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Abstract
We develop a theory of quasimaps to a moduli space of sheaves M on a surface S. Under some assumptions,
we prove that moduli spaces of quasimaps are proper and carry a perfect obstruction theory. Moreover, they are
naturally isomorphic to moduli spaces of sheaves on threefolds 𝑆 × 𝐶, where C is a nodal curve. Using Zhou’s
theory of entangled tails, we establish a wall-crossing formula which therefore relates the Gromov–Witten theory
of M and the Donaldson–Thomas theory of 𝑆 × 𝐶 with relative insertions. We evaluate the wall-crossing formula
for Hilbert schemes of points 𝑆 [𝑛] , if S is a del Pezzo surface.
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1. Introduction

1.1. Overview

In [CKM14], Ciocan-Fontanine, Kim and Maulik defined moduli spaces of stable quasimaps to GIT
quotients, generalizing previously existing constructions [CFK10, MOP11, MM07, Tod11]. Moduli
spaces of stable quasimaps and stable maps are different compactifications of moduli spaces of stable
maps with smooth domains. There also exists a mixed theory of 𝜖-stable quasimaps that interpolates
between the two. In [CK20, CFK17, CK14a], wall-crossing formulas between quasimap and Gromov–
Witten invariants were conjectured. In [Zho22], they were proved in full generality. In a nutshell, the
difference between two theories is measured by an I-function - a generating series of localised invariants
associated to quasimaps from P1.
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2 D. Nesterov

In this article, we develop a theory of quasimaps to moduli spaces of sheaves on surfaces. More
specifically, let 𝑀 (v) be a moduli space of stable1 sheaves in a class v ∈ 𝐾num(𝑆) on a smooth
projective complex surface S. The space 𝑀 (v) naturally embeds into the rigidified2 moduli space of all,
not necessarily stable, sheaves,

𝑀 (v) ⊂ ℭ𝔬𝔥𝑟 (𝑆, v).

A quasimap to 𝑀 (v) from a nodal projective curve C is defined to be a map

𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v),

which maps to 𝑀 (v) at a general point of C. We construct moduli spaces of such quasimaps, showing
that they are proper and carry a perfect obstruction theory under some natural assumptions.

The most remarkable feature of quasimaps to moduli spaces of sheaves is that they can be given
a completely sheaf-theoretic interpretation. A reason for that is simple: by construction, a map from
a scheme B to ℭ𝔬𝔥𝑟 (𝑆, v) is given by a sheaf on 𝑆 × 𝐵 flat over B. In particular, for any quasimap
from a curve C, we obtain a naturally associated sheaf on 𝑆 ×𝐶. This correspondence is of fundamental
importance. On one hand, we use it to prove all aforementioned properties of moduli spaces of quasimaps.
On the other hand, it connects quasimaps to Donaldson–Thomas theory. In fact, this holds on all levels:
stability, obstruction theory, insertions, etc. In short,

Quasimap theory of 𝑀 (v) = Donaldson–Thomas theory of 𝑆 × 𝐶,

such that primary insertions on the left correspond to relative insertions on the right.
Following [Zho22], we prove wall-crossing formulas in our setup. They have exactly the same form

as those of GIT quasimaps. With respect to the identification of theories above, I-functions become
1-leg Vertex functions associated to the localised Donaldson–Thomas theory on 𝑆 × P1, introduced in
[MNOP06a, MNOP06b]. Hence, the wall-crossing formulas express the Donaldson–Thomas theory of
𝑆 × 𝐶 in terms of the Gromov–Witten theory of 𝑀 (v) and Vertex functions, and vice versa.

1.2. Results

Throughout the article, S is a smooth projective surface over the field of complex numbers C. We fix
a very ample line bundle O𝑆 (1) ∈ Pic(𝑆), a class v in the numerical K-group 𝐾num(𝑆), and another
class u in the algebraic K-group 𝐾0(𝑆). We equip K-groups with the Euler norm 𝜒, which is defined as
𝜒(𝐹) :=

∑
𝑖 (−1)𝑖ℎ𝑖 (𝑆, 𝐹) for a coherent sheaf F on S.

Assumption. We make the following assumptions:

◦ ℎ1 (𝑆) = 0,
◦ rk(v) > 0,
◦ 𝜒(v · u) = 1,
◦ for v and O𝑆 (1), all semistable sheaves are stable.

Section 1.6 explains why these assumptions are made.

A quasimap 𝑓 : (𝐶, p) → ℭ𝔬𝔥𝑟 (𝑆, v) is said to be stable if

◦ nodes and markings p are mapped to 𝑀 (v),
◦ C does not have rational tails,3
◦ |Aut( 𝑓 ) | < ∞.

1Semistability of sheaves is defined with respect to reduced Hilbert polynomials.
2We refer to Section 2.1 for the rigidification.
3Rational components with one special point (i.e., with one separating node or one marking).
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More generally, for a real number 𝜖 ∈ R>0, in Definition 3.11 we introduce 𝜖-stable quasimaps, which
specialise to stable quasimaps if 𝜖 � 1, and to stable maps,4 if 𝜖 > 2. The degree of quasimaps is
defined by pulling back determinant line bundles on ℭ𝔬𝔥𝑟 (𝑆, v). Let

𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)

be a moduli space of 𝜖-stable quasimaps of genus g and degree 𝛽 with N markings. The starting point
of the theory of quasimaps to moduli spaces of sheaves is the following result.
Theorem A (Theorem 3.16). Under our assumptions, there exists a moduli space 𝑀 𝜖

v,𝛽
(𝑆 × 𝐶𝑔,𝑁 )

parametrizing sheaves on threefolds 𝑆 × 𝐶 for varying nodal curves C, and a natural isomorphism

𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) � 𝑀 𝜖

v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ),

such that the degree of quasimaps 𝛽 together with the class v determine the Chern character of sheaves
on 𝑆 × 𝐶.

Remark 3.15 gives an explicit description of sheaves F, such that

𝐹 ∈ 𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) (C), for 𝜖 � 1.

An identification similar to Theorem A also holds if one considers a moduli space of objects in a perverse
heart of Db (𝑆) given by the t-structure associated to a torsion pair. A particularly useful torsion pair is
provided by 0-dimensional objects and their right-orthogonal complement in Coh(𝑆). We denote the
rigidified moduli stack of objects in the associated heart by ℭ𝔬𝔥♯𝑟 (𝑆, v). In Section 6.3, this is discussed
in the context of Hilbert schemes of points, which naturally embed into ℭ𝔬𝔥♯𝑟 (𝑆, v),

𝑆 [𝑛] ⊂ ℭ𝔬𝔥♯𝑟 (𝑆, v).

It is proved that quasimaps to the pair above correspond to stable pairs on 𝑆 ×𝐶 in the sense of [PT09],
Theorem 6.8.

Theorem A gives us access to tools from the theory of moduli spaces of sheaves, which are used in
combination with tools from the theory of quasimaps to prove the following result.
Theorem B (Theorem 4.12, 5.3, 6.8). Under our assumptions, a moduli space 𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽) is a
proper Deligne–Mumford stack with an obstruction theory. If the virtual tangent complex5 of 𝑀 (v) is
a locally free sheaf in degree 0, then the obstruction theory is perfect. Moreover, the identification of
Theorem A respects naturally defined obstruction theories. The same holds for Hilbert schemes of points
inside the moduli stack of objects in the perverse heart.

We define descedent quasimap invariants, using virtual fundamental classes,

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓

𝑘𝑁 〉 𝜖𝑔,𝛽 :=
∫
[𝑄𝜖

𝑔,𝑁 (𝑀 (v) ,𝛽) ]vir

𝑖=𝑁∏
𝑖=1

ev∗𝑖 (𝛾𝑖)𝜓
𝑘𝑖
𝑖 ,

where 𝛾1, . . . , 𝛾𝑁 ∈ 𝐻∗(𝑀 (v)) and 𝜓1, . . . , 𝜓𝑁 are 𝜓-classes associated to markings of the curves.
With respect to the identification of Theorem A, primary quasimap insertions (i.e., 𝑘𝑖 = 0 for all i)
correspond to relative Donaldson–Thomas insertions.

Let us now discuss the wall-crossing formula, which relates descendent quasimap invariants for
different values of 𝜖 ∈ R>0. Let

𝑉 (𝑀 (v), 𝛽)

4If 𝑔 ≠ 0 or 𝑛 ≠ 0, then it is sufficient to take 𝜖 > 1.
5There is a naturally defined sheaf-theoretic obstruction theory on 𝑀 (v); we refer to Section 5.1 for more details.
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4 D. Nesterov

be the space of quasimaps 𝑓 : P1 → ℭ𝔬𝔥𝑟 (𝑆, v) subject to the following conditions:

◦ f is of degree 𝛽,
◦ 𝑓 (∞) ∈ 𝑀 (v) ⊂ ℭ𝔬𝔥𝑟 (𝑆, v).

By evaluating a quasimap at ∞ ∈ P1, we obtain an evaluation map

ev: 𝑉 (𝑀 (v), 𝛽) → 𝑀 (v).

