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Abstract

It is well known that, as n tends to ∞, the probability of satisfiability for a random 2-SAT
formula on n variables, where each clause occurs independently with probability α/2n,
exhibits a sharp threshold at α = 1. We study a more general 2-SAT model in which
each clause occurs independently but with probability αi/2n, where i ∈ {0, 1, 2} is the
number of positive literals in that clause. We generalize the branching process arguments
used by Verhoeven (1999) to determine the satisfiability threshold for this model in terms
of the maximum eigenvalue of the branching matrix.
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1. Introduction

1.1. Background

The k-satisfiability (or k-SAT for short) problem is a canonical constraint satisfaction prob-
lem in theoretical computer science. A k-SAT formula is a conjunction of m clauses, each of
which is a disjunction of length k chosen from n Boolean variables and their negations. Given
a k-SAT formula, a natural problem is to find an assignment of n variables which satisfies the
formula. The decision version of the problem is to determine whether there exists an assignment
satisfying the formula.

From the computational complexity perspective, the problem is well understood. The
problem is NP-hard for k ≥ 3 [10] and linear time solvable for k = 2 [6]. Much recent
interest has been devoted to the understanding of random k-SAT formulae where each clause
is chosen independently with the same probability and the expected number of clauses in the
formula is αn. This problem lies in the intersection of three different subjects—statistical
physics, discrete mathematics, and complexity theory.

In statistical physics, the notion of ‘phase transition’ refers to a situation where systems
undergo some abrupt behavioral change depending on some external control parameter such
as temperature. In the context of random k-SAT formulae the natural parameter is the density
of the formula α, i.e. the ratio between the number of clauses and the number of variables.
Much recent research has been devoted to understanding the critical densities for random
k-SAT problems. The most important critical density being that for satisfiability, i.e. the
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threshold at which a formula changes from being satisfiable with high probability to being
unsatisfiable with high probability [2], [24]. Other thresholds involve the geometry of the
solution space and the performance of various algorithms (see, e.g. [3], [23], and the references
therein).

The 2-SAT problem is more amenable to analysis than the k-SAT problem for k ≥ 3. This
is closely related to the fact that the 2-SAT problem can be solved in linear time and that
the satisfiability of the 2-SAT problem is equivalent to a clear graph theoretic criteria (see
Lemma 1). The threshold for the 2-SAT problem is well known to be α = 1 (see [9], [13], [16],
and [17]) and detailed information on the scaling window is given in [8]. For k-SAT, k ≥ 3,
problems, there are various bounds and conjectures on the critical threshold for satisfiability,
but the thresholds are not known rigorously. See [1], [2], [4], [12], [15], [21], [25], and the
references therein.

In this paper we establish the threshold of a more general 2-SAT model where the probability
of having a clause in the formula depends on the number of positive and negative variables in
the clause. Our proof is based on branching process arguments. Branching process techniques
have been used before to study the standard 2-SAT formulae in the unsatisfiability regime
(α > 1); see, e.g. Verhoeven [27]. We generalize the arguments used by Verhoeven in the two-
type branching process setup to analyze the general 2-SAT model. Our main contribution is in
demonstrating that branching process arguments extend to a multitype setup. A well-accepted
idea in studying random graphs and constraint satisfaction problems is that, since the ‘local’
structure of the problems is tree-like, processes defined on trees play a key role in analyzing the
problems. The classical example is the threshold for the existence of a ‘giant’ component in
random graphs where branching processes play a key role in the proof (see, e.g. [7] and [20]).
Some more recent examples include [5], [26], and [28].

A seemingly closely related work is that of Cooper et al. [11], who derived the threshold for
a random 2-SAT model with given literal degree distribution. We note that the two works are
incomparable, since our work is stated in terms of the distribution of clauses of different types
and the model in [11] is stated in terms of the degrees of the literals. For example, a random
2-SAT formula with 2n positive–negative clauses has the same literal degree distribution as
a uniform random formula with 2n clauses. It is obvious that while the former is always
satisfiable, the latter is not satisfiable with high probability.

1.2. Definitions and statements of the main results

Let x1, x2, . . . , xn be n Boolean variables. Let the negation of xi be denoted by x̄i . Then the
n Boolean variables give us 2n literals {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}. The two literals xi and
x̄i are called complementary to each other (xi = 1 if and only if x̄i = 0) with the convention that
¯̄xi = xi . We call the n literals xi, i = 1, 2, . . . , n, positive literals and their complementary
literals x̄i , i = 1, 2, . . . , n, negative literals.

