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Abstract. The purpose of this paper is to study finiteness conditions on injective
hulls of simple modules over Noetherian down-up algebras. We will show that the
Noetherian down-up algebras A(α, β, γ ) which are fully bounded are precisely those
which are module-finite over a central subalgebra. We show that injective hulls of
simple A(α, β, γ )-modules are locally Artinian provided the roots of X2 − αX − β are
distinct roots of unity or both equal to 1.

1. Injective hulls of simple modules over Noetherian rings. Injective modules
are the building blocks in the theory of Noetherian rings. Matlis showed that any
indecomposable injective module over a commutative Noetherian ring is isomorphic
to the injective hull E(R/P) of some prime factor ring of R. He also showed that any
injective hull of a simple module is Artinian (see [15] and [16, Proposition 3]). Vamos
characterized commutative rings R whose injective hulls of simples are Artinian as
those whose localization RM by maximal ideals are Noetherian ([21, Theorem 2]).
Not necessarily commutative rings whose injective hulls of simples are Artinian were
studied by Jans ([8]) and termed co-Noetherian. In [6] Dahlberg showed that injective
hulls of simple modules over U(sl2) are locally Artinian. Since U(sl2) is an instance of
a larger class of Noetherian domains, the down-up Algebras, introduced by Benkart
and Roby in [2], Patrick F. Smith asked which Noetherian down-up algebras satisfy
this finiteness condition on their injective hulls of simple modules. The purpose of this
note is to give a partial answer to Smith’s question. Recall that a module is called
locally Artinian if every of its finitely generated submodules is Artinian.

1.1. In connection with the Jacobson Conjecture for Noetherian rings
Jategaonkar showed in [9] (see also [5, 20]) that the injective hulls of simple modules
are locally Artinian provided the ring R is fully bounded Noetherian.

1.2. Consider the following property for a ring A:

(�) Injective hulls of simple right A-modules are locally Artinian.

Property (�) is obviously equivalent to the condition, that all finitely generated essential
extensions of simple right A-modules are Artinian. And in case A is right Noetherian
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property (�) is further equivalent to the class of semi-Artinian right A-modules,
i.e. modules M that are the union of their socle series, to be closed under essential
extensions. In torsion theoretic terms, A has property (�) if and only if the hereditary
torsion theory generated by all simple right A-modules is stable.

1.3. Let us first explain, why every commutative Noetherian ring has property
(�) without using Matlis result. The Artin–Rees Lemma says (in one of its versions)
that any ideal I of a commutative Noetherian ring A has the Artin–Rees property, i.e.
for any essential extension N ⊆ M of finitely generated A-modules with NI = 0, there
exists n > 0 such that MIn = 0. Thus M has a finite filtration

0 ⊆ MIn−1 ⊆ MIn−2 ⊆ · · · ⊆ MI2 ⊆ MI ⊆ M

such that each of its factors MIk−1/MIk is a finitely generated A/I-module. If N is a
simple right A-module and I = AnnA(N) then A/I is a field, hence Artinian, and so
any factor in the filtration of M is Artinian, making M an Artinian module.

A sufficient condition for (�) is therefore that right primitive ideals of A have the
Artin–Rees property and that primitive factor rings of A are Artinian.

1.4. For simple Noetherian algebras, the above argument cannot be used due to
the absence of non-zero proper ideals. However if A is a (not necessarily commutative)
semiprime Noetherian ring of Krull dimension one, then for any essential right ideal
I of A, the Krull dimension of A/I is one lower than the Krull dimension of A, hence
Artinian. For any extensions E ⊆ M of a simple right A-module E by a cyclic right
A-module M = A/I , we have E � J/I with J/I essential in A/I . Since pre-images
of essential submodules are essential, also J is essential in A. Thus M/E � A/J is
Artinian and M being an extension of the two Artinian modules E and M/E is also
Artinian. Thus any semiprime Noetherian ring of Krull dimension one has property
(�). This applies in particular to the first Weyl algebra A1(�) = �[x][y; ∂/∂x].

1.5. Let E ⊆ M be an essential extension of a simple right A-module E by
a Noetherian module M. Let P = AnnA(E) be its annihilator. Suppose there exists
a non-zero central element x ∈ P ∩ Z(A), i.e. Ex = 0. Denote by f : M → M the A-
linear map f (m) = mx. Its kernel is Ker(f ) = AnnM(x). By Fitting’s Lemma there exists
a number n > 0 such that Im(f n) ∩ Ker(f n) = 0. Since M is uniform and E ⊆ Ker(f n)
is non-zero, we have Im(f n) = Mxn = 0. Hence we have again a finite filtration

0 ⊆ Ker(f ) = AnnM(x) ⊆ Ker(f 2) ⊆ · · · ⊆ Ker(f n−1) ⊆ Ker(f n) = M,

whose factors Ker(f k)/Ker(f k−1) are A/Ax-modules and embed into AnnM(x), because
f induces monomorphisms

M/Ker(f n−1) ↪→ Ker(f n−1)/Ker(f n−2) ↪→ · · · ↪→ Ker(f 2)/Ker(f ) ↪→ Ker(f ).