There is a C∗-action on P1,

𝑡 [𝑥 : 𝑦] = [𝑡𝑥 : 𝑦], 𝑡 ∈ C∗,

which induces a C∗-action on 𝑉 (𝑀 (v), 𝛽). The space 𝑉 (𝑀 (v), 𝛽) is not proper, but its C∗-fixed locus
is. Using virtual localisation, we obtain a localised virtual fundamental cycle,

[𝑉 (𝑀 (v), 𝛽)]vir ∈ 𝐻∗(𝑉 (𝑀 (v), 𝛽)C∗ ) [𝑧±],

where z is the C∗-equivariant parameter. We then define I-functions, which are also known as Vertex
functions, as follows:

𝐼𝛽 (𝑧) := ev∗ [𝑉 (𝑀 (v), 𝛽)]vir ∈ 𝐻∗(𝑀 (v)) [𝑧±],
𝜇𝛽 (𝑧) := [𝑧𝐼𝛽 (𝑧)]𝑧≥0 ∈ 𝐻∗(𝑀 (v)) [𝑧] .

We now state the wall-crossing formula for values of 𝜖 corresponding to stable quasimaps and stable
maps, which we denote by 0+ and ∞, respectively.

Theorem C (Corollary 7.7). Assuming (𝑔, 𝑁) ≠ (0, 1), we have

〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉0+

𝑔,𝛽 = 〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉∞𝑔,𝛽

+
∑
𝛽

〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 , 𝜇𝛽1 (−𝜓𝑁+1), . . . , 𝜇𝛽𝑘 (−𝜓𝑁+𝑘 )〉

∞
𝑔,𝛽0

/𝑘!,

where 𝛽 runs through all (𝑘 + 1)-tuples of effective quasimap classes

𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑘 ),

such that 𝛽 =
∑𝑖=𝑘
𝑖=0 𝛽𝑖 , and 𝛽𝑖 ≠ 0 for all 𝑖 ∈ {1, . . . , 𝑘}.

The wall-crossing invariants of 𝑆 [𝑛] for a del Pezzo surface S can be explicitly computed, allowing
us to evaluate the wall-crossing formula. More precisely, we can compute wall-crossing invariants for
the pair

𝑆 [𝑛] ⊂ ℭ𝔬𝔥♯𝑟 (𝑆, v).

To state the result, recall that for 𝑛 > 1, Nakajima–Grojnowski operators provide the following identifi-
cation:

𝐻2 (𝑆
[𝑛] ,Z) � 𝐻2 (𝑆,Z) ⊕ Z.

Using this identification, we denote a curve class in 𝐻2(𝑆
[𝑛] ,Z) by

(𝛾, 𝑚) ∈ 𝐻2(𝑆,Z) ⊕ Z.
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We then define the following generating series,

〈𝛾1, . . . , 𝛾𝑁 〉
♯,𝜖
𝑔,𝛾 :=

∑
𝑚≥0

〈𝛾1, . . . , 𝛾𝑁 〉
♯,𝜖
𝑔, (𝛾,𝑚)

𝑦𝑚,

where the superscript ‘♯’ indicates that we consider perverse quasimap invariants.

Theorem D (Corollary 8.7). Assume 𝑁 > 2. Then for Hilbert schemes of points 𝑆 [𝑛] on a del Pezzo
surface S, we have

〈𝛾1, . . . , 𝛾𝑁 〉
♯,0+
𝑔,𝛾 = (1 + 𝑦)c1 (𝑆) ·𝛾 · 〈𝛾1, . . . , 𝛾𝑁 〉

♯,∞
𝑔,𝛾 .

Since perverse quasimaps can be identified with stable pairs on 𝑆 × P1, the above result relates the
quantum cohomology of 𝑆 [𝑛] to the ring whose structure constants are given by the Pandharipande–
Thomas invariants of 𝑆 × P1. The change of variables as above was predicted6 by Davesh Maulik.

In fact, the result holds true more generally for (𝑔, 𝑁) ≠ (0, 1). One just needs to insert I-functions
from Proposition 8.6 into Corollary 7.7. However, the formula becomes more involved because for some
critical values of (𝑔, 𝑁, 𝛽), the string and divisor equations fail.

1.3. Hilbert schemes of points

Assume that 𝑀 (v) is a Hilbert scheme of points 𝑆 [𝑛] on S; that is,

ch(v) = (1, 0,−𝑛).

We can consider the following enumerative theories related to 𝑆 [𝑛] :

◦ GW(𝑆 [𝑛] ) - Gromov–Witten theory of 𝑆 [𝑛] ,
◦ GWorb(𝑆

(𝑛) ) - orbifold Gromov–Witten theory of an orbifold symmetric product [𝑆 (𝑛) ],
◦ GWrel(𝑆 × 𝐶𝑔,𝑁 ) - Gromov–Witten theory of 𝑆 × 𝐶𝑔,𝑁 /𝑀𝑔,𝑁 with relative insertions,
◦ DTrel(𝑆 × 𝐶𝑔,𝑁 ) - Donaldson–Thomas theory of 𝑆 × 𝐶𝑔,𝑁 /𝑀𝑔,𝑁 with relative insertions.

These theories are related by the following fundamental conjectures:

◦ CRC - analytic continuation and a change of variables relating theories GW and GWorb, provided by
the Crepant resolution conjecture, proposed in [Rua06], refined in [BG09, CIT09],

◦ DT/GW - analytic continuation and a change of variables relating theories GWrel and DTrel, provided
by the Donaldson–Thomas/Gromov–Witten correspondence, proposed in [MNOP06a, MNOP06b].

The present work and, in particular, Theorem C provide a relation between theories GW and DTrel:

◦ DT/Hilb - wall-crossing formulas relating theories GW and DTrel.

In the follow-up work [Nes22], we derive a similar relation between theories GWorb and GWrel, called
Gromov–Witten/Hurwitz wall-crossing:

◦ GW/H - wall-crossing formulas relating theories GWorb and GWrel.

All four relations together can be represented by the Square in Figure 1. For 𝑆 = C2, the Square was
established in a series of articles: [BP08, BG09, OP10a, OP10c, OP10b], the culmination of which were
[PT19a] and [PT19b], where relations were shown to hold on the level of cohomological field theories.
Establishment of these relations for C2 is fundamental for many developments in the field of modern
enumerative geometry, like the proof of DT/GW for a quintic 3-fold in [PP17]. Our wall-crossings give
a more geometric context to these results.

6Communicated to the author by Georg Oberdieck.
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6 D. Nesterov

DT/Hilb
wall-crossing

GW/H
wall-crossing

GWorb(𝑆
(𝑛) )GW(𝑆 [𝑛] )

CRC

DTrel(𝑆 × 𝐶𝑔,𝑁 ) GWrel (𝑆 × 𝐶𝑔,𝑁 )
PT/GW

Figure 1. The Square.

1.4. More applications

This article is the first in a series of three articles. The two other are [Nes24, Nes22]; the latter work
was already mentioned in the previous section. In [Nes24], we focus on quasimaps to moduli spaces of
sheaves on a 𝐾3 surface. Moduli spaces of sheaves on 𝐾3 surfaces require a special treatment due to the
existence of holomorphic symplectic forms and, consequently, vanishing of standard virtual fundamental
classes. Using these wall-crossings, we establish the following results. In [Nes24], we prove:

◦ quantum cohomology of 𝑆 [𝑛] is determined by relative Pandharipande–Thomas theory of 𝑆 × P1 if S
is a 𝐾3 surface, conjectured in [Obe19],

◦ the Hilbert-schemes part of the Igusa cusp form conjecture, conjectured in [OP16];
◦ relative higher-rank/rank-one Donaldson–Thomas correspondence for 𝑆 × P1 and 𝑆 × 𝐸 if S is a 𝐾3

surface and E is an elliptic curve,
◦ relative Donaldson–Thomas/Pandharipande–Thomas correspondence for 𝑆 ×P1, if S is a 𝐾3 surface.

In [Nes22]:

◦ 3-point genus-0 CRC in the sense of [BG09] for the pair 𝑆 [𝑛] and [𝑆 (𝑛) ] if S is a toric del Pezzo surface,
◦ the geometric origin of 𝑦 = −𝑒𝑖𝑢 in PT/GW through CRC.

Moreover, the quasimap wall-crossing played a crucial role in establishing a holomorphic anomaly
equation for 𝐾3[𝑛] in [Obe24].

From the perspective of mathematical physics, the quasimap wall-crossing is related to so-called
dimensional reduction. For example, it was used in [KW07]. In fact, our quasimap wall-crossing for
moduli spaces of rank 0 sheaves is one of the algebro-geometric aspects of [KW07]. This is addressed
in [Nes23]. For more on dimensional reduction in a mathematical context, we refer to [GLSY18] and,
in a physical context, to [BJSV95].

1.5. Methods

Despite the fact that the stack ℭ𝔬𝔥𝑟 (𝑆, v) can be covered by Zariski open quotient substacks, we cannot
reduce our quasimap theory to the one of GIT quasimaps from [CKM14]. There are several reasons for
that. First, the stack ℭ𝔬𝔥𝑟 (𝑆, v) is not a local complete intersection, which is one of the requirements of
[CKM14]. Second, the stack ℭ𝔬𝔥𝑟 (𝑆, v) is unbounded. As we increase the degree of quasimaps, they
are allowed to map further away from the stable locus. Miraculously, stability of quasimaps is enough
to guarantee boundedness of their moduli spaces. However, it is not enough to consider a fixed bounded
quotient substack of ℭ𝔬𝔥𝑟 (𝑆, v), and it is unclear if these quotient substacks are quotients of affine
schemes, which is another requirement of [CKM14].
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The general outline of our proofs and definitions is inspired by [CKM14]. However, due to the
aforementioned reasons, we cannot reduce our proofs to the GIT setup. Instead, we use results from
geometry of moduli spaces of sheaves in an essential way. For example, Langton’s semistable reduction
and the Mumford–Castelnuovo regularity are indispensable tools in our endeavours. Overall, the theory
requires juggling map-theoretic and sheaf-theoretic methods at the same time.