Given a literal u, vr(u) denotes the corresponding variable; the notation naturally extends
to a set of literals S, i.e. vr(S) = {vr(u) : u ∈ S}. Two literals u and v are said to be strongly
distinct if u �= v and u �= v̄, or, equivalently, if vr(u) �= vr(v). A 2-clause (which we will
call simply a ‘clause’ later) is a disjunction C = x ∨ y of two strongly distinct literals. In this
paper we will not allow x ∨ x or x ∨ x̄ to be valid clauses. A 2-SAT formula is a conjunction
F = C1 ∧ C2 ∧ · · · ∧ Cm of 2-clauses C1, C2, . . . , Cm. Let C = {C1, C2, . . . , Cm} be the
collection of clauses corresponding to F .

As is usual in Boolean algebra, 0 stands for the logical value false, and 1 stands for the
logical value true. A 2-SAT formula F = F(x1, x2, . . . , xn) is said to be satisfiable if there
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exists a truth assignment η = (η1, η2, . . . , ηn) ∈ {0, 1}n such that F(η1, η2, . . . , ηn) = 1. The
formula F is called SAT if F is satisfiable and called UNSAT otherwise.

In the standard model for a random 2-SAT formula we choose each of the possible 4
(
n
2

)
clauses independently with probability α/2n. In this paper we will study a more general model
in which a 2-SAT formula F consists of a random subset C of clauses such that each clause
appears in C independently and a clause having i positive literals is present in the formula with
probability αi/2n, i = 0, 1, 2, for some constantsαi ≥ 0. Of course, taking α0 = α1 = α2 = α

we retrieve the standard model.
Let M be the branching matrix given by

M = 1

2

[
α1 α0
α2 α1

]
. (1)

Note that though M is not symmetric in general, its eigenvalues are all real and given by
1
2 (α1 ± √

α0α2). Let
ρ = 1

2 (α1 + √
α0α2)

denote the largest eigenvalue of M . We show that ρ is a crucial parameter for satisfiability.
In particular, our main result is the following theorem which establishes that the generalized
2-SAT model undergoes a phase transition from satisfiability to unsatisfiability at ρ = 1.

Theorem 1. Let F be a random 2-SAT formula under the generalized model with parame-
ter ρ.

(a) If ρ < 1 or α0α2 = 0, then F is satisfiable with probability tending to 1 as n → ∞.

(b) If ρ > 1 and α0α2 > 0, then F is unsatisfiable with probability tending to 1 as n → ∞.

Remark 1. It is easy to see (following the arguments given in Appendix A of [8]) that the
satisfiability threshold for the general 2-SAT model remains the same for a variant of the model
where nαi, i = 0, 1, 2, clauses are chosen uniformly at random from the set of all clauses with
i positive literals. We can also allow clauses of the form x ∨ x and x ∨ x̄.

2. The 2-SAT formula and implication digraph

We exploit the standard representation of a 2-SAT formula as a directed graph (see, e.g. [8]),
called the implication digraph associated with the 2-SAT formula. This graph has 2n vertices,
labeled by the 2n literals. If the clause (u ∨ v) is present in the 2-SAT formula then we draw
the two directed edges ū → v and v̄ → u. The directed edges can be thought of as logical
implications since if there is a directed edge from u → v and u = 1, then, for the formula to
be satisfiable, it is necessary to have v = 1.

By a directed path (from u to v) we mean a sequence of vertices u0 = u, u1, u2, . . . , uk = v

such that there is a directed edge from ui → ui+1 for all i = 0, 1, . . . , k − 1. The length of
this directed path is k. A contradictory cycle is a union of two (not necessarily vertex disjoint)
directed paths—one starts from a literal u and ends at its compliment ū, and the other starts
from ū and ends at u.

The following lemma connects the concept of satisfiability of the 2-SAT problem to the
existence of a contradictory cycle in the implication digraph. For a proof, see [8].

Lemma 1. ([8].) A 2-SAT formula is satisfiable if and only if its implication digraph contains
no contradictory cycle.
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3. Proof of Theorem 1(a)

The proof resembles the first moment arguments given in [9]. The extension to the more
general case considered here uses a recursive argument which allows us to deal with the multi-
parameter general model.

Definition 1. ([9].) Suppose that there exists strongly distinct literals y1, y2, . . . , ys and u, v ∈
{y1, y2, . . . , ys, ȳ1, ȳ2, . . . , ȳs} such that (ū ∨ y1), (ȳ1 ∨ y2), . . . , (ȳs−1 ∨ ys), (ȳs ∨ v) ∈ C,
or, equivalently, that there exists a directed path u → y1 → y2 → · · · → ys → v in the
implication digraph corresponding to the 2-SAT formula. We call this sequence of literals a
bicycle (of length s + 1). Note that the initial variable u and the final variable v must repeat in
a bicycle.

Lemma 2. If a 2-SAT formula is unsatisfiable then its implication digraph contains a bicycle
of length greater than or equal to 3.

Proof. Suppose that a 2-SAT formula is unsatisfiable. By Lemma 1 we have a contradictory
cycle in the implication digraph, say

u0 → u1 → u2 → · · · → ul = ū0 → ul+1 → ul+2 → · · · → uk = u0.

