2)

For a Mp = 1 MJ planet that undergoes type II migration in a disk with H/r = 0.04
and α = 6 · 10−3 , the migration time starting from a = 5 AU is about 1.6 · 104 orbits.
This corresponds to ∼ 1.6 · 105 years, if the central object has one solar mass.

Using two-dimensional numerical simulations, Nelson et al. (2000) have shown that the
migration of giant planets (with masses greater than or equal to one Jupiter mass) in a
viscous disk obeys the scenario outlined above, at least broadly speaking. In particular,
they found that the timescale of variation in the planet’s semi-major axis is similar to
the viscous timescale of the disk. These results have been obtained by assuming that the
effective viscosity of the disk is adequately modeled by the Navier–Stokes equation. In this
approach the kinematic viscosity is chosen to account for the accretion rates inferred from
observations of T Tauri objects. Nelson & Papaloizou (2003) and Papaloizou et al. (2004)
have performed much more numerically demanding calculations; instead of resorting to
the purely hydrodynamical scheme including an ad hoc kinematic viscosity, their model
describes the self-sustained magnetohydrodynamic (MHD) turbulence arising from the
magnetorotational instability (MRI).

They find that a giant protoplanet still opens a gap in the disk, in much the same
manner as in a disk modeled by the Navier–Stokes equations. Surprisingly, the gap in a
turbulent disk tends to be larger and deeper than in a laminar disk (Papaloizou et al.
2007). The mass accretion rate tends to be larger in the MHD turbulent case, most likely
because of magnetic breaking of the circumplanetary disk (Papaloizou et al. 2004).

4.2.5. Type II migration of several planets
The migration properties of two or more giant planets is a topic that has received a

lot of attention, primarily because we detect extrasolar giant planets that are in mean
motion resonance, which is a natural outcome of convergent type II migration (Snellgrove
et al. 2001, Lee & Peale 2002, Kley et al. 2004, Kley et al. 2005), and secondly because
under some circumstances (if the outer planet is sufficiently lightweight and barely opens
a gap), the migration of the whole system may be reversed and be directed outwards
(Masset & Snellgrove 2001, Morbidelli & Crida 2007, Zhang & Zhou 2008). Finally, as
was first noted by Kley (2000) the distance between the giant planets brought to close
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orbits by convergent migration can be sufficiently short to render the system unstable
after gas clearance, which may account for the eccentric orbits of some extrasolar planets.

4.3. Type III migration
Type III migration refers to a mode of migration for which the major driver is material
flowing through the coorbital region. In the previous sections, the torque acting on a
migrating planet was considered independent of its migration rate. However, the corota-
tion torque implies material that crosses the planet orbit on the U-turn of the horseshoe
streamlines. In a non-migrating case, only the material trapped in the horseshoe region
participates in these U-turns, but in the case of an inward (or outward) migrating planet,
material of the inner disk (outer disk) has to flow across the co-orbital region and executes
one horseshoe U-turn to do so. By doing this, it exerts a corotation torque on the planet
that scales with the drift rate. We call xs the half radial width of the horseshoe region.
The amount of specific angular momentum that a fluid element near the separatrix takes
from the planet when it crosses the planet orbit and goes from the orbital radius a − xs

to the orbital radius a + xs is Ωpaxs . The corresponding torque exerted on the planet in
steady migration is therefore, to lowest order in xs/a:

Γ2 = (2πaΣs ȧ) · (Ωpaxs), (4.3)

where we keep the same notation as in Masset & Papaloizou (2003), hereafter MP03, and
where Σs is the surface density at the upstream separatrix. As the system of interest,
we take the system composed of the planet and all fluid elements trapped in libration
in its co-orbital region, namely the whole horseshoe region (with mass MHS ) and the
Roche lobe content (with mass MR ), because all of these parts perform a simultaneous
migration. The drift rate of this system is then given by :

(Mp + MHS + MR ) · (aȧΩp/2) = (4πaxsΣs) · (aȧΩp/2) + ΓLR (4.4)

which can be rewritten as:

mp · (aȧΩp/2) = (4πaΣsxs − MHS ) · (aȧΩp/2) + ΓLR (4.5)

where mp = Mp + MR is all the mass content within the Roche lobe, which for now on
for convenience we refer to as the planet mass. The first term of the first bracket of the
r.h.s. corresponds to the horseshoe region surface multiplied by the upstream separatrix
surface density, hence it is the mass that the horseshoe region would have if it had a
uniform surface density equal to the upstream surface density. The second term is the
actual mass of the horseshoe region. The difference between these two terms is called in
MP03 the coorbital mass deficit and denoted δm. Eq (4.5) yields a drift rate :