Luckily, as soon as we establish foundational results, the constructions of [Zho22] immediately apply
to our setup. Hence, the proof of wall-crossing formulas in our setup is exactly the same as in the GIT
case.

1.6. Generalisations

Let us comment on the assumptions made in Section 1.2. First, ℎ1 (𝑆) = 0 is needed to ensure that the
cohomology of 𝑆 × 𝐶 does not contain algebraic classes of the form 𝛼 ⊗ 𝛼′ ∈ 𝐻odd (𝑆) ⊗ 𝐻odd (𝐶).
These classes are not seen by determinant line bundles on ℭ𝔬𝔥𝑟 (𝑆, v), which we use to define degrees of
quasimaps. However, if we work with a fixed curve C, allowing it to sprout P1-bubbles, this should not be
an issue because in this case, we can define the degree directly via the Chern character of sheaves on 𝑆×𝐶
(note that ℎ1 (P1) = 0). In general, one needs a more refined notion of degree of quasimaps to capture the
geometry of such classes. On the other hand, all of our arguments should extend to the case ℎ1 (𝑆) ≠ 0,
as they involve modifications of sheaves along fibers, which take place in 𝐻even(𝑆) ⊗ 𝐻even(𝐶).

The only place where we use the assumption rk(v) > 0 is Theorem 2.1, which is needed to establish
positivity of certain line bundles with respect to quasimaps in Proposition 3.7. This is essential for
proving that moduli spaces of quasimaps are quasi-compact in Section 4. The case of 1-dimensional
sheaves on local curves is treated in [Nes23]. The author was not able to find an appropriate reference
for results of [HL97, Section 8] in the context of torsion sheaves on an arbitrary surface.

The class u ∈ 𝐾0(𝑆), such that 𝜒(v ·u) = 1, is needed to construct a universal family on the rigidified
stack ℭ𝔬𝔥𝑟 (𝑆, v). However, there always exists a finite gerbe over ℭ𝔬𝔥𝑟 (𝑆, v) with a universal family.
In this case, we need to work with orbifold quasimaps.

Finally, we assume that all semistable sheaves are stable to guarantee that 𝑀 (v) is a projective
scheme. The case of moduli spaces with strictly semistable sheaves is partly discussed in the context of
Higgs bundles in [Nes23].

1.7. Notation and conventions

We work over the field of complex numbersC. We set 𝑒C∗ (Cstd) = 𝑧,whereCstd is the weight 1 represen-
tation of C∗ on the vector space C. All functors are derived, unless stated otherwise. Cohomologies and
homologies have rational coefficients, unless stated otherwise. All curves are assumed to be projective.

Let N be a semigroup and 𝛽 ∈ 𝑁 be its generic element. By Q[[𝑞𝛽]], we will denote the (completed)
semigroup algebra Q[[𝑁]]. In our case, N will be various semigroups of effective curve classes.

After fixing an ample line bundle O𝑆 (1) on a surface S, we define deg(𝐹) to be the degree of a sheaf
F with respect to O𝑆 (1). By a general fiber of a sheaf F on 𝑆 ×𝐶, we will mean a fiber of F over some
dense open subset of the curve C.

2. Stack of coherent sheaves

2.1. Preliminaries

Let S be a smooth projective surface over the field of complex numbers C. We assume that the first Betti
number of S vanishes, ℎ1(𝑆) = 0. For an ample line bundle O𝑆 (1), semistability of sheaves is defined
with respect to the reduced Hilbert polynomial,

𝑝(𝐹, 𝑡) =
𝜒(𝑆, 𝐹 ⊗ O𝑆 (𝑡))

rk(𝐹)
.
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The order of polynomials is given by the lexicographic order of their coefficients. A sheaf F is semistable
if 𝑝(𝐹, 𝑡) ≥ 𝑝(𝐺, 𝑡) for all proper subsheaves 0 ≠ 𝐺 ⊂ 𝐹. It is stable if the inequality is strict.

We fix a very ample line bundle O𝑆 (1) ∈ Pic(𝑆), a class v ∈ 𝐾num(𝑆) and another class7 u ∈ 𝐾0(𝑆),
such that

◦ rk(v) > 0,
◦ 𝜒(v · u) = 1,
◦ for v and O𝑆 (1), all semistable sheaves are stable.

2.2. Rigidification

Let

ℭ𝔬𝔥(𝑆, v) : (𝑆𝑐ℎ/C)◦ → 𝐺𝑟𝑝𝑑

be the stack of coherent sheaves on S in the class v, constructed, for example, in [Sta24, Section 08KA].
There is a locus of sheaves stable with respect to O𝑆 (1),

M(v) ↩→ ℭ𝔬𝔥(𝑆, v),

which is aC∗-gerbe over a projective scheme𝑀 (v). TheC∗-automorphisms come from the multiplication
by scalars. In fact, we can quotient out C∗-automorphisms of the entire stack ℭ𝔬𝔥(𝑆, v), as explained in
[AGV08, Appendix C], thereby obtaining a rigidified stack

ℭ𝔬𝔥𝑟 (𝑆, v) := ℭ𝔬𝔥(𝑆, v)��� C∗.

A B-valued point of ℭ𝔬𝔥𝑟 (𝑆, v) can be represented by a pair (G, 𝜙), where G is a C∗-gerbe over B
and 𝜙 : G → ℭ𝔬𝔥(𝑆, v) is a C∗-equivariant map (here, we will ignore 2-categorical technicalities; see
[AGV08, Appendix C.2] for more details). The moduli space 𝑀 (v) canonically embeds into the stack
ℭ𝔬𝔥𝑟 (𝑆, v), giving rise to the following square:

M(v) �
�

��

C∗−gerbe
��

ℭ𝔬𝔥(𝑆, v)

C∗−gerbe
��

𝑀 (v) �
�

�� ℭ𝔬𝔥𝑟 (𝑆, v)

2.3. Determinant line bundles

Let F be the universal sheaf on 𝑆×ℭ𝔬𝔥(𝑆, v). Then we have a naturally defined determinant-line-bundle
map,

𝜆 : 𝐾0(𝑆) → Pic(ℭ𝔬𝔥(𝑆, v)),

constructed as the following composition:

𝜆 : 𝐾0(𝑆)
𝑝∗𝑆
−−→ 𝐾0(𝑆 × ℭ𝔬𝔥(𝑆, v))

·[F ]
−−−→ 𝐾0(𝑆 × ℭ𝔬𝔥(𝑆, v))

𝑝ℭ𝔬𝔥(𝑆,v)∗
−−−−−−−→ 𝐾0(ℭ𝔬𝔥(𝑆, v))

det
−−→ Pic(ℭ𝔬𝔥(𝑆, v)).

The construction of 𝜆 requires some care because ℭ𝔬𝔥(𝑆, v) is not of finite type. The correct approach
is provided by Waldhausen’s K-theory [Wal85], which, for example, was used to construct a universal

7See Section 2.3 for reasons why we need the class u.
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determinant map for perfect complexes in [STV15, Section 3]. Perfectness of F and smoothness of
𝑝ℭ𝔬𝔥(𝑆,v) are crucial.

In general, the weight of a line bundle 𝜆(𝑢) with respect to the C∗-scaling is equal to the Euler
characteristics 𝜒(v · 𝑢),

𝑤C∗ (𝜆(𝑢)) = 𝜒(v · 𝑢).

There are two types of classes that will be of interest to us. First, a class 𝑢 ∈ 𝐾0(𝑆), such that 𝜒(v ·𝑢) = 1,
gives a trivilisation of the C∗-gerbe

𝜏 : ℭ𝔬𝔥(𝑆, v) → ℭ𝔬𝔥𝑟 (𝑆, v).

More precisely, since 𝐵C∗ parametrises line bundles, a trivialisation is given by the map

(𝜏, 𝜆(𝑢)) : ℭ𝔬𝔥(𝑆, v) ∼
−→ ℭ𝔬𝔥𝑟 (𝑆, v) × 𝐵C∗. (2.1)

Equivalently, by [Sta24, Lemma 06QG], the trivialisation is given by a section of 𝜏,

𝑠𝑢 : ℭ𝔬𝔥𝑟 (𝑆, v) → ℭ𝔬𝔥(𝑆, v),

which is induced by the descend of the twisted universal family

F ⊗ 𝑝∗ℭ𝔬𝔥(𝑆,v)𝜆(𝑢)
−1

from 𝑆 × ℭ𝔬𝔥(𝑆, v) to 𝑆 × ℭ𝔬𝔥𝑟 (𝑆, v). We will need this section to lift quasimaps from ℭ𝔬𝔥𝑟 (𝑆, v)
to ℭ𝔬𝔥(𝑆, v), as the latter stack has a better modular interpretation. For this reason, we fixed the class
u ∈ 𝐾0(𝑆).

On the other hand, for a class 𝑢 ∈ 𝐾0(𝑆), such that 𝜒(v · 𝑢) = 0, the line bundle 𝜆(𝑢) descends to
ℭ𝔬𝔥𝑟 (𝑆, v). Consider

𝐾v(𝑆) := v⊥ = {𝑢 ∈ 𝐾0(𝑆) | 𝜒(v · 𝑢) = 0} ⊂ 𝐾0(𝑆).

Then 𝜆 restricted to 𝐾v(𝑆) descends to a map to Pic(ℭ𝔬𝔥𝑟 (𝑆, v)),

𝜆v : 𝐾v(𝑆) → Pic(ℭ𝔬𝔥𝑟 (𝑆, v)).