The cycle has at least one directed path from a literal to its complement. Choosing one that
minimizes the length we get an implication chain formed by a sequence of literals, uh →
u(h+1)mod k → u(h+2)mod k → · · · → u(h+t)mod k = ūh, so that u(h+1)mod k, u(h+2)mod k, . . . ,

u(h+t)mod k are strongly distinct. Find the largest s ≥ t such that u(h+1)mod k, u(h+2)mod k, . . . ,

u(h+s)mod k are strongly distinct. Let v be the element pointed to by u(h+s)mod k in the cycle.
Then, clearly, uh → u(h+1)mod k → u(h+2)mod k → · · · → u(h+s)mod k → v is a bicycle of
length s + 1. Since there can be no edge between a literal w and its complement w̄, we must
have t ≥ 2 and, therefore, s ≥ 2.

Lemma 3. We have

P(F is unsatisfiable) ≤ C

n∑
s=2

(2s)2

n
[T +

s−1 + T −
s−1], (2)

where T +
s−1 and T −

s−1 are the expected numbers of directed paths of length s − 1 started
from x1 and x̄1, respectively, consisting of strongly distinct literals with T +

0 = T −
0 = 1 and

C = [max(α0, α1, α2)]2.

Proof. Let Hs be the number of bicycles of length s + 1 in the implication digraph of the
2-SAT formula, and let �s be the number of directed paths of s strongly distinct literals in the
same digraph. From Lemma 2,

P(F is unsatisfiable) ≤ P(there exists a bicycle of length s + 1 for some s ≥ 2)

≤
n∑

s=2

E(Hs) (3)

≤ C

n∑
s=2

(2s)2

(2n)2 E(�s) (4)

= C

n∑
s=2

s2

n
[T +

s−1 + T −
s−1]. (5)
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Step (3) follows from the simple union bound and the Markov inequality. Inequality (4) can be
explained as follows:

Hs =
∗∑

y1,...,ys

∑
u,v∈{y1,...,ys ,ȳ1,...,ȳs }

I ((ū ∨ y1), (ȳ1 ∨ y2), . . . , (ȳs ∨ v) ∈ C).

Here
∗∑

means that the sum is taken over the set of all possible strongly distinct literals of
size s. Observe that, for a fixed choice of strongly distinct literals, there are 2s choices for each
u and v, and each clause occurs with probability at most max(α0, α1, α2)/2n. Now taking the
expectation and using independence between clauses, we have

E(Hs) =
∗∑

y1,...,ys

∑
u,v∈{y1,...,ys ,ȳ1,...,ȳs }

P((ȳ1 ∨ y2), . . . , (ȳs−1 ∨ ys) ∈ C) P((ū ∨ y1) ∈ C)

× P((ȳs ∨ v) ∈ C)

≤ C(2s)2

(2n)2

∗∑
y1,...,ys

P((ȳ1 ∨ y2), (ȳ2 ∨ y3), . . . , (ȳs−1 ∨ ys) ∈ C)

= C(2s)2

(2n)2 E(�s).

Noting that the quantities T +
s−1 and T −

s−1 do not depend on x1, (5) follows.

Lemma 4. Write Tk = (T +
k , T −

k )�. Then

Ts−1 ≤ Ms−1 1,

where M is defined in (1) and 1 = (1, 1)�.

Proof. For a literal u strongly distinct from x1, let Ju denote the number of directed paths
of length s − 2 starting from u that consist of strongly distinct literals and do not involve the
variable x1. Then

T +
s−1 =

∑
{u : u literals}
vr(u) �=vr(x1)

E(Ju × I ((x̄1 ∨ u) ∈ C)) =
∑

{u : u literals}
vr(u)�=vr(x1)

E(Ju) × P((x̄1 ∨ u) ∈ C).

The last step follows from the independence of clauses.
A simple coupling argument yields E(Ju) ≤ T +

s−2 or T −
s−2 depending on whether the literal

u is positive or negative. Combining the above facts, we get the following recursive inequality:

T +
s−1 ≤ nT +

s−2 P(x̄1 ∨ x2) + nT −
s−2 P(x̄1 ∨ x̄2) ≤ α1

2
T +

s−2 + α0

2
T −

s−2,

and, similarly,

T −
s−1 ≤ α2

2
T +

s−2 + α1

2
T −

s−2.

Now the above two equations can be written in a more compact way as

Ts−1 ≤ MTs−2. (6)

Iterating (6), we get Ts−1 ≤ Ms−1T0 = Ms−1 1.
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Proof of Theorem 1(a). We are now ready to complete the proof of part (a) of Theorem 1. If
α0α2 = 0 then either all the zero or all the one assignments always satisfy the 2-SAT formula F .
So, take α0α2 > 0. Then M is semisimple (i.e. similar to a diagonal matrix).