ȧ =
ΓLR

2Ba(mp − δm)
(4.6)

This drift rate is faster than the standard estimate in which one neglects δm. This
comes from the fact that the coorbital dynamics alleviates the task of the differential
Lindblad torque by advecting fluid elements from the upstream to the downstream sep-
aratrix. The angular momentum they extract from the planet by doing so favors its
migration. As δm tends to mp , most of the angular momentum lost by the planet and
its coorbital region is gained by the orbit crossing circulating material, making migra-
tion increasingly cost effective. When δm � mp , the above analysis, assuming a steady
migration (ȧ constant), is no longer valid. Migration undergoes a runaway, and has a
strongly time varying migration rate, that increases exponentially over the first libration

https://doi.org/10.1017/S1743921308016797 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308016797


Planetary migration 339

Figure 3. The solid curve shows the total torque on the planet in a massive disk (hence with a
large coorbital mass deficit) as a function of the drift rate. For |ȧ| � ȧcrit the torque exhibits a
linear dependence in ȧ. The dotted line shows the torque in a low mass disk (i.e. with a negligible
coorbital mass deficit), in which case the torque is almost independent of the migration rate
and is always close to the differential Lindblad torque ΓLR. The dashed line represents the
planet angular momentum gain rate as a function of ȧ, assuming a circular orbit. For a given
situation, the migration rate achieved by a steadily migrating planet is given by the intersection
of the dashed line with the torque curve. In the low mass disk case, the intersection point, A, is
unique, and stable. It yields a negative drift rate controlled by the differential Lindblad torque.
In the high mass disk case (type III case), there are 3 points of intersection (B, C and D). The
central point (C) is unstable, while the extreme ones (B and D) are stable and correspond to
the maximum drift attained by the planet, either inwards (point B) or outwards (point D).

times. Runaway (also said type III) migration is therefore a mode of migration of planets
that deplete their coorbital region and embedded in sufficiently massive disks, so that
the above criterion be satisfied. An analysis similar to the above calculation may be
performed, in which the corotation torque depends on the migration rate, except that
one now has to introduce a delay τ between the mass inflow at the upstream separatrix
and the corotation torque. Fluid elements passing through the upstream separatrix need
indeed on average a fraction of a libration timescale to reach the planet and execute a
horseshoe U-turn. This delay represents the latency of the feedback loop.

ΓC R (t) = 2Baδmȧ(t − τ) (4.7)

A Taylor expansion in time of ȧ(t − τ) yields a first order differential equation for ȧ
(see MP03 for details). The linear dependence of the corotation on the drift rate remains
valid as long as the semi-major axis variation over a horseshoe libration time is smaller
than the horseshoe zone width, i.e.:

|ȧ| < ȧcrit =
Ax2

s

2πa
(4.8)

The corotation torque then reaches a maximum and slowly decays for larger values of ȧ
(see fig. 3).
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Figure 4. Runaway (or type III) limit domain for a H/r = 0.04 and ν = 10−5 disk, with a
surface density profile Σ ∝ r−3/2 . The variable mD = πΣr2 features on the y axis. It is meant
to represent the local disk mass, and it therefore depends on the radius. Type III is most likely
for Saturn mass planets. These would undergo type III migration in disks no more massive than
a few times the MMSN.

The terminal drift rate of a type III steadily migrating planet can be estimated by a
standard bifurcation analysis as illustrated in fig. 3. The transition from one case to the
other (one intersection point to three intersection points) occurs when the line showing
the rate of change of the angular momentum (which has slope ampΩp/2) and the torque
curve near the origin are parallel. Since this latter has a slope aδmΩp/2 near the origin,
the transition occurs near mp = δm. The disk critical mass above which a planet of given
mass undergoes a runaway depends on the disk parameters (aspect ratio and effective
viscosity). The limit has been worked out by MP03 for different disk aspect ratios and
a kinematic viscosity ν = 10−5 . We reproduce in figure 4 the type III migration domain
for a disk with H/r = 0.04.