The class v will be frequently dropped from the notation in 𝜆v, when it is clear what stack is considered.
We define

Pic𝜆(ℭ𝔬𝔥(𝑆, v)) := Im(𝜆), Pic𝜆 (ℭ𝔬𝔥𝑟 (𝑆, v)) := Im(𝜆v).

There exists a particular class of elements in 𝐾v(𝑆), which deserves special mention and will be used
extensively later,

𝑢𝑖 := −rk(v) · ℎ𝑖 + 𝜒(v · ℎ𝑖) · [Opt],

L𝑖 := 𝜆(𝑢𝑖),

where Opt is a structure sheaf of a point pt ∈ 𝑆, and ℎ = [O𝐻 ] for a hyperplane 𝐻 ∈ |O𝑆 (1) |. The
importance of these classes is due to the following theorem.

Theorem 2.1. The line bundles L1 and L0 ⊗L𝑚
1 are nef and ample, respectively, on 𝑀 (v) for all𝑚 � 0.

Proof. See [HL97, Chapter 8], we use the assumption that rk(v) > 0. �
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3. Quasimaps

3.1. Preliminaries

Let (𝑋,𝔛) be either a pair (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)) or a pair (M(v),ℭ𝔬𝔥(𝑆, v)).

Definition 3.1. A map 𝑓 : (𝐶, p) → 𝔛 is a quasimap to (𝑋,𝔛) of genus g and of degree 𝛽 ∈

Hom(Pic𝜆 (𝔛),Z), if

◦ (𝐶, p) is a connected marked nodal curve of genus g,
◦ L · 𝑓 𝐶 := deg( 𝑓 ∗L) = 𝛽(L) for all L ∈ Pic𝜆 (𝔛),
◦ |{𝑝 ∈ 𝐶 | 𝑓 (𝑝) ∈ 𝔛 \ 𝑋}| < ∞.

We will refer to the set {𝑝 ∈ 𝐶 | 𝑓 (𝑝) ∈ 𝔛 \ 𝑋} as base points. A quasimap f is prestable if

◦ {𝑝 ∈ 𝐶 | 𝑓 (𝑝) ∈ 𝔛 \ 𝑋} ∩ {nodes, p} = ∅.

We define

Eff (𝑋,𝔛) ⊂ Hom(Pic𝜆 (𝔛),Z)

to be the cone of classes of quasimaps.

Let

Λ :=
⊕
𝑝≥0

𝐻 𝑝,𝑝 (𝑆)

be the (𝑝, 𝑝)-part of the cohomology of the surface S. For a smooth connected curve C, we have the
Künneth decomposition of the (𝑝, 𝑝)-part of the cohomology of the threefold 𝑆 × 𝐶,⊕

𝑝≥0
𝐻 𝑝,𝑝 (𝑆 × 𝐶) = Λ ⊗ 𝐻0 (𝐶,C) ⊕ Λ ⊗ 𝐻2(𝐶,C) = Λ ⊕ Λ(−1), (3.1)

where (−1) denotes the Tate twist.

3.2. Sheaves associated to quasimaps

Consider a quasimap

𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v).

By construction ofℭ𝔬𝔥(𝑆, v), the quasimap f is given by a sheaf F on 𝑆×𝐶 which is flat over C. However,
we are mainly interested in the rigidified stack ℭ𝔬𝔥𝑟 (𝑆, v). To associate a sheaf on 𝑆 ×𝐶 to a quasimap

𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v),

we take a lift

𝑠u ◦ 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v)

by the section 𝑠u constructed in Section 2.3. We then take the sheaf F associated to 𝑠u ◦ 𝑓 . We fix a
section 𝑠u for the rest of the article by fixing the class u ∈ 𝐾0(𝑆), such that 𝜒(v · u) = 1. Sheaves
associated to lifts 𝑠u ◦ 𝑓 will be characterized in Section 3.5.

Remark 3.2. In fact, a quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v) always admits a lift to some quasimap 𝑓 ′ : 𝐶 →

ℭ𝔬𝔥(𝑆, v). Indeed, by [AGV08, Appendix C.2], a map 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v) is given by a C∗-gerbe G over
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C with an C∗-equivariant map 𝜙 : G → ℭ𝔬𝔥(𝑆, v). It can be checked that

𝐻2
fppf (𝐶,O∗

𝐶 ) = 𝐻2
ét(𝐶,O∗

𝐶 ) = 0.

Hence, a C∗-gerbe is always trivial on C. This allows to lift the map. Different lifts of f are related by
tensoring an associated sheaf F on 𝑆×𝐶 by line bundles coming from C. However, the drawback of this
construction is that it does not work in families, which we need to identify moduli spaces of quasimaps
with moduli spaces of sheaves on 𝑆 × 𝐶. Hence, we choose to work with the lift given by 𝑠u from the
beginning.

Let us discuss how the degree of a quasimap is related to the Chern character of F. For a smooth
curve C, the Chern character has two components with respect to the decomposition in (3.1),

ch(𝐹) = (ch(𝐹)f , ch(𝐹)d) ∈ Λ ⊕ Λ(−1),

where the subscripts ‘f’ and ‘d’ stand for fiber and degree, respectively. As the notation suggests,

ch(𝐹)f = ch(v),

which can be seen by pulling back ch(𝐹) to a fiber over C and using the flatness of F. On the other
hand, the degree component of F is related to the degree of a quasimap in the following way.
Lemma 3.3. Assume C is smooth and let 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v) be a quasimap of degree 𝛽. Then

𝛽(𝜆(𝑢)) =
∫
𝑆

ch(𝑢) · ch(𝐹)d · td𝑆 .

Proof. By the functoriality of the determinant line bundle construction, we have

𝛽(𝜆(𝑢)) = deg(𝜆𝐹 (𝑢)),

where 𝜆𝐹 (𝑢) is the determinant line bundle associated to the family F on 𝑆 × 𝐶 and a class 𝑢 ∈ 𝐾0(𝑆).
Using the Grothendieck–Riemann–Roch theorem and the projection formula, we obtain

deg(𝜆𝐹 (𝑢)) = deg(𝑝𝐶∗(𝑝
∗
𝑆𝑢 · [𝐹])) =

∫
𝐶

ch(𝑝𝐶∗(𝑝
∗
𝑆𝑢 · [𝐹]))

=
∫
𝑆×𝐶

ch(𝑝∗𝑆𝑢 · [𝐹]) · 𝑝
∗
𝑆td𝑆

=
∫
𝑆

ch(𝑢) · 𝑝𝑆∗ch(𝐹) · td𝑆

=
∫
𝑆

ch(𝑢) · ch(𝐹)d · td𝑆 .

�

Now let 𝛽Λ : Λ → Q be the descend of (𝛽 ◦ 𝜆)Q : 𝐾0(𝑆)Q → Q to Λ via the Chern character,

Λ Q

𝐾0(𝑆)Q

𝛽Λ

ch
(𝛽◦𝜆)Q

which exists by the formula from Lemma 3.3. The formula also shows that the descend 𝛽Λ and 𝛽
determine each other. We thereby obtain an expression of ch(𝐹)d in terms of 𝛽Λ,

ch(𝐹)d = 𝛽∨Λ · td−1
𝑆 ,
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where 𝛽∨Λ is the dual of 𝛽Λ with respect to the cohomological intersection pairing on Λ. This motivates
the following definition which allows us to pass between degrees of quasimaps and Chern characters of
sheaves.

Definition 3.4. We define a linear map

ˇ(...) : Eff (M(v),ℭ𝔬𝔥(𝑆, v)) → Λ, 𝛽 ↦→ 𝛽,

where 𝛽 := 𝛽∨Λ · td−1
𝑆 .

Assume now C is a nodal curve and consider a sheaf F on 𝑆 × 𝐶 flat over C. Let

𝜋 :
⋃
𝑖

𝑆 × 𝐶𝑖 → 𝑆 × 𝐶

be the normalisation of 𝑆 × 𝐶, such that 𝑆 × 𝐶𝑖 are its irreducible components. We define

𝐹𝑖 := 𝜋∗𝐹|𝑆×𝐶𝑖 .

Definition 3.5. By using the natural identification (3.1), we define the Chern character of F on a nodal
curve C as follows:

ch(𝐹) := (ch(v),
∑
𝑖

ch(𝐹𝑖)d) ∈ Λ ⊕ Λ(−1).

As a consequence of these definitions, we obtain a natural extension of Lemma 3.3 to the case of a
singular curve C,

ch(𝐹)d = 𝛽,

where F is the sheaf associated to a quasimap of degree 𝛽.

3.3. Positivity

The aim of this section is to establish positivity of certain line bundles – Proposition 3.7. We start with
the following result, which is inspired by [BM14, Proposition 4.4].

Lemma 3.6. Let F be the sheaf on 𝑆 × 𝐶 associated to a map 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v). Then

L1 · 𝑓 𝐶 = deg(v)rk(𝑝𝑆∗𝐹) − rk(v)deg(𝑝𝑆∗𝐹),
L0 · 𝑓 𝐶 = 𝜒(v)rk(𝑝𝑆∗𝐹) − rk(v)𝜒(𝑝𝑆∗𝐹),

where deg(...) is the degree of a class with respect to O𝑆 (1).