By Lemma 4,

T +
s−1,n + T −

s−1,n ≤ 1� Ms−1 1 ≤ Bρs−1

for some constant B. The last inequality holds since we assume that M is semisimple.
Substituting this into (2), we finally have

P(F is unsatisfiable) ≤ K

n

n∑
s=2

s2ρs−1 for some constant K > 0

= O(n−1) since ρ < 1.

4. The exploration process

Observe that when ρ > 1, we need to find a contradictory cycle in the implication digraph
of the random 2-SAT formula with high probability. In order to prove this, we will show that
starting from any fixed vertex there is a constant probability that it implies a large number of
literals in the digraph, meaning that there are directed paths to a large number of vertices from
the fixed vertex. To achieve this, we explore the digraph dynamically starting from a fixed
literal x under certain rules and keep track of variables that are implied by x at each step. We
call this the exploration process, which is defined next.

Definition and notation. Given a realization of the 2-SAT formula and an arbitrarily fixed
literal x, we will consider an exploration process in its implication digraph starting from x.

• The exploration process describes the evolution of two sets of literals, which will be
called the exposed set and the active set.

• A literal is said to be alive in a particular step of the process if it is strongly distinct from
those in the exposed set and from those in the active set at that step.

• We maintain two stacks for the literals in the active set, one for positive literals and
another for negative literals.

• At each step we pop-up a literal (call it the current literal) from one of the two stacks of
the active set, depending on some event to be described later, and expose it. This means
that we look for all the literals that are alive at that time and to which there is a directed
edge from the current literal.

• We then put those new literals in the stacks of the active set (positive or negative) in some
predetermined order and throw the current literal in the exposed set.

• We go on repeating this procedure until the stack of the active literals becomes empty
and the process stops.

• Mathematically, let Et and At respectively denote the set of exposed and active sets of
literals at time t . Also, let Ut = {vr(u) : vr(u) �∈ vr(Et ) ∪ vr(At )} be the set of alive
variables at time t . Set E0 = ∅ and A0 = {x}. If At is nonempty and the literal l ∈ At
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is exposed from the stack, then we have the following updates at time t + 1:

At+1 = (At \ {l}) ∪ {u : u literal such that vr(u) ∈ Ut and the clause (l̄ ∨ u)

is present},
Et+1 = Et ∪ {l}.

If At is empty then so is At+1 and Et+1 will be same as Et .

Note that during the evolution of the process, each clause is examined only once. Also,
every literal in

⋃
t (At ∪ Et) can be reached from x via a directed path (consisting of strongly

distinct literals).
For a subset S of literals, we can partition it as S = S+ ∪ S−, where S+ and S− are the sets

of all positive and, respectively, negative literals of S. Let ut , a
+
t , and a−

t be the shorthand for
|Ut |, |A+

t |, and |A−
t |, where | · | denotes the size of a set. Set at := |At | = a+

t + a−
t .

Distribution of the process. The stochastic description of the evolution of the process
(ut , a

+
t , a−

t ), 0 ≤ t ≤ n, for a random 2-SAT formula on n variables can be summarized
in the next lemma, whose proof is immediate.

Lemma 5. Define a triangular array of independent Bernoulli random variables as follows:

W
(t)
i ∼ Ber

(
α0

2n

)
; X

(t)
i , Y

(t)
i ∼ Ber

(
α1

2n

)
; Z

(t)
i ∼ Ber

(
α2

2n

)
;

for 1 ≤ i ≤ n and 0 ≤ t ≤ n. Let At �= ∅. Given H(t), the history up to t , and the fact that
the current literal at time t is positive, we have

ut − ut+1
d=

ut∑
i=1

{(W(t)
i + X

(t)
i ) ∧ 1} = Bin

(
ut ,

α0

2n
+ α1

2n
− α0α1

4n2

)
,

a+
t+1 − a+

t
d= −1 +

ut∑
i=1

X
(t)
i = −1 + Bin

(
ut ,

α1

2n

)
,

a−
t+1 − a−

t
d=

ut∑
i=1

W
(t)
i = −1 + Bin

(
ut ,

α0

2n

)
,

where ‘
d=’ denotes equality in distribution. Similarly, given H(t) and conditional on the event

that the current literal at time t is negative, we have

ut − ut+1
d=

ut∑
i=1

{(Y (t)
i + Z

(t)
i ) ∧ 1} = Bin

(
ut ,

α1

2n
+ α2

2n
− α1α2

4n2

)
,

a+
t+1 − a+

t
d= −1 +

ut∑
i=1

Z
(t)
i = −1 + Bin

(
ut ,

α2

2n

)
,

a−
t+1 − a−

t
d=

ut∑
i=1

Y
(t)
i = −1 + Bin

(
ut ,

α1

2n

)
.