A number of comments can be made from figure 4:
• The MMSN was barely massive enough to yield type III migration of Saturn. This

suggests that in many protoplanetary disks, inferred to be several times more massive
than the MMSN, type III migration is very likely for Saturn mass protoplanets.
• Type III is impossible for massive planets (mp > 1 MJ ) as the horseshoe separatrices

sample the gap edges in regions significantly depleted, yielding a small coorbital mass
deficit.
• The sharp limit on the high mass side of the runaway domain might be related to

the fact that most of the extrasolar planets known as “hot Jupiters”, with a semi-major
axis a < 02. AU, happen to have sub-Jovian masses. A forming protoplanet, as it passes
through the runaway domain, would migrate very fast towards the central object in a
series of type III episodes, and at the same time it would accrete gas from the nebula. If
the protoplanet happens to get out of the runaway domain before it reaches the central
regions of the disk, it enters the slow, type II migration regime, having at least about a

https://doi.org/10.1017/S1743921308016797 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308016797


Planetary migration 341

Jupiter mass. Otherwise, it may reach the central regions through type III migration (if
the surface density profile is steep enough), still as a sub-Jovian object.
Type III migration, for the same disk profile and planet mass, can be directed either
outwards or inwards, depending on the initial conditions. This is related to the fact that
the differential equation obeyed by the semi-major axis, in the type III regime, is a second
order differential equation in which one can specify independently a and ȧ. The type III
migration of a planet therefore depends on its migration history, the “memory” of this
history being stored in the way the horseshoe region is populated, i.e. in the repartition
of the coorbital mass deficit. Note that owing to the strong variation of the drift rate in
a type III episode, the horseshoe streamlines are not exactly closed, so that the coorbital
mass deficit can be lost and type III migration can stall. This has been observed in
numerical simulations, which show that the semi-major axis is varied by a factor of a few
at most during a single type III episode.

4.4. Stochastic migration
Oftentimes, the protoplanetary disk is considered laminar while the accretion of material
onto the central object is ensured by an ad hoc kinematic viscosity chosen to account
for the mass accretion rate measured for T Tauri stars. The molecular viscosity of pro-
toplanetary disks appears to be insufficient by many orders of magnitude, however, to
reproduce the accretion rates typically measured. The source of the high effective vis-
cosity in these disks is thought to be turbulence. The MRI (see section 4.2) has been
identified as a powerful source of MHD turbulence in magnetized disks (Balbus & Hawley
1991, Hawley & Balbus 1991, Hawley & Balbus 1992), and this section will exclusively
focus on the impact of this kind of turbulence on planetary migration.

MRI can develop only in regions of the disk where the matter and magnetic field are
coupled, which requires a sufficiently high (albeit weak) ionization rate. In the planet-
forming region (1−10 AU), it is thought that only the upper layers of the disk are ionized
by X-rays from the central star or cosmic rays (Gammie 1996, Fromang et al. 2002). The
bulk of the disk, however, should be ionized outside this region. This has led Gammie
(1996) to the concept of layered accretion: the upper layers of the region between 1 and
10 AU participate in accretion onto the central star, whereas its magnetically inactive
equatorial parts, usually called the dead zone, do not participate in the inwards flow of
disk material.

There already exist a large number of works describing numerical simulations that
self-consistently describe an MHD turbulent disk with embedded planets (Nelson &
Papaloizou 2004, Papaloizou et al. 2004, Nelson & Papaloizou 2003, Nelson 2005,
Winters et al. 2003). They exclusively consider a fully magnetized disk (hence with no
dead zone), however, without any vertical stratification for reasons of computational cost.

Not surprisingly, the torque felt by a planet in a turbulent disk displays large temporal
fluctuations. One can assign an order of magnitude to their amplitude by considering
an overdense region of size H, located at a distance H from the planet such that the
perturbed density in this region is of the same order as the unperturbed density. This
yields an order of magnitude for the torque fluctuations of GΣa (Nelson & Papaloizou
2004, Nelson 2005).

Nelson and Papaloizou (2004) and Nelson (2005) have investigated the migration of
low and intermediate mass planets embedded in turbulent disks. Laughlin et al. (2004)
have also investigated this problem, but rather than tackling it through self-consistent
numerical simulations they performed a two-dimensional calculation which mimicked the
effects of turbulence using a time-varying, non-axisymmetric potential acting on the gas
disk, rather than directly on the planet. The migration of low-mass planets embedded in
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turbulent disks is significantly different from the type I migration expected for laminar
disks. The large torque variations due to turbulence induce the planet’s semi-major axis
to evolve on a random walk rather than systematically decay.