Proof. Since 𝜒(v · 𝑢𝑖) = 0, we get that

rk(𝑝𝐶∗(𝑝
∗
𝑆𝑢𝑖 · [𝐹])) = 0,

and hence,

L𝑖 · 𝑓 𝐶 = deg(𝑝𝐶∗(𝑝
∗
𝑆𝑢𝑖 · [𝐹])) = 𝜒(𝑝𝐶∗(𝑝

∗
𝑆𝑢𝑖 · [𝐹])) = 𝜒(𝑝∗𝑆𝑢𝑖 · [𝐹])

= 𝜒(𝑢𝑖 · 𝑝𝑆∗ [𝐹]).
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The claim then follows from the following computation for a class 𝑢 ∈ 𝐾0(𝑆):

𝜒(𝑢1 · 𝑢) = −rk(v)𝜒(𝑢 · ℎ) + 𝜒(v · ℎ)𝜒([Opt] · 𝑢)

= −rk(v)
(
deg(𝑢) −

rk(𝑢)
2

𝐻2 −
rk(𝑢)

2
𝐻 · c1 (𝑆)

)
+

(
deg(v) − rk(v)

2
𝐻2 −

rk(v)
2

𝐻 · c1 (𝑆)

)
rk(𝑢)

= rk(𝑢) deg(v) − rk(v) deg(𝑢),
𝜒(𝑢0 · 𝑢) = −rk(v)𝜒(𝑢) + 𝜒(v)𝜒([Opt] · 𝑢)

= 𝜒(v)rk(𝑢) − rk(v)𝜒(𝑢).

This finishes the proof. �

In the following proposition, a quasimap is constant if it does not have base points and the induced
map to 𝑀 (v) is constant.

Proposition 3.7. Let 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v) be a prestable quasimap of degree 𝛽. Then there exists 𝑚0 ∈ N

which depends only on 𝛽, v and O𝑆 (1), such that for all 𝑚 ≥ 𝑚0, the quasimap is non-constant if and
only if

L0 ⊗ L𝑚
1 · 𝑓 𝐶 > 0.

This also holds true for all subcurves 𝐶 ′ ⊆ 𝐶 and the induced maps for the same choice of m.

We first establish a simpler version of the proposition, which will be necessary for its proof.

Lemma 3.8. Let 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v) be a prestable quasimap. Then

L1 · 𝑓 𝐶 ≥ 0.

Proof. Let F be the family of sheaves on 𝑆 × 𝐶 associated to f. Assume for simplicity that f has one
base point 𝑏 ∈ 𝐶. By Langton’s semistable reduction [Lan75], the sheaf F can be modified at a point b
to a sheaf which is stable over b and is isomorphic to F away from 𝑆 × {𝑏} ⊂ 𝑆 × 𝐶. The modification
is given by a finite sequence of short exact sequences,

0 → 𝐹1 →𝐹0 → 𝑄1 → 0,
...

0 → 𝐹𝑘 →𝐹𝑘−1 → 𝑄𝑘 → 0,

where 𝐹0 = 𝐹, the sheaf 𝐹𝑘 is stable over 𝑏 ∈ 𝐶, and 𝑄𝑖 is the maximal destabilising quotient sheaf of
𝐹𝑖−1
𝑏 ; that is, the quotient of 𝐹𝑖−1

𝑏 by the maximal destabilising subsheaf 𝐸 𝑖 ,

0 → 𝐸 𝑖 → 𝐹𝑖−1
𝑏 → 𝑄𝑖 → 0.

More precisely, if 𝐹𝑖−1
𝑏 does not have torsion, we refer to [HL97, Section 1.3] for the construction of

the maximal destabilising subsheaf 𝐸 𝑖 . If 𝐹𝑖−1
𝑏 has torsion 𝑇 𝑖 , then 𝐸 𝑖 is defined to be the preimage

of the maximal destabilizing subsheaf of the torsion-free sheaf 𝐹𝑖−1
𝑏 /𝑇 𝑖 . If 𝐹𝑖−1

𝑏 /𝑇 𝑖 is stable. Then
𝑄𝑖 = 𝐹𝑖−1

𝑏 /𝑇 𝑖 . Note that by the maximality, 𝑄𝑖 is torsion-free.
Since 𝑄𝑖 is a destabilizing quotient of a sheaf in the class v, we have

deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) ≥ 0. (3.2)
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Applying the derived pushforward 𝑝𝑆∗ to each sequence, we get distinguished triangles

𝑝𝑆∗(𝐹
𝑖) → 𝑝𝑆∗(𝐹

𝑖−1) → 𝑄𝑖 −→ .

By Lemma 3.6, we obtain that

L1 · 𝑓 𝑖−1 𝐶 = L1 · 𝑓 𝑖 𝐶 + deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖), (3.3)

where 𝑓 𝑖 is the quasimap associated to 𝐹𝑖 . The line bundleL1 is nef on 𝑀 (v) by Theorem 2.1; therefore,

L1 · 𝑓 𝑘 𝐶 ≥ 0 (3.4)

because 𝑓 𝑘 does not have base points. The claim for a quasimap with one base point now follows from
(3.2), (3.3) and (3.4). By applying the semistable reduction to all base points at the same time, we extend
the argument to a quasimap with arbitrarily many base points. �

Before proceeding to the proof of Proposition 3.7, we derive an important consequence of Lemma
3.8. Recall that the slope 𝜇(𝐹) of a sheaf F is defined to be the ratio deg(𝐹)/rk(𝐹). The maximal slope
𝜇max (𝐹) is defined to be the slope 𝜇(𝐺) of the maximal destabilizing subsheaf G of a sheaf F.

Corollary 3.9. Let 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v) be a prestable quasimap of degree 𝛽, and let F be the associated
sheaf. Let 𝑄𝑖 be a maximal destabilizing quotient sheaf that appears in the semistable reduction of F in
the proof of Lemma 3.8. Then

−| deg(v) | − 𝛽(L1)

rk(v) ≤ deg(𝑄𝑖) ≤ | deg(v) |,

𝜇max (𝑄
𝑖) < | deg(v) | + 𝛽(L1)

rk(v) .

Proof. Let us denote L1 · 𝑓 𝐶 by 𝛽(L1). By Lemma 3.8, (3.2) and (3.3), we have

𝛽(L1) ≥ deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) ≥ 0.

This bounds the degrees of 𝑄𝑖 as follows:

deg(v)rk(𝑄𝑖) − 𝛽(L1)

rk(v) ≤ deg(𝑄𝑖) ≤
deg(v)rk(𝑄𝑖)

rk(v) . (3.5)

We therefore get a uniform bound on deg(𝑄𝑖) depending on the sign of deg(v),

−
𝛽(L1)

rk(v) < deg(𝑄𝑖) ≤ deg(v), if deg(v) ≥ 0,

deg(v) − 𝛽(L1)

rk(v) ≤ deg(𝑄𝑖) < 0, if deg(v) < 0.
(3.6)

Combing these two bounds together, we get the first inequality in the statement of the corollary.
We now deal with 𝜇max(𝑄

𝑖). Let 𝐸 𝑖 be the maximal destabilizing subsheaf of 𝐹𝑖−1
𝑏 from the proof

of Lemma 3.8. If 𝐸 𝑖 is torsion, then

𝜇max(𝑄
𝑖) = 𝜇(𝑄𝑖) ≤ 𝜇(v)

since 𝐹𝑖−1
𝑏 /𝐸 𝑖 = 𝑄𝑖 and 𝑄𝑖 is stable. If 𝐸 𝑖 is non-torsion, then by the maximality, we must have

𝜇max(𝑄
𝑖) ≤ 𝜇(𝐸 𝑖).
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Indeed, if it was not the case, then by taking the preimage of the maximal destabilizing subsheaf of 𝑄𝑖 ,
we would obtain a subsheaf of 𝐹𝑖−1

𝑏 , whose slope is greater than 𝜇(𝐸 𝑖), contradicting the maximality
of 𝐸 𝑖 . Using the fact that deg(v) = deg(𝑄𝑖) + deg(𝐸 𝑖), and (3.5), we obtain a uniform upper bound on
𝜇(𝐸 𝑖), which therefore bounds 𝜇max(𝑄

𝑖),

𝜇max(𝑄
𝑖) ≤ 𝜇(𝐸 𝑖) < deg(v) + 𝛽(L1)

rk(v) , if deg(v) ≥ 0,

𝜇max(𝑄
𝑖) ≤ 𝜇(𝐸 𝑖) ≤

𝛽(L1)

rk(v) , if deg(v) < 0.
(3.7)

Combining these two bounds together with the bound for torsion 𝐸 𝑖 , we get the second inequality in the
statement of the corollary. �

Proof of Proposition 3.7. We now deal with the claim of the proposition. Assume f is constant. Then
L0 ⊗ L𝑚

1 · 𝑓 𝐶 = 0 for all m.
Conversely, assume f is non-constant, and let F be the associated sheaf. We apply the semistable

reduction to F at all points at once. Then by Lemma 3.6, we obtain

L0 ⊗ L𝑚
1 · 𝑓 𝐶 = L0 ⊗ L𝑚

1 · 𝑓 𝑘 𝐶

+ 𝑚
∑
𝑖

deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) +
∑
𝑖

𝜒(v)rk(𝑄𝑖) − rk(v)𝜒(𝑄𝑖), (3.8)

where 𝑓 𝑘 is a stable map. As in Lemma 3.8, 𝑄𝑖 is destabilizing; hence,

deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) ≥ 0. (3.9)

We therefore have to analyse the terms

𝜒(v)rk(𝑄𝑖) − rk(v)𝜒(𝑄𝑖). (3.10)

We will split our analysis, depending on whether (3.9) is positive or zero. If

deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) = 0,

then since 𝑄𝑖 is a destabilizing quotient, it must be destabilizing in the second coefficient of the Hilbert
polynomial (see Section A.3 for the definition of Hilbert polynomials); that is,

𝜒(v)rk(𝑄𝑖) − rk(v)𝜒(𝑄𝑖) > 0. (3.11)

Consider now the case of 𝑄𝑖 , such that

deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) > 0.