Definition 2. For the rest of the paper, we fix T = [√n]. Let τ := sup{t ≤ T : ut ≥ u0−2αT },
where α = max(α0, α1, α2). In words, τ is the last time before T such that the decrease in the
number of unexposed variables is at most 2αT .
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We define a round of the exploration process as follows. Fix a subset S of variables of size
N ≥ (1 − δ/2)n for some small δ > 0 such that (1 − δ)ρ > 1 and a starting literal, say x ∈ S.
First run the exploration process from x on the implication digraph restricted to literals from S

up to time τ . If τ < T , stop. Otherwise, delete all the variables in vr(ET ∪ AT ) \ vr(x) from
S to get a new set of variables S′ ⊆ S. By the definition of τ , |S′| ≥ N − 2αT . Now again
run another independent exploration process starting from x̄ up to time τ but on the digraph
restricted to literals from S′ ∪ {x̄}. As before, we apply the stopping rule τ < T .

Lemma 6. The (random) set of clauses examined during the evolution of an exploration process
up to time T is disjoint from the set {(ū ∨ v̄) : u, v ∈ AT }. Furthermore, the clauses examined
during the evolution of the second exploration process of a round are distinct from the clauses
in the set {(ū ∨ v̄) : u, v ∈ AT } ∪ D , where AT and D are respectively the active set at time T

and the set of clauses examined during the evolution of the first exploration process.

Proof. The first statement of the lemma follows from the easy observation that if u ∈ AT

then, from the very definition of the exploration process, the clause (ū∨w) is not examined up
to time T for all literals w such that w̄ �∈ ET .

For the second statement, note that any problematic clause should include literal x or x̄ (x
is the starting vertex). Now all the clauses involving vr(x) which are examined during the
first exploration process of a round must have the form (x̄ ∨ y), where literal y is such that
vr(y) �= vr(x). But the clauses involving vr(x) scanned by the second exploration process of
the round are all of the form (x ∨ y), where literal y is such that vr(y) �= vr(x), and there can
be no clause from the set {(ū ∨ v̄) : u, v ∈ AT } which contains either x or x̄.

Corollary 1. Given whether each of the clauses in {(ū ∨ v̄) : u, v ∈ AT } ∪ D is present in C
or not, the distribution of the evolution of the second exploration process depends only on the
number of variables with which the second process starts.

4.1. Proof of Theorem 1(b) when the αis are all equal

Before tackling the general situation we pause for a moment to give a quick sketch, after [27],
of the unsatisfiability part of the phase transition for the standard 2-SAT model. This will serve
as a prelude to the proof for the general case.

Let α = α0 = α1 = α2 > 1. Then ρ = α. In this special case, we slightly modify our
exploration process by demanding that we will always choose the current literal from the set
of active literals uniformly. Thus, at each time t ≥ 1, given its size at , At is uniformly random
over all the literals except x and x̄, the starting vertex and its complement.

Since the probabilities for the clauses to be present are all equal, the distribution of the
exploration process (ut , at ) simplifies. Given H(t), the history up to time t , and at > 0,

ut − ut+1
d= Bin(ut , 2pn − p2

n), at+1 − at
d= −1 + Bin(2ut , pn), where pn = α

2n
.

Note that each of the random variables (ut −ut+1) is stochastically dominated by Bin(n, 2pn),
which has mean α. Thus, using concentration of the binomial distribution, it is easy to see that,
for time T = [√n], the event {τ < T } = {∑T −1

t=1 (ut−1 − ut ) > 2αT } occurs with probability
at most A exp(−cT), where c > 0. See Lemma 7 in Section 4.2 for a proof of the more general
fact.

Let δ > 0 be as given in Definition 2. If u0 ≥ (1 − δ/2)n then {τ = T } ⊆ {uT ≥ (1 − δ)n}.
When τ = T , the process {at , 1 ≤ t ≤ T } behaves like a random walk with positive drift on
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nonnegative integers with 0 as the absorbing state and, hence,

there exists C > 0 such that P(aT ≥ CT , τ = T ) ≥ ζ for some constant ζ > 0,

independent of n. (7)

If both u and ū are in AT for some literal u, we have a directed path from the starting vertex
to its complement using the literals in ET ∪ AT . Otherwise, each pair of literals u, v ∈ AT are
strongly distinct. There are edges u → v̄ and v → ū in the digraph if the clause (ū ∨ v̄) is
present in the formula. If at least one of these

(CT
2

)
many clauses is present then we again have

a directed path from the starting vertex to its complement using the literals in ET ∪ AT . Let D

be the event that there exists a directed path from the starting vertex of the exploration process
to its complement in ET ∪ AT . Therefore, by Lemma 6,

P(D | aT ≥ CT , τ = T ) ≥ 1 −
(

1 − α

2n

)(CT
2 )

≥ p,

where p > 0 is a constant, independent of n. This implies that

P(D, τ = T ) ≥ P(D | aT ≥ CT , τ = T ) P(aT ≥ CT , τ = T ) ≥ pξ > 0.