Hence M is Artinian if and only if AnnM(x) = Ker(f ) is Artinian. The same argument
also works for x being a normal element. In this case f is not A-linear anymore, but
preserves submodules (see [10, Lemma 2]).
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1.6. The last subsection allow us now to state the following reduction of our
problem, in case A has a non-trivial centre.

PROPOSITION. The following statements are equivalent for a countably generated
Noetherian algebra A with Noetherian centre over an algebraically closed uncountable
field K.

(a) Injective hulls of simple right A-modules are locally Artinian;
(b) Injective hulls of simple right A/mA-modules are locally Artinian for all maximal

ideals m of Z(A).

Proof. (a) ⇒ (b) is clear, since property (�) is inherited by factor rings.
(b) ⇒ (a): First note that the Proposition is void if A has trivial centre Z(A) = K .

Hence we will suppose Z(A) 
= K . Moreover note, that any countably generated algebra
A over an uncountable field K has the endomorphism property (see [17, 9.1.7]). Hence
the endomorphism ring of each simple right A-module A is EndA(E) � K as K was
supposed to be algebraically closed. Let E be a simple right A-module and M be a
finitely generated essential extension of E. Denote P = AnnA(E) and m = P ∩ Z(A)
which is a maximal ideal of Z(A) as the A-action on E restricts to an Z(A)-action on E
which is not faithful as EndA(E) = K and Z(A) 
= K . As A and Z(A) are Noetherian,
there exist central elements x1, . . . , xk that generate m. By 1.5 M is Artinian if and only
if M1 = AnnM(x1) is Artinian. Applying the same argument again leads to M Artinian
if and only if M2 = AnnM1 (x2) = AnnM({x1, x2}) Artinian. Iterating k times leads to
M being Artinian if and only if AnnM({x1, . . . , xk}) = AnnM(m) being Artinian. Since
E ⊆ AnnM(m) is an essential extension of A/mA-modules, with AnnM(m) being finitely
generated, we get by hypothesis (b), that AnnM(m) is Artinian. �

1.7. Let h be the three-dimensional Heisenberg algebra over � which is generated
by x, y, z with Lie algebra structure given by [x, y] = z and [x, z] = 0 = [y, z]. Let
A = U(h). Then Z(A) = �[z] and its maximal ideals are of the form mλ = 〈z − λ〉,
with λ ∈ �. For λ = 0, we have that A/m0A � �[x, y] is a commutative Noetherian
domain and hence has property (�). For λ 
= 0, we have A/mλA � �[x][y; ∂/∂x] is the
first Weyl algebra, which is a Noetherian domain of Krull dimension 1 (see [17, 6.6.15])
and hence also has property (�) by 1.4. Hence by Proposition 1.6 we have that U(h)
has the property (�).

1.8. In contrast to the Heisenberg algebra, which is a nilpotent Lie algebra, Ian
Musson showed that no non-nilpotent soluble finite-dimensional complex Lie algebra
g has property (�), i.e. there exists a non-Artinian finitely generated essential extension
of a simple right U(g)-module ([18]).

1.9. In [6] Dahlberg showed that U(sl2) has property (�). Since U(sl2) and U(h)
are two instances of a larger class of Noetherian domains, the down-up Algebras,
introduced by Benkart and Roby ([2]) we ask which Noetherian down-up algebras
satisfy property (�).

In the following section we will recall the definition of down-up algebras and
determine when they are fully bounded Noetherian. In the last section we show that
some of the Noetherian down-up algebras of Krull dimension 2 have property (�). For
simplicity, all algebras are considered to be algebras over the complex numbers �.
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2. Fully bounded Noetherian down-up algebras. The down-up algebras form a
three-parameter family of associative algebras. For any parameter set (α, β, γ ) ∈ �3

one defines a �-algebra, denoted by A = A(α, β, γ ), generated by two elements u and
d subject to the relations

d2u = αdud + βud2 + γ d,

du2 = αudu + βu2d + γ u.

2.1. Kirkman, Musson and Passman proved that A is noetherian if and only if it
is a domain if and only if β 
= 0 if and only if �[ud, du] is a polynomial ring (see [11]).