By [HL97, Corollary 3.3.3] and Serre’s duality, dimensions of 𝐻0 (𝑄𝑖) and 𝐻2 (𝑄𝑖) can be bounded as
follows:

ℎ0 (𝑄𝑖) ≤
deg(𝑆)rk(v)

2

[
𝜇max (𝑄

𝑖)

deg(𝑆)
+

rk(v) − 1
2

+ 2
]2

+

,

ℎ2 (𝑄𝑖) ≤
deg(𝑆)rk(v)

2

[
𝜇max ((𝑄

𝑖)∨ ⊗ 𝜔𝑆)

deg(𝑆)
+

rk(v) − 1
2

+ 2
]2

+

,

(3.12)

where deg(𝑆) = c1 (O𝑆 (1))2, and [𝑥]+ = max{0, 𝑥}.
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By Corollary 3.9, 𝜇max(𝑄
𝑖) is bounded from above. On the other hand, since 𝑄𝑖 is torsion-free, we

can also bound 𝜇max((𝑄
𝑖)∨ ⊗ 𝜔𝑆) from above in terms of deg(𝑄𝑖) and 𝜇max(𝑄

𝑖). First,

𝜇max((𝑄
𝑖)∨ ⊗ 𝜔𝑆) = 𝜇max((𝑄

𝑖)∨) + deg(𝜔𝑆).

Now let 𝐸 ↩→ (𝑄𝑖)∨ be a saturated subsheaf.8 Then by dualizing, we get a map (𝑄𝑖)∨∨ → 𝐸∨, which
is surjective away from a codimension 2 locus. We also have an embedding 𝑄𝑖 ↩→ (𝑄𝑖)∨∨ which is an
isomorphism away from a codimension 2 locus. For the purpose of calculating the slope, we therefore
may assume that we have a surjection 𝑄𝑖 � 𝐸∨. Let K be its kernel, the slope of 𝐸∨ can be bounded as
follows:

𝜇(𝐸∨) =
deg(𝑄𝑖)

rk(𝐸∨)
−

rk(𝐾)
rk(𝐸∨)

𝜇(𝐾) ≥
deg(𝑄𝑖)

rk(𝐸∨)
−

rk(𝐾)
rk(𝐸∨)

𝜇max (𝑄
𝑖).

This bounds the slope of E from above,

𝜇(𝐸) = −𝜇(𝐸∨) ≤
rk(𝐾)
rk(𝐸∨)

𝜇max(𝑄
𝑖) −

deg(𝑄𝑖)

rk(𝐸∨)
.

Using Corollary 3.9, we obtain a uniform bound,

𝜇(𝐸) < (rk(v) + 1) ·
(
| deg(v) | + 𝛽(L1)

rk(v)

)
.

We conclude that

𝜇max((𝑄
𝑖)∨ ⊗ 𝜔𝑆) < (rk(v) + 1) ·

(
| deg(v) | + 𝛽(L1)

rk(v)

)
+ deg(𝜔𝑆). (3.13)

Overall, using Corollary 3.9, (3.12) and (3.13), we obtain that 𝜒(𝑄𝑖) can be bounded by an explicit
constant 𝜒0 that depends only on 𝛽, v and O𝑆 (1), assuming S is fixed,

𝜒(𝑄𝑖) ≤ ℎ0 (𝑄𝑖) + ℎ2 (𝑄𝑖) < 𝜒0.

This allows us to uniformly bound the terms (3.10),

𝜒(v)rk(𝑄𝑖) − rk(v)𝜒(𝑄𝑖) > −rk(v) · ( |𝜒(v) | + 𝜒0). (3.14)

Now let 𝑚0 ∈ N be such that L0 ⊗ L𝑚0
1 is ample on 𝑀 (v), which is possible by Theorem 2.1, and

𝑚0 · (deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖)) − rk(v) · ( |𝜒(v) | + 𝜒0) > 0,

for all 𝑄𝑖 satisfying

deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) > 0.

Such 𝑚0 exists because the quantity

deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖)

8Saturated subsheaf is a subsheaf 𝐺 ⊂ 𝐹 , such that 𝐹/𝐺 is torsion-free; by the proof of [HL97, Proposition 1.2.6], it is enough
to check the slope on saturated subsheaves.
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is an integer, and, in particular, it is at least 1, if it is positive. More explicitly, we can choose 𝑚0 such
that L0 ⊗ L𝑚0

1 is ample on 𝑀 (v), and

𝑚0 ≥ rk(v) · ( |𝜒(v) | + 𝜒0) + 1.

By the definition of 𝑚0 and the fact that deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖) is an integer, the choice of
𝑚0 depends only on v, O𝑆 (1) (via the ampleness requirement) and the constant 𝜒0. The latter in turn
depends on 𝛽, v and O𝑆 (1) by Corollary 3.9 and bounds presented above, assuming S is fixed. We
conclude that 𝑚0 depends only on 𝛽, v and O𝑆 (1).

By (3.11), the choice of 𝑚0 and (3.14), for all 𝑚 ≥ 𝑚0 and for all i, we have

𝑚 · (deg(v)rk(𝑄𝑖) − rk(v)deg(𝑄𝑖)) + 𝜒(v)rk(𝑄𝑖) − rk(v)𝜒(𝑄𝑖) > 0.

Hence, by (3.8) and Theorem 2.1, for all 𝑚 ≥ 𝑚0, we have

L0 ⊗ L𝑚
1 · 𝑓 𝐶 > 0

for all non-constant prestable quasimaps of degree 𝛽. By Lemma 3.8 and Lemma 3.9, the same bounds
hold for the restriction of f to a subcurve 𝐶 ′ ⊆ 𝐶, since L1 · 𝑓|𝐶′ 𝐶

′ ≤ L1 · 𝑓 𝐶. Hence, for all 𝑚 ≥ 𝑚0,

L0 ⊗ L𝑚
1 · 𝑓|𝐶′ 𝐶

′ > 0

if and only if 𝑓 |𝐶′ is not constant. �

3.4. Stable quasimaps

For all 𝛽 ∈ Eff (M(v),ℭ𝔬𝔥(𝑆, v)), we fix once and for ever a line bundle,

L𝛽 := L0 ⊗ L𝑚
1 ∈ Pic𝜆 (ℭ𝔬𝔥(𝑆, v)),

such that it satisfies conclusions of Proposition 3.7.
Given a quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v) of degree 𝛽 and a point 𝑝 ∈ 𝐶 in the regular locus of C. By

Langton’s semistable reduction, we can modify the quasimap f at the point p to obtain a quasimap

𝑓𝑝 : 𝐶 → ℭ𝔬𝔥(𝑆, v),

which maps to the stable locus M(v) at p and is isomorphic to f away from p. If p is not a base point,
then 𝑓𝑝 = 𝑓 . In other words, since M(v) satisfies the existence part of the discrete valuation criterion of
properness (while 𝑀 (v) is proper), and C is spectrum of a discrete valuation ring at p, one can eliminate
the indeterminacy of f at p if we view it as a rational map to M(v). We refer to 𝑓𝑝 as the stabilisation
of f at p.

Langton’s semistable reduction gives a canonical choice of such stabilisation; however, it is unique
only for quasimaps to 𝑀 (v). Otherwise, we can always tensor a sheaf with a line bundle from a curve
which is trivial away from the point p. Nevertheless, any choice of stabilisation suffices for our purposes,
as intersection numbers with L0 and L1 are independent of the choice, as they are invariant with respect
to tensoring sheaves with line bundles from curves.
Definition 3.10. Given a prestable quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v) of degree 𝛽, we define the length of a
point 𝑝 ∈ 𝐶 with respect to f,

ℓ(𝑝) := L𝛽 · 𝑓 𝐶 − L𝛽 · 𝑓𝑝 𝐶.

By the proof of Proposition 3.7, ℓ(𝑝) ≥ 0; and ℓ(𝑝) = 0 if and only if p is not a base point.
In what follows, by 0+ we will denote a number 𝐴 ∈ R>0, such that 𝐴 � 1.
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Definition 3.11. Given 𝜖 ∈ R>0∪{0+,∞}, a prestable quasimap 𝑓 : (𝐶, p) → 𝔛 of degree 𝛽 is 𝜖-stable if

(i) 𝜔𝐶 (p) ⊗ 𝑓 ∗L𝜖
𝛽 is positive,

(ii) 𝜖ℓ(𝑝) ≤ 1 for all 𝑝 ∈ 𝐶.

We will refer to 0+-stable and ∞-stable quasimaps as stable quasimaps and stable maps, respectively.

A family of 𝜖-stable quasimap over a base B is a triple

(C, p, 𝑓 ),

consisting of a family of marked nodal curves (C, p) over B and a map 𝑓 : (C, p) → 𝔛, such that the
geometric fibers of f over B are 𝜖-stable quasimaps. An isomorphism of triples,

(𝑔1, 𝑔2) : (C, p, 𝑓 ) ∼
−→ (C ′, p′, 𝑓 ′),

is given by an isomorphism 𝑔1 : (C, p) ∼
−→ (C ′, p′) together with an isomorphism 𝑔2 : 𝑓 ′ ∼

−→ 𝑓 ◦ 𝜙1.