Now, by Corollary 1 we can say that after a round the probability that there is no termination
and there exists a contradictory cycle in the variables visited during the round is at least p2ζ 2.

We continue with another round of the exploration process in the deleted graph containing
only unvisited variables. We repeat this process until a round stops due to the stopping rule.
If each of the successive rounds does not terminate, we have 	(

√
n) rounds of the exploration

processes before the event {ut < (1−δ/2)n} occurs. It is easy to see that the clauses examined in
different rounds of the exploration process are all distinct and, hence, the rounds are independent.
Thus, the probability that we get no contradictory cycle in all the rounds is at most

P(no contradictory cycle and no round stops) + P(one of the rounds stops)

≤ (1 − p2ζ 2)	(
√

n) + (1 − (1 − A exp(−cT ))2	(
√

n))

≤ constant × exp (−B
√

n) for some B > 0.

Remark 2. Instead of taking T = [√n] as in the proof, if we choose T = 	(n) suitably then it
follows from (7) that aT ≥ 
(n) for probability at least r for some r > 0. Thus, for any literal
y �= x, x̄, we get P(y ∈ AT ) ≥ p for some p > 0 and all large enough n. So, the probability
that there is a directed path from x1 to x2 is at least p. The same holds true for the directed
path from x2 to x1. These are monotonic events. So, by the Fortuin–Kasteleyn–Ginibre (FKG)
inequality [14], they occur simultaneously with probability greater than or equal to p2. Thus,
the chance that there exists a directed path from x1 to x̄1 is at least p2. Again, applying the
FKG inequality, we have a contradictory cycle with probability at least p4. Now appealing to
Friedgut’s theorem for the sharp threshold [15], we can conclude that the formula is UNSAT
with probability tending to 1 as n → ∞.

4.2. Associated two-type branching process

Now we return to the general case. Given an exploration process on a subgraph of the
implication digraph consisting of N = 	(n) many variables starting from any fixed literal,
our goal is to couple it with a suitable two-type supercritical branching process up to time
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T = [√n] on a set of high probability. Assume that N ≥ (1 − δ/2)n, where δ > 0 is such that
(1 − δ)ρ > 1.

On the set where {ut ≥ N − 2αT for all t ≤ T } for large enough n, Bin(ut , αi/2n)

stochastically dominates Bin((1 − δ)n, αi/2n) for all time t ≤ T . Next we are going to
prove that this event happens with high probability.

Lemma 7. Let T , δ be as above, and let α = max(α0, α1, α2). Then

P(τ < T ) ≤ 2 exp

(
−αT

2

)
.

Therefore,

P(ut ≥ (1 − δ)n for all t ≤ T ) ≥ 1 − 2 exp

(
−αT

2

)
for sufficiently large n.

Proof. Since ut is decreasing in t and N − 2αT ≥ (1 − δ)n for sufficiently large n, it is
enough to prove that P(τ < T ) ≤ 2 exp(−αT /2). Note that u0 = N . Clearly, given ut−1 and
the current literal type at time t , the random variable ut−1 − ut is conditionally independent of
u0−u1, u1−u2, . . . , ut−2−ut−1 and is stochastically dominated by Bin(2N, α/2n) irrespective
of the conditioning event. Therefore, the distribution of u0 − uT is stochastically dominated
by Bin(2NT , α/2n). By Bernstein’s inequality,

P

(
Bin

(
2NT ,

α

2n

)
≥ 2αT

)
≤ 2 exp

(
−αT

2

)
.

Therefore,

P(τ < T ) = P(uT < N − 2αT ) = P(u0 − uT > 2αT ) ≤ 2 exp

(
−αT

2

)
.

Lemma 8. For each 0 ≤ i ≤ 2, there exists a bounded distribution Fi taking values in
nonnegative integers and with mean mi such that

(a) for all sufficiently large n,

P

(
Bin

(
n(1 − δ),

αi

2n

)
= k

)
≥ P(X = k | X ∼ Fi) for all k ≥ 1, 0 ≤ i ≤ 2;

(b) if M0 is the branching matrix given by

M0 =
[
m1 m0
m2 m1

]

then ρ0 > 1, where ρ0 is the maximum eigenvalue of M0.

Proof. Fix some β ∈ (0, 1) so that (1−δ)(1−β)ρ > 1. Let γi = (1−δ)αi/2 for i = 0, 1, 2.
Find c large enough so that

c∑
k=1

k(1 − β/2) exp(−γi)γ
k
i

k! > (1 − β)γi, i = 0, 1, 2.
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For each 0 ≤ i ≤ 2, let us now define a truncated (and reweighed) Poisson distribution which
takes the value k with probability (1 − β/2) exp(−γi)γ

k
i /k! for 1 ≤ k ≤ c and 0 otherwise.