One question that is still open is whether the total torque felt by a planet in a turbulent
disk can be decomposed into a laminar torque and the effect of fluctuations arising
from the turbulence. We call the latter component the stochastic torque. One might
expect that the time average of the stochastic torques is negligible compared to the
total mean torque (which might be the same as the laminar torque, but this is still
unknown), provided that this average is performed over a time interval that is much
longer than the turbulence recurrence time. Under this assumption, the behavior of the
planet should exhibit a systematic trend reminiscent of type I migration. Nelson (2005)
has investigated the statistical properties of these torque fluctuations, finding significant
power at low frequencies, corresponding to timescales comparable to the simulation time.
As a consequence, in many of his calculations no systematic trend is observed; stochastic
migration dominates type I migration over the entire run time of his calculations, or
about 150 orbits. The reason for such significant power at very low frequencies is still
unknown.

The amplitude of the specific stochastic torque is independent of the planet mass,
whereas the specific wake torque scales with the planet mass. Nelson (2005) found that
for planets up to ∼ 10 M⊕ the stochastic migration overcomes the systematic trend
(over a simulation run time of 150 orbits), whereas systematic effects are dominant for
larger masses. We mention however the recent work by Fromang & Nelson (2006), who
argue that density fluctuations are smaller in a stratified, turbulent disk than in the
unstratified models currently used to assess stochastic torques. This argument suggests
that systematic effects could be dominant at masses even lower than 10 M⊕.

As pointed out by Johnson et al. (2006), if the turbulence has a finite correlation
time then the stochastic (or diffusive) migration of low-mass planets can be reduced
to an advection-diffusion equation. They show that diffusion always reduces the mean
migration time of the planets, although a fraction of them still “survive” an extended
period of migration.

5. Recent results on planetary migration
In the past few years, a number of new results have been obtained in the field of

planetary migration either by the inclusion of new physical ingredients to the customary
picture of planetary migration in a locally isothermal power law disk, or by intensive
numerical modeling, or both. We draw hereafter a non comprehensive list of such results.

5.1. Planetary migration and magnetic field

Notwithstanding the issue of MRI and its non-linear outcome as MHD turbulence, the
role of a toroidal or poloidal magnetic field on type I migration in a laminar disk as been
contemplated by several authors. Terquem (2003) considers a disk threaded by a toroidal
magnetic field, and shows that when the magnetic field as a function of radius decreases
sufficiently fast, the total torque felt by the planet is positive, hence the planet migrates
outwards. Fromang et al. (2005) have performed two-dimensional numerical simulations
which essentially confirmed the analytic predictions of Terquem (2003). More recently,
Muto et al. (2007, 2008) worked out the analytic torque expression both for a disk
threaded by a poloidal magnetic field and a disk with a toroidal magnetic field, which
enables them to make a variety of predictions about type I migration in magnetized disks.
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5.2. Inclusion of the disk’s self gravity
The protoplanetary disk’s self-gravity, usually neglected on the grounds of its large
Toomre parameter, has recently been contemplated by a number of authors, which were
led to contradictory statements (Nelson & Benz 2003, Pierens & Huré 2005). Baruteau
& Masset (2008a, 2008b) have revisited previous works on this subject and found that
the inclusion of self-gravity slightly speeds up migration with respect to analytical drift
rate estimates. They also exhibited a strong bias that systematically affects numerical
calculations in which a planet is released and freely migrates in a non self-gravitating disk.

5.3. Role of the corotation torque at a cavity edge
Eq. (3.2) shows that the corotation torque can be a large, positive quantity at a surface
density jump such that the surface density is larger on the outside, and that it may
possibly overcome the differential Lindblad torque. This happens at a cavity edge, even
if the cavity is shallow. This has led Masset et al. (2006) to the concept of planetary
trap: type I migrating embryos are stopped whenever they reach a relatively abrupt drop
of surface density, such as could be found at the inner edge of a dead zone, at the inner
edge of a tidally truncated disk (Pierens & Nelson (2007)) or at the snow line (Zhang
et al. 2008, Kretke et al. 2008).

