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1. Introduction

In this note we give a basis for the radical of the group algebra of a^-nilpotent
group over a field of characteristic/? in terms of the ordinary representation theory
of the group. We use our result to calculate the exponent of the radical for such a
group.

Notation. Let p be a fixed prime, k an algebraically closed field of characteristic
p and G a finite group. Denote by kG the group algebra of G over k and by N =
N(G) the radical of kG. We denote the radical of a general finite dimensional
A;-algebra A by radA. Let G have order \G\. We assume throughout that/> divides
|G|, in which case N ^ 0. By a kG module we mean a left kG module.

2. Lemmas

We begin with two results which are perhaps of independent interest.

LEMMA 1. Let H be a normalp'-subgroup of G and L an irreducible kH module.
Write E = EndtG (LG), F = rad E and N = N(G). Then, using the natural {right)
action of F on L°,

N'-LG = L° • Fl for all i ^ 1.

PROOF. We may take L = kHe for some primitive kH idempotent e, and
L° = kGe. Write 1 = e1+e2 + - • -+en, a sum of primitive kH idempotents, with
e = ex.

N-LG = Ne = kGNe

= kGeNe + kGe2Ne + - • -+kGenNe

as left kG modules, where the sum is not necessarily direct.
Now e(kGe s HomJtG(A:Gei, kGe) as A>spaces under the map

• cp e HomtG(A:(7ei, kGe)

119

https://doi.org/10.1017/S1446788700010673 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010673


120 R. J. Clarke [2]

where bq> — ba for all b in kGet. We use this fact to show that Ate = kGeNe.
Let/; be the primitive central kH idempotent corresponding to et, 1 ^ i ^ n.

Denote by NG(ft) the group of elements of G commuting with/,- and by Tt a left
transversal for NG{ft) in G. Then Ft = Y*eTtfi >s a central kG idempotent. Now
if/ j and / ; are not conjugate in G, FiFl = 0. Hence

etkGe = eJ^kGFJ.e, = 0.

Suppose/i and/; are conjugate in G, say/t = ff. Now

Hence ef and e are in the same kH block ft///";. Since H is a /?'-group we may use
ordinary representation theory to deduce that kHe ^ kHef. Thus

ArGe ^ fcGef S itGe;.

We claim that in this case etNe = eJcGeNe. For there is an a e etkGe such that
the map <p : kGet -* kGe given by xq> = xa is an isomorphism. Hence there is a
beekGei such that yep'1 = yb for all jefcGe. Hence xab = x for all x in
Thus

ef = e-ab = (e^b = ab.

Let c e ej-Ate.

c = e;c = a(6c) e

Thus ejAte c eikGeNe. Since the reverse inclusion is obvious we have equality.
Hence

kGetNe = kGetkGeNe c kGeNe,

Ne = ArGe/Ve = (kGe)(eNe).

Now by [1] 54.6 we know that eNe and F are identical as rings. Hence N • L° =
Z,G • F. Thus our result holds for i = 1.

Suppose A" • LG = LG • F j for ally ^ i, i.e.

(1) A"e = (kGe)(eNey.

Multiplying (1) on the left by N gives

(2) NJ+1e = (Ne)J + 1,

whereas multiplying (1) on the right by Ne gives

(3) (NJe)(Ne) = (kGe)(eNe)>+1.
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Thus Ni+ie = {Ne)i+1, using (2) with; = i

= (Ne)'(Ne)

= (Nle)(Ne), using (2) wi th ; = i-\

= (kGe)(eNe)i+1, using (3) with; = /.

Therefore Ni+1 • La = LG • Fi+1. The result follows by induction.

DEFINITION. If H is normal in G and L i s a kH module, the stabilizer S = S(L)
of L in G is denned by

S= {geG;L'*L}.

LEMMA 2. In the situation of Lemma l,ifS is the stabilizer ofL in G, N' • LG —
kG- N(S)'-LS for alii ^ 1.