Call this distribution Fi . By the choice of c, its mean mi is greater than (1 − β)γi . Poissonian

convergence says that Bin(n(1− δ), αi/2n)
L1−→ Poisson(γi) and part (a) of the lemma follows.

Part (b) of the lemma follows from the fact that ρ0 = m1 + √
m0m2 ≥ (1 − δ)(1 − β)ρ > 1.

Definition 3. Consider a supercritical two-type branching process, which we call an F -
branching process, with offspring distributions

type I → (type I, type II) : (F1, F0)︸ ︷︷ ︸
independent

,

type II → (type I, type II) : (F2, F1)︸ ︷︷ ︸
independent

Next we define a new process X(t) = (X1(t), X2(t)) by sequentially traversing the Galton–
Watson tree of the F -branching process. We fix a suitable order among the types of node of
the tree and, moreover, we always prefer to visit a node of type I to a node of type II. Then we
traverse the tree sequentially and at each step we expand the tree by including all the children
of the node we visit. Let us denote the number of unvisited or unexplored children of type i in
the tree traversed up to time t by Xi(t).

Lemma 9. There exists a coupling such that (a+
t , a−

t ) ≥ X(t) for all t ≤ τ and large enough n.

Proof. Fix n sufficiently large. If the starting vertex of the exploration process is of positive
type, we initiate the branching process with one individual of type I. Similarly for the other
case. We run in parallel the exploration process where the choice of the current literal type at
time t depends on the type of node visited at time t . This can be done because, if t ≤ τ , we can
always simultaneously choose our random variables in such a way (by Lemmas 5 and 8) that,
for every step, the number of active literals generated of each type is no less than the number
of unvisited nodes of the corresponding type in the tree grown up to that step. If τ < t ≤ T or
if we have no unvisited child left in the tree, then we choose the current literal from the active
set in some fixed predetermined procedure.

Next we are going to find a lower bound on the total number of unvisited children after T

steps of the above process.

Lemma 10. Suppose that X(t) is as in Definition 3 with X(0) = (1, 0) or (0, 1). Then there
exist C > 0 and η > 0 such that P(X1(T ) + X2(T ) ≥ CT ) ≥ η.

Proof. Though a proof of the above lemma can be found implicitly in [22], we present it
here for the sake of completeness. Recall that the F -branching process is supercritical, as ρ0,
the maximum eigenvalue of M0, is strictly greater than 1.

If we assume that α1 > 0, trivially, this process is positive regular and nonsingular. Thus, by
a well-known result (see [18, Theorem 7.1]) on the supercritical multitype branching process,
its extinction probability is given by 0 ≤ q = (q1, q2) < 1, where qi is the probability that the
process becomes extinct starting with one object of type i.

Note that if α1 = 0, we no longer have the positive regularity. In this case, though [18,
Theorem 7.1] cannot be directly applied, we can argue as follows to get the same conclusion.
If the process starts with only one individual of type i, the corresponding branching process
can be viewed as a single-type supercritical branching process (made of the individuals of type

https://doi.org/10.1239/jap/1285335410 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335410


Branching process approach for 2-SAT thresholds 807

i only) if we observe the process only at the even number of steps. So, the probability that it
eventually dies out, which is nothing but qi , is strictly less than 1.

Let us define e1 = (1, 0) and e2 = (0, 1). Instead of looking at X(t), which has (0, 0) as
an absorbing state, we will consider a new chain X̂(t) starting from X̂(0) = X(0) which is
supported on the entire Z

2. Given X̂(0), X̂(1), . . . , X̂(t), define

X̂(t + 1)
d=

{
X̂(t) − e1 + (F1, F0) if X̂1(t) > 0,

X̂(t) − e2 + (F2, F1) otherwise.

We can couple X(t) and X̂(t) together so that X̂(t) = X(t) until X(t) reaches (0, 0).
Let (a, b) be a normalized eigenvector of M0 corresponding to eigenvalue ρ0 such that

a2 + b2 = 1. Since α0, α2 > 0, we have both a > 0 and b > 0. Let

Z(t) := aX1(t) + bX2(t) and Ẑ(t) := aX̂1(t) + bX̂2(t).

Let
Ft := σ(X̂(0), X̂(1), . . . , X̂(t)) and �Ẑ(t) := Ẑ(t + 1) − Ẑ(t).

Since the Fis are bounded, so are the �Ẑ(t)s. Then

E(�Ẑ(t) | Ft ) =
{

(ρ0 − 1)a if X̂1(t) > 0,

(ρ0 − 1)b otherwise

≥ µ

:= (ρ0 − 1) min(a, b)

> 0.

Now we have

P

(
Ẑ(T ) ≤ µT

2

)
≤ P

(
Ẑ(T ) −

T −1∑
i=0

E(�Ẑ(i) | Fi ) ≤ −µT

2

)

≤
∑T −1

i=0 E(�Ẑ(i) − E(�Ẑ(i) | Fi ))
2

µ2T 2/4

= O(T −1).