5.4. Planetary migration and radiative transfer
Radiative transfer plays a very important role for planetary migration scenarios, for many
different reasons. Menou and Goodman (2004) exploit the differential Lindblad torque’s
extreme sensitivity to the location of the Lindblad resonances. They consider realistic
models of T Tauri α-disks instead of the customary power law models, and show that
type I migration can be significantly slowed at opacity transitions. Jang-Condell and
Sasselov (2005) argue that taking into account the temperature perturbations due to
shadowing and irradiation of the disk photosphere could significantly reduce the type I
migration rate. More recently, Paardekooper and Mellema (2006), hereafter PM06, con-
sider a low-mass planet embedded in a disk with inefficient radiative cooling. A complex
temperature structure develops in the vicinity of the planet which gives an underdense re-
gion behind the planet. As a consequence, the disk ultimately exerts a positive torque on
the planet. This result clearly indicates that radiative transfer effects may prove crucial
in resolving the problem of type I drift.

Baruteau and Masset (2008a, 2008b) have undertaken a follow up study of the results
of PM06 in order to understand their physical origin. For this purpose, they considered
the limiting case of a two dimensional, adiabatic flow. They firstly consider the linear
case for an isolated resonance, for which they find an expression of the corotation torque
which reduces to the usual dependence on the vortensity gradient in the limit of a cold
disk. In the general case, they find an additional dependence on the entropy gradient
at corotation. This dependence is associated to the advection of entropy perturbations.
Secondly, they consider the case of a planet embedded in a Keplerian disk. They find, in
the same manner, that the horseshoe drag contains a term that scales with the entropy
gradient, and which may be strong enough to overcome the differential Lindblad torque,
thus yielding a migration reversal. Although at the early stages of a calculation, the
horseshoe drag’s excess corresponds exactly to the series of torque excesses on individual
corotation resonances, Paardekooper and Papaloizou (2007) argue that non-linear effects
arise even at very low planetary mass and boost this excess with respect to its linear
estimate. They further argue that the linearly estimated excess would be by itself not
sufficient to halt migration. In any case, the self-consistent three dimensional calculation
of PM06 shows that the migration of low-mass planets is reversed in the radiatively
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inefficient inner parts of protoplanetary disks. It will therefore be halted on the outer
edge of this inner region. Paardekooper and Mellema (2007) estimate this location to
be at r ∼ 10 − 15 AU. Although the saturation properties of the corotation torque
in a radiatively inefficient disk are still to be properly investigated, it is reasonable to
expect that it remains unsaturated if the timescale for the relaxation of the temperature
perturbations fulfills the following two requirements: (i) it is shorter than the horseshoe
libration time (so that a nearly unperturbed entropy distribution reaches the horseshoe U-
turns) (ii) it is longer than the horseshoe U-turn time, so that the flow can be considered
as adiabatic over this timescale. Should these expectations be confirmed, this would
provide a solution to the long-standing problem of type-I migration being too fast and
flushing embryos onto the central object before they can accrete gas and become giant
protoplanets.

6. Summary and discussion
Significant progress has been recently accomplished in the theories of planet-disk tidal

interactions. Most of the new results have primarily been brought by large-scale calcu-
lations using modern supercomputer resources. In particular, the problem of type I mi-
gration is on the way of being solved, by relaxing the customary barotropic assumption,
thereby enabling a new kind of perturbation (the so-called contact discontinuity familiar
to the Riemann solvers community) to arise in the co-orbital region in the presence of
an entropy gradient.

In the parts of a disk that are magnetically active, stochastic migration changes dra-
matically the migration properties of low- and intermediate-mass objects. Many questions
remain open in this field which requires considerable computing resources.

The description of type II and type III migration also requires considerable computa-
tional resources. Primarily captured by simple two dimensional calculations in laminar
disks, type II migration is now described by three dimensional hydrodynamics or magne-
tohydrodynamics calculations. An interesting problem, which has not yet been tackled,
is the impact of gap edge irradiation on type II migration. In the same respect, while
the physical picture of type III migration had been initially illustrated by two dimen-
sional laminar calculations, an accurate description of its properties must be investi-
gated by means of high resolution, three dimensional calculations. A first step forward
has been made by Pepliński et al. (2007a, 2007b) who performed high resolution AMR
two-dimensional calculations. A challenge for type III migration, whose onset depends
on a subtle balance of gravitational and inertial effects, is to get rid of any possible ar-
tifact that may alter the effective inertial or gravitational mass of the migrating system
(namely the planet and any fluid element trapped in libration with it, be it horseshoe or
circumplanetary).

The actual trend among numericists performing calculations of planet-disk interactions
is to include more and more physics relevant to planetary migration in their schemes.
These efforts render scenarios of planetary migration progressively more quantitative and
predictive, and they should in the future eventually bridge the gap between the properties
of the protoplanetary disk, and the structure of the planetary systems that may emerge
from it.
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