2.2. Any Noetherian down-up algebra can be presented as generalized Weyl
algebra. Let R be a commutative ring and σ and automorphism of R and x an element
of R, the generalized Weyl algebra is the algebra R(σ, x) generated over R in two
indeterminates u, d subject to the relations: ur = σ (r)u, dr = σ−1(r)d for r ∈ R and
ud = x, du = σ−1(x). In other words

R(σ, x) := R〈u, d〉/〈ur − σ (r)u, dr − σ−1(r)d, ud = x, du = σ−1(x) ∀r ∈ R〉.

As shown in [11] and [13], if β 
= 0, then A � R(σ, x) where R = �[x, y], σ (x) = y−αx−γ

β

and σ (y) = x. The isomorphism maps ud to x and du to y. Kulkarni calls a Noetherian
down-up algebra a down-up algebra at roots of unity if the associated automorphism
σ has finite order.

2.3. The centre of R(σ, x) is generated by the fixed ring Rσ and the elements
um, dm where m is the order of σ or 0 if the order is infinite (see [13, 2.0.1]). Hence if σ

has finite order, by the above and Noether’s Theorem, R(σ, x) is finitely generated as
a module over its centre. On the other hand if σ has infinite order, then the centre of
R(σ, x) is equal to the fixed ring Rσ . Hence R(σ, x) cannot be finitely generated over
a central subalgebra since otherwise it would be also finitely generated as a module
over R which is impossible since R(σ, x) = ⊕

n∈� An is �-graded with An = Run and
A−n = Rdn for n > 0 and A0 = R. As any finitely generated R-submodule of R(σ, x) is
bounded and An 
= 0 for all n, R(σ, x) is not finitely generated over R. Thus we proved:

LEMMA. R(σ, x) is module-finite over a central subalgebra if and only if σ has finite
order.

2.4. Recall that a ring R is called right (resp. left) bounded if every right (resp.
left) essential ideal contains a non-zero two-sided ideal. R is called right fully bounded
Noetherian if it is right Noetherian and every prime factor ring is right bounded. As
mentioned in the first section, fully bounded Noetherian rings have property (�). The
considerations above deduce now the following characterization of down-up algebras
at roots of unity.

THEOREM. The following statements are equivalent for a Noetherian down-up algebra
A = A(α, β, γ ):

(1) A is a down-up algebra at roots of unity;
(2) A is module-finite over a central subalgebra;
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(3) A satisfies a polynomial identity;
(4) A is fully bounded Noetherian;
(5) The roots of the polynomial X2 − αX − β are distinct roots of unity such that

both are also different from 1 if γ 
= 0.

Proof. (1) ⇔ (2) follows from Lemma 2.3. (2) ⇒ (3) any module-finite algebra over
a commutative subalgebra satisfies a polynomial identity (see for instance [17, 13.4.9]).

(3) ⇒ (4) any Noetherian algebra that satisfies a polynomial identity is fully
bounded Noetherian (see for instance [17, 13.6.6]).

(4) ⇒ (1) we will show that A is a down-up algebra at roots of unity.
Note that by [4, p. 287] any Noetherian down-up algebra A can be embedded

into the skew Laurent polynomial ring R[z, z−1; θ ] where R = �[x, y], θ (x) = y and
θ (y) = αy + βx + γ . As a right R-module R[z, z−1; θ ] is free on the basis {zn | n ∈ �}
and the multiplication in S is defined by rz = zθ (r) for r ∈ R. The embedding ι : A →
R[z, z−1; θ ] is given by ι(d) = z−1 and ι(u) = xz, so that ι(ud) = x and ι(du) = y. By the
proof of [4, Lemma 1.2], R[z, z−1; θ ] is the localization of A by the Ore set {dn | n ∈ �}.
By [3, 4.1.8] (or by [5, Proposition 1.5] and [12, Theorem 3.5]), if A is fully bounded
Noetherian, then also Ad , hence R[z, z−1; θ ]. By [3, Proposition 4.1.12], θ must have
finite order. Since A � A′ = A(−αβ−1, β−1,−γβ−1) by [4, Lemma 4.1], also θ ′ has finite
order, where θ ′ is the automorphism of �[x, y] defined analogously by θ ′(x) = y and
θ ′(y) = (−αβ−1)y + (−β−1)x + (−γβ−1). Denoting by τ the automorphism of �[x, y]
which interchanges x and y, we have that σ = τθ ′τ has finite order, where σ equals the
automorphism that represents A as a generalized Weyl algebra as in 2.2. Hence A is a
down-up algebra at roots of unity.