In the last line we used orthogonality of the increments, boundedness of�Ẑ(t), and Chebyshev’s
inequality. Therefore, we can conclude that

P

(
X1(T ) + X2(T ) ≥ µT

2

∣∣∣∣ X(0) = ei

)

≥ P

(
Z(T ) ≥ µT

2

∣∣∣∣ X(0) = ei

)

≥ P

(
Ẑ(T ) ≥ µT

2
, X(t) �= 0 for all 0 ≤ t ≤ T

∣∣∣∣ X(0) = ei

)

≥ P(X(t) �= 0 for all t ≥ 0 | X(0) = ei ) − P

(
Ẑ(T ) <

µT

2

∣∣∣∣ X(0) = ei

)
≥ (1 − qi) − O(T −1).

In the second inequality we used the fact that Z(t) = Ẑ(t) until X(t) reaches (0, 0).
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5. Proof of Theorem 1(b)

Lemma 11. In one round of the exploration process on a subgraph involving N ≥ (1 − δ/2)n

many variables the probability that

• there is no termination due to the stopping rule; and

• there exists a contradictory cycle using the variables visited through the round

is at least κ for some κ > 0 independent of n.

Proof. From Lemmas 9 and 10, we obtain

P(aT ≥ CT , τ = T ) ≥ P(X1(T ) + X2(T ) ≥ CT , τ = T )

≥ P(X1(T ) + X2(T ) ≥ CT) − P(τ < T )

≥ η − 2 exp

(
−αT

2

)
≥ ζ > 0.

If both u and ū ∈ AT for some literal u, we have a directed path from the starting vertex to its
complement using the literals in ET ∪AT . Otherwise, for each pair of literals u, v ∈ AT , which
are strongly distinct, there are edges u → v̄ and u → v̄ in the digraph if the clause (ū ∨ v̄) is
present in the formula. If at least one of these

(
CT
2

)
many clauses is present then we again have

a directed path from the starting vertex to its complement using the literals in ET ∪ AT .
Case I: α1 > 0. Let αmin = min(α0, α1, α2) > 0. Let D be the event that there exists a

directed path from the starting vertex of the exploration process to its complement in ET ∪AT .
Then, by Lemma 6, there exists p > 0 independent of n, such that

P(D | aT ≥ CT and τ = T ) ≥ 1 −
(

1 − αmin

2n

)(CT
2 )

≥ p > 0.

Case II: α1 = 0. Now αmin = 0 and we cannot prove the above statement. But then, instead
of looking at all the (ū ∨ v̄) clauses where u and v are strongly distinct clauses belonging to
AT , we only consider those clauses for which u and v have the same parity. Since there are at
least 2

(CT/2
2

)
many clauses of this type, we have, similarly to case I,

P(D | aT ≥ CT and τ = T ) ≥ 1 −
(

1 − α′

2n

)2(CT/2
2 )

≥ p > 0,

where α′ = min(α0, α2) > 0. Therefore,

P(D, τ = T ) ≥ P(D | aT ≥ CT and τ = T ) P(aT ≥ CT and τ = T ) ≥ pζ.

The lemma is now immediate from Corollary 1 with κ = p2ζ 2.

Remark 3. From the proof of the above lemma, we have seen that, for large n, with probability
at least r for some r > 0, we have a directed path in the implication digraph from any literal u

to its complement ū. Invoking the FKG inequality, we can say that we can find a contradictory
cycle with probability at least r2 > 0. But note that we do not have a ready-made theorem
like Friedgut’s sharp threshold result for the generalized 2-SAT model. While we believe that
tweaking Lemma 4 of [19] may help, we will not pursue this further. Instead we take a different
route to bypass the problem.
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Proof of Theorem 1(b). We now show how to bootstrap this positive probability event to an
event with high probability.

Initially we run a round of the exploration process on the entire set of variables starting
from x1. If the process does not terminate after the first round, out of at least n − 4αT − 1
many unvisited variables, we pick up an arbitrary one and run another round of the exploration
process in the deleted graph starting from it. We repeat this process δ

√
n/9α ≤ δn/2(4αT +1)

many times, provided that we do not have to stop in any one of these rounds of the exploration
process, each time discarding previously visited variables to achieve independence among the
different rounds. We thus ensure that in each run of the exploration process, we have at least
(1 − δ/2)n many variables to start with.

We conclude that the probability that we get no contradictory cycle in all the rounds is at
most

P(no contradictory cycle and no round stops) + P(one of the rounds stops)

≤ (1 − κ)δ
√

n/9α +
(

1 −
(

1 − 2 exp

(
−αT

2

))2δ
√

n/9α)
≤ constant × exp (−B

√
n) for some B > 0.

This concludes the proof.
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