PROOF. Let g^, • • •, gs be a left transversal for H in S and gt, • • •, gn a left
transversal for H in G.

s

Ls = © gt (x) L is a ArS submodule of

LG = © a; (x) L and L is a kH submodule of Ls.

Let 0 e EndkS(L
s) and define cp : Endts(Ls) -> EndkG(LG) by putting q>(6) = 6',

where
(<7,®/)6>' = gi(ie),leL,i= 1, • • • , « ,

and extending 0' linearly to LG. It is well known and easy to prove that cp is an
isomorphism of rings such that 6 and q>(6) have the same action on L.

Thus
n

Nl • LG = ( £ #,®L)(rad EndtG(LG))'', by Lemma 1,

c /cG • N(S)lLs, by Lemma 1.

The reverse inclusion is proven similarly. Hence the result follows.

3. p-nilpotent groups

Let G be a/>-nilpotent group with Sylow^-subgroup P and normals-comple-
ment H. Let e b ; a primitive idempotent of &:# and put L = kHe. Suppose L has
stabilizer S = HQ in G, where Q is a Sylow/^-subgroup of 5. Now
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(4) £ = EndiS(Ls) s © KomkH(L, q ® L).
qeQ

We know from [3] that there is a unique kS module X such that X\H = L.
Let X afford the representation p of S with respect to the /c-basis W.

For each <7 e Q the map Tq : L -> q®L given by

is a £:i/-isomorphism.
Therefore {rg; # e Q] is a &>basis for the right hand side of (4). E therefore

has fc-basis {r\q; q e Q}, where nq is defined by

{q'®l)riq = q'(JTq)
= q'q®p{q~1)Uq'BQ,leL.

Nowt/,.(/, = t\q-q. Hence E= kQ.ThusradEhasbasis {»Ji —>74; qe Q—{1}}
Define /jfe /) = l®/-?®/?^"1)/ , ? e g , /eL.

THEOREM 1. The set {t\(q, I); qeQ-{\), /e Pf} is a k-basisfor N{S)LS.

PROOF. 7V(50is = £ s • rad £. Now

')i% a n d

Hence the result follows.
We can now give an explicit expression for N(G). For let 1 = et + - • -+cB

be a decomposition of 1 e kH into primitive orthogonal idempotents. Write Lt =
kHei and let Li have stabilizer S% in G. Let Ŝ  have Sylow/^-subgroup Q{. Then

kG = ® kGet = © Lf as left kG modules and

= Y,kG- N{S) • Lf, which can be calculated.

DEFINITION. The exponent of N(G) is the least integer n such that N(Gf = 0.

THEOREM 2.I/G isp-nilpotent and P is a Sylow p-subgroup of G then N(G)
and N(P) have the same exponent.

PROOF. We use the previous notation.
Consider the idempotent / = XfceH^/l^l of kG. It is easy to show that

kGf ^ kP as algebras. Hence

N(G)n = 0 => (rad (kGf)Y = 0

=> (rad kPf = 0

=> N(P)n = 0.
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Conversely, let N(Pf = 0. We have that

N(G)n = £ NtGYL?
i

= YJkG- N(Stfl?f by Lemma 2,
i

= £ kG • L*'{rad End^I?,')}" by Lemma 1.

Now g; is contained in some Sylow/^-subgroup P1 of G, so

i)" = 0.

Since

we have

Therefore iV(G)n = 0.

REMARKS. If G is a group of ̂ -length one then G contains a normal /?-nilpotent
subgroup K such that G/Kis a/>'-group. By results of Highman [2] and Villamayor
[4] we have that N(G) = kG • N(K). Theorem 2 therefore holds for groups of

^-length one. Similar calculations can be carried out in the case of a general
p-soluble group. However Theorem 2 does not hold in such a case. The exponent
of N(G) may be greater than or less than that of N(P).
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