(1) ⇔ (5) Let r1, r2 be the roots of the polynomial X2 − αX − β and let θ be
the automorphism that defines the skew Laurent ring R[z, z−1; θ ] as above, with
R = �[x, y]. Note that θ stabilizes the vector space V spanned by 1, x and y. In
[4, p. 288–289] a basis 1, w1, w2 for V had been found such that the matrix of θ with
respect to this basis is in Jordan canonical form. Four cases had to be considered: if
both roots r1 and r2 are different and also different from 1, then there exists such a
basis such that θ (wi) = riwi for i = 1, 2. Hence θ has finite order if and only if both
roots are roots of unity.

If r1 = 1 and r2 
= 1, then there exists a basis such that θ (w1) = w1 + γ and θ (w2) =
r2w2. Hence θ has finite order if and only if γ = 0 and r2 is a root of unity.

If both roots are the same r = r1 = r2 but different from 1, then there exists a
basis such that θ (w1) = rw1 and θ (w2) = rw2 + w1. Hence for any n, θn(w1) = rnw1

and θn(w2) = rnw2 + nrn−1w1. Hence θ cannot have finite order. Similarly, if both roots
are 1, there exists a basis such that θ (w1) = w1 + γ and θ (w2) = w2 + w1 that implies
that θ will not have finite order. �

3. Non-primitive down-up algebras of Krull dimension two. A theorem of Bavula
and Lenagan states, that the Krull dimension of A = A(α, β, γ ) is 2 if and only if
α + β = 1 and γ 
= 0 
= β; otherwise the Krull dimension is 3 (see [1, Theorem 4.2]).
Equivalently A has Krull dimension 2 precisely if γ, β 
= 0 and 1 is a root of X2 −
αX − β. We will focus in this section on those Down-Up algebras which are denoted
by Aη in [4]: Aη := A(1 + η,−η, 1) for η ∈ �× =: � \ {0}.
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3.1. By [22, Theorem 1.3(g)] the centre of the algebras Aη, with η being a primitive
N-th root of unity different from 1, is a polynomial ring �[ω] in one variable, where
ω is the element ω = zN with z = du − ud + γ

η−1 . Note that if η is not a root of unity,
then the centre of Aη is trivial. We will apply Proposition 1.6 to prove the following:

THEOREM. Aη satisfies (�) if η is a root of unity different from 1.

Proof. Let η be a primitive Nth root of unity different from 1. We intend to use
Proposition 1.6. As mentioned before Z(Aη) = �[ω]. The maximal ideals of �[ω] are of
the form 〈ω − c〉 with c ∈ �. By [19, Theorem 8.1(C1)] any ideal of the form (ω − c)Aη

with c ∈ �× is right primitive. Hence Aη/(ω − c)Aη is a right primitive Noetherian ring
of Krull dimension 1 and hence has property (�) by 1.4. For c = 0, let B = Aη/ωAη.
We have that ω = zN with z = du − ud + γ

η−1 . As z is a normal element of Aη it is also
normal in B. By [19, Theorem 8.1(C1)] zAη is a primitive right ideal of Aη and hence
so is zB as ideal of B. Thus B/zB is a primitive Noetherian ring of Krull dimension
1 and has property (�) again by 1.4. Given any essential extension E ⊆ M of finitely
generated B-modules, with E being simple, we first note, that zE = 0, since otherwise
E = zE = · · · = zNE = ωE = 0 – a contradiction. Since B/zB satisfies (�), AnnM(z) is
Artinian and by [10, Lemma 2] M is Artinian.

This shows that any factor Aη/mAη by a maximal ideal m of Z(Aη) has property
(�). By Proposition 1.6 Aη satisfies (�). �

3.2. Summarizing Theorem 2.4 and Theorem 3.1 we have the following:

COROLLARY. The injective hull of any simple right A(α, β, γ )-module is locally Artinian,
if the roots of X2 − αX − β are distinct roots of unity or both equal to one.

Proof. If the roots of X2 − αX − β are distinct roots of unity and also different
from 1 if γ 
= 0, then A = A(α, β, γ ) is fully bounded Noetherian by Theorem 2.4.
A classical result by Schelter and Jategaonkar says that the injective hull of a simple
right R-module over a left Noetherian right fully bounded Noetherian ring R is locally
Artinian (see for instance [7, 9.12] or [17, Proposition 6.4.14]).

Suppose γ 
= 0 and that one of the roots is 1, then A � Aη and Theorem 3.1
shows that A has property (�). In case both roots are 1, then α = 2 and β = −1. Since
A1 = A(2,−1, 1) = U(sl2) and A(2,−1, 0) = U(h) those algebras have property (�) by
[6] and 1.7. �

3.3. We were unable to find an example of a Noetherian down-up algebra that
does not satisfy (�).
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