Definition 3.12. Let

𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) : (𝑆𝑐ℎ/C)◦ → 𝐺𝑟𝑝𝑑

𝐵 ↦→ {families of 𝜖-stable quasimaps over 𝐵}

be the moduli space of 𝜖-stable quasimaps of genus g and degree 𝛽 with N marked points to a pair
(𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)).

3.5. Relative moduli spaces of sheaves

There is a different modular interpretation of 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽); it can be viewed as a space that

parametrises sheaves F on threefolds 𝑆 × 𝐶 associated to quasimaps 𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v). In this
section, we will make this precise.

By the discussion in Section 2.3, the class u provides a section of 𝜏,

𝑠u : ℭ𝔬𝔥𝑟 (𝑆, v) → ℭ𝔬𝔥(𝑆, v),

which is induced by the descend of the twisted universal family

F ⊗ 𝑝∗ℭ𝔬𝔥(𝑆,v)𝜆(u)
−1

from 𝑆 × ℭ𝔬𝔥(𝑆, v) to 𝑆 × ℭ𝔬𝔥𝑟 (𝑆, v). Sheaves associated to quasimaps to ℭ𝔬𝔥(𝑆, v) obtained by this
lift can be explicitly characterized. By the projection formula, there exists a canonical identification,

𝜙 : det(𝑝ℭ𝔬𝔥∗(𝑝∗𝑆u ⊗ F ⊗ 𝑝∗ℭ𝔬𝔥𝜆(u)
−1)

∼
−→ 𝜆(u) ⊗ 𝜆(u)−1 ∼

−→ Oℭ𝔬𝔥(𝑆,v) ,

which also descends to ℭ𝔬𝔥𝑟 (𝑆, v). We obtain that for the sheaf F associated to the quasimap 𝑠u ◦ 𝑓 ,
there exists a canonical identification

𝜙 : det(𝑝𝐶∗(𝑝
∗
𝑆u ⊗ 𝐹))

∼
−→ O𝐶 .

This motivates the following definition.

Definition 3.13. Let (𝐶, p) a marked nodal curve. Let F be a sheaf on 𝑆 × 𝐶 flat over C, such that
ch(𝐹) = (ch(v), 𝛽). Given 𝜖 ∈ R>0 ∪ {0+,∞}, we say that F is 𝜖-stable if
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(i) the associated quasimap 𝑓 : (𝐶, p) → ℭ𝔬𝔥(𝑆, v) is 𝜖-stable,
(ii) det(𝑝𝐶∗(𝑝

∗
𝑆u ⊗ 𝐹)) � O𝐶 .

A family of 𝜖-stable sheaves over a base B is a quadruple

(C, p, 𝐹, 𝜙),

consisting of a family of marked nodal curves (C, p) over B, a sheaf F on 𝑆 × C flat over B, and an
identification 𝜙 : det(𝑝C∗(𝑝∗𝑆u ⊗ 𝐹))

∼
−→ OC , such that the geometric fibers of F over B are 𝜖-stable

sheaves. The notion of isomorphisms for these quadruples is defined as for quasimaps – it involves
isomorphisms of all parts of quadruples.

Definition 3.14. Let

𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) : (𝑆𝑐ℎ/C)◦ → 𝐺𝑟𝑝𝑑

𝐵 ↦→ {families of 𝜖-stable sheaves over 𝐵}

be the moduli space of 𝜖-stable sheaves with the Chern character (ch(v), 𝛽), such that curves are of
genus g with N markings.

Remark 3.15. If 𝜖 = 0+, then C-valued points of 𝑀0+
v,𝛽

(𝑆 × 𝐶𝑔,𝑁 ) are triples (𝐶, p, 𝐹), such that

◦ (𝐶, p) is a prestable nodal curve (no rational tails),
◦ a sheaf F on 𝑆 × 𝐶 is flat over C,
◦ ch(𝐹) = (ch(v), 𝛽),
◦ 𝐹𝑝 is stable for a general 𝑝 ∈ 𝐶,
◦ 𝐹𝑝 is stable if p is a node or a marking,
◦ the group {𝑔 ∈ Aut(𝐶, p) | 𝑔∗𝐹 � 𝐹} is finite,
◦ det(𝑝𝐶∗(𝑝

∗
𝑆u ⊗ 𝐹)) � O𝐶 .

In the appendix, we will show that slope stability of a general fiber of F implies slope stability of F for
a suitable polarisation, Corollary A.2. The converse is shown in Corollary A.7, if rk(v) = 2.

For a general value of 𝜖 ∈ R>0, 𝜖-stability controls stability of fibers of a sheaf F on 𝑆 ×𝐶. We refer
to Corollary 6.1 for the precise statement in the case rk(v) = 1. In the case of rk(v) ≥ 2, an expression
of 𝜖-stability in purely sheaf-theoretic terms seems more difficult to state.

Among other applications, these spaces provide a way of defining higher-rank Donaldson–Thomas
theory relative to vertical divisors on threefolds of the form 𝑆 × 𝐶, which can be used to derive higher-
rank degeneration formulas.

Our determinant-line-bundle condition is natural for families. The standard determinant-line-bundle
condition would involve a choice of a line bundle for families which might not even exist. For a fixed
smooth curve, the two determinant-line-bundles conditions are not far from each other, as is shown in
Lemma 4.13.

By design, there exist two natural transformations between 2-functors𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) and 𝑀 𝜖

v,𝛽
(𝑆 ×

𝐶𝑔,𝑁 ). In one direction, the transformation is given by composing quasimaps with the section 𝑠u and
then associating sheaves on threefolds,

𝑝 : 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) → 𝑀 𝜖

v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ),

(C, p, 𝑓 ) ↦→ (C, p,𝑠u ◦ 𝑓 ) ↦→ (C, p, 𝐹, 𝜙),

where for the second association, we used Lemma 3.17. In the opposite direction, the transformation is
given by associating quasimaps with the target ℭ𝔬𝔥(𝑆, v) to sheaves on threefolds and then composing

https://doi.org/10.1017/fmp.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.3


20 D. Nesterov

with the projection 𝜏,

𝑞 : 𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) → 𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽),

(C, p, 𝐹, 𝜙) ↦→ (C,p, 𝑓 ) ↦→ (C, p, 𝜏 ◦ 𝑓 ),

where for the first association we again used Lemma 3.17.
Theorem 3.16. The transformation p is an equivalence of 2-functors,

𝑝 : 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) ∼

−→ 𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ),

such that the inverse is q.
Proof. By (2.1), we have an isomorphism

(𝜏, 𝜆(u)) : ℭ𝔬𝔥(𝑆, v) ∼
−→ ℭ𝔬𝔥𝑟 (𝑆, v) × 𝐵C∗,

which identifies maps from a base scheme B to ℭ𝔬𝔥𝑟 (𝑆, v), that is, the B-valued points, with maps from
B to ℭ𝔬𝔥(𝑆, v) together with a trivialisation 𝜙 : 𝜆(u)|𝐵

∼
−→ O𝐵. By construction of ℭ𝔬𝔥(𝑆, v) and 𝜆(u),

maps from B to ℭ𝔬𝔥(𝑆, v) are given by sheaves F on 𝑆 × 𝐵 and 𝜆(u)|𝐵 = det(𝑝𝐵∗(𝑝∗𝑆u ⊗ 𝐹)). Applying
this to families of curves C over a base scheme 𝐵′, and using Lemma 3.17 to match flatness of sheaves
over C with flatness over 𝐵′, we obtain that p and q must be inverses of each other. �

Lemma 3.17. Let C be a family of nodal curves over a base B and F be a sheaf on 𝑆 × C flat over B.
Then the fiber sheaf 𝐹𝑏 on 𝑆 × C𝑏 is flat over C𝑏 for all closed points 𝑏 ∈ 𝐵 if and only if F is flat over C.
Proof. By the local criteria of flatness, a sheaf F is flat over a closed point 𝑝 ∈ C if and only if

𝐿𝜄∗𝑝𝐹 = 𝜄∗𝑝𝐹,

where 𝜄𝑝 : 𝑆 × {𝑝} ↩→ 𝑆 × C is the natural inclusion. The inclusion 𝜄𝑝 can be factored as follows:

𝜄𝑝 = 𝜄𝑏 ◦ 𝜄
′
𝑝 : 𝑆 × {𝑝}

𝜄′𝑝
↩−→ 𝑆 × C𝑏

𝜄𝑏
↩−→ 𝑆 × C,

where C𝑏 is the fiber in which p is contained; hence,

𝐿𝜄∗𝑝𝐹 = 𝐿𝜄′∗𝑝 (𝐿𝜄
∗
𝑏𝐹).

Since C and F are flat over B, we conclude that 𝐹𝑏 is flat over C𝑏 for all closed points 𝑏 ∈ 𝐵 if and only
if F is flat over C. �

4. Algebraicity and properness

4.1. Regularity of sheaves

We recall the definition of m-regularity of sheaves, which will be necessary for proving quasi-
compactness of our moduli spaces.
Definition 4.1. Fix a very ample line bundle O𝑋 (1) on a variety X. Let m be an integer, a sheaf F on X
is m-regular, if

𝐻𝑖 (𝑋, 𝐹 (𝑚 − 𝑖)) = 0 for all 𝑖 > 0.

The Mumford–Castelnuovo regularity of a sheaf F is a number

reg(𝐹) := inf{𝑚 ∈ Z | 𝐹 is 𝑚-regular}.
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By [HL97, Lemma 1.7.6], bounds on the Mumford–Castelnuovo regularity allow to conclude bound-
edness of families of sheaves. We plan to use this property to prove quasi-compactness of moduli spaces
𝜖-stable sheaves. However, we first need to show that the family of possible curves C is bounded. This
follows directly from Proposition 3.7.
Lemma 4.2. The forgetful map to the moduli stack of marked nodal curves,

𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)) → 𝔐𝑔,𝑁 ,

factors through a substack of finite type.
Proof. The restriction of a stable quasimap to an unstable component (a rational bridge or a rational
tail) must be non-constant by stability, and it must pair positively with L𝛽 by Proposition 3.7. Therefore,
the number of unstable components of the domain curve of a stable quasimap is bounded in terms of 𝛽.
Hence, the projection 𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽) → 𝔐𝑔,𝑁 factors through a substack of finite type. �

By Proposition 3.7, for each stable quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v) of a fixed degree 𝛽, we obtain an
ample bundle 𝑓 ∗L𝛽 on C. By Lemma 4.2, for a big enough 𝑘 � 0, the line bundle

O𝑆×𝐶 (1) := O𝑆 (1) � 𝑓 ∗L𝑘
𝛽

is very ample on 𝑆×𝐶 for all 𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v). In the next lemma, regularity and Hilbert polynomials
of 𝜖-stable sheaves on 𝑆 × 𝐶 are defined with respect to O𝑆×𝐶 (1).
Lemma 4.3. Fix a class 𝛽 ∈ Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)) and 𝜖 ∈ R>0. Then there exists 𝐴 ∈ Z, such that
𝜖-stable sheaves with the Chern character (ch(v), 𝛽) satisfy

reg(𝐹) ≤ 𝐴,

and the set of Hilbert polynomials of such sheaves is finite.
Proof. Let 𝐹0 be an 𝜖-stable sheaf with the associated quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥(𝑆, v). The semistable
reduction applied to all base points at once gives a sequence of short exact sequences,

0 → 𝐹1 →𝐹0 → 𝑄1 → 0,
...

0 → 𝐹𝑘 →𝐹𝑘−1 → 𝑄𝑘 → 0,

such that 𝐹𝑘 defines a map 𝑓 𝑘 : 𝐶 → 𝑀 (v). By the associated long exact sequence of cohomologies, 𝐹0

is m-regular if and only if 𝐹𝑘 and 𝑄𝑖 are m-regular. Using the fact that a family of sheaves is bounded if
and only if its Mumford–Castelnuovo regularity is bounded and the set of Hilbert polynomials is finite
[HL97, Lemma 1.7.6], we have to show

(i) the number of steps k is bounded,
(ii) the family of possible 𝑄𝑖 is bounded,

(iii) the family of possible 𝐹𝑘 is bounded.
(i) By the proof of Proposition 3.7, at each step of Langton’s semistable reduction, the difference

between L𝛽 · 𝑓 𝑖 𝐶 and L𝛽 · 𝑓 𝑖−1 𝐶 is a strictly positive integer, and L𝛽 · 𝑓 𝑘 𝐶 ≥ 0. Hence, the number of
steps k must be bounded by the intersection number of C with the line bundle L𝛽 ,

𝑘 ≤ L𝛽 · 𝑓 𝐶 = 𝛽(L𝛽).

(ii) We will show that the family of 𝑄𝑖 is bounded by bounding the Hilbert polynomial and using the
bound on 𝜇max (𝑄

𝑖). By the Grothendieck–Riemann–Roch theorem, to bound the Hilbert polynomial,
we need to bound the rank, the degree and the Euler characteristics of 𝑄𝑖 .
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The rank of 𝑄𝑖 is bounded by rk(v). The degree of 𝑄𝑖 is bounded by Lemma 3.9. The Euler
characteristics are bounded from above by the bounds from the proof of Proposition 3.7 and by Lemma
3.9. The bound from below for the Euler characteristics also follows from Proposition 3.7 and its proof
as we will now demonstrate. First, by (i), the number of steps k is bounded. Moreover, the family of
possible 𝑓 𝑘 : 𝐶 → 𝑀 (v) is also bounded since its degree with respect to an ample line bundle L𝛽 is
bounded, and the moduli space of maps from a bounded family of curves of bounded degree is bounded9

(boundedness of 𝐹𝑘 requires an extra argument, but for this part, boundedness of 𝑓 𝑘 suffices because
intersection numbers with L0 and L1 are invariant with respect to tensoring families of sheaves with line
bundles; see the proof of the part (iii)). This implies that L0 · 𝑓 𝑘 𝐶 is also bounded. By Lemma 3.6, we
have the following expression for the difference between intersection numbers with the line bundle L0,

L0 · 𝑓 𝑖 𝐶 − L0 · 𝑓 𝑖−1 𝐶 = 𝜒(v)rk(𝑄𝑖) − rk(v)𝜒(𝑄𝑖). (4.1)

It must be bounded from below because 𝜒(𝑄𝑖) is bounded from above. We conclude that the difference
(4.1) must be also bounded from above because 𝛽(L0) is fixed, there are bounded number of steps, and
L0 · 𝑓 𝑘 𝐶 is bounded. This bounds the Euler characteristics of 𝑄𝑖 from below. We thereby bounded the
Hilbert polynomial of 𝑄𝑖 . Finally, 𝜇max(𝑄

𝑖) is bounded by Lemma 3.9. Using [HL97, Theorem 3.3.7],
we conclude that the family of possible 𝑄𝑖 is bounded.

(iii) For this part, we need the boundedness of corresponding maps 𝑓 𝑘 : 𝐶 → 𝑀 (v) and the
boundedness of line bundles L such that

det(𝑝𝐶∗(𝑝
∗
𝑆u ⊗ 𝐹𝑘 )) � 𝐿.

The latter is needed because the semistable reduction does not preserve the condition det(𝑝𝐶∗(𝑝
∗
𝑆u ⊗

𝐹)) � O𝐶 . On the other hand, the sheaf 𝐹𝑘 ⊗ 𝑝∗𝐶𝐿
−1 satisfies det(𝑝𝐶∗(𝑝

∗
𝑆u ⊗ 𝐹𝑘 ⊗ 𝑝∗𝐶𝐿

−1)) � O𝐶 ;
hence, the associated quasimap is a lift of a quasimap from 𝑀 (v) by the section 𝑠u. We refer to Remark
3.2 for more on how different lifts are related.

The boundedness of 𝑓 𝑘 : 𝐶 → 𝑀 (v) was established in the proof of the part (ii) above. It remains
to deal with line bundles L. By the exact sequences above and the boundedness of 𝑄𝑖 from the part
(ii), the boundedness of possible L follows from the boundedness of the number of steps k, which was
proved in (i).

Here, we crucially rely on the fact that our target is the rigidified stack ℭ𝔬𝔥𝑟 (𝑆, v), which means that
we start with a sheaf that satisfies the condition det(𝑝𝐶∗(𝑝

∗
𝑆u ⊗ 𝐹0)) � O𝐶 . Otherwise, the line bundle

det(𝑝𝐶∗(𝑝
∗
𝑆u ⊗ 𝐹0)) can be arbitrary; the family of possible L is therefore unbounded.

Overall, we conclude that the number of steps k is bounded, and the families of possible 𝑄𝑖 and 𝐹𝑘

are also bounded. This implies that the Mumford–Castelnuovo regularity of 𝜖-stable sheaves with the
given Chern character is bounded by some number A,

reg(𝐹) ≤ 𝐴,

and the set of Hilbert polynomials of such sheaves is finite. �

4.2. Algebraicity and quasi-compactness

We will show that the condition of 𝜖-stability is open in the stack of all maps to ℭ𝔬𝔥𝑟 (𝑆, v). The difficult
part is to prove that the condition (ii) of 𝜖-stability is open. The reason is that it is not well-adapted for
families, as it requires stabilisations of quasimaps. We therefore first show that it is locally constructible
and then use the valuative criterion10 of openess for locally constructible subsets.

9This follows from the boundedness of Hilbert schemes of subschemes with bounded Hilbert polynomials.
10We refer to the result which states that (locally) constructable sets are open if and only if they are stable under generalisations

of points; see [Sta24, Section 0060]; stability of generalisations of points can be check on discrete valuation rings.
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Let

Map𝔐𝑔,𝑁
(ℭ𝑔,𝑁 ,ℭ𝔬𝔥𝑟 (𝑆, v) ×𝔐𝑔,𝑁 ) : (𝑆𝑐ℎ/C)◦ → 𝐺𝑟𝑝𝑑

be the stack of all maps from nodal curves to ℭ𝔬𝔥𝑟 (𝑆, v). Under our assumptions, we have

ℭ𝔬𝔥(𝑆, v) � ℭ𝔬𝔥𝑟 (𝑆, v) × 𝐵C∗;

hence, ℭ𝔬𝔥𝑟 (𝑆, v) must have affine stabilizers (see [HR19] for the definition) because ℭ𝔬𝔥(𝑆, v) have
affine stabilizers. Moreover, ℭ𝔬𝔥(𝑆, v) is a quasi-separated algebraic stack locally of finite presentation
by [Sta24, Section 0DLX]. Hence, the same applies to ℭ𝔬𝔥𝑟 (𝑆, v). By the representability theorem for
mapping stacks of [HR19], we obtain that Map𝔐𝑔,𝑁

(ℭ𝑔,𝑁 ,ℭ𝔬𝔥𝑟 (𝑆, v) × 𝔐𝑔,𝑁 ) is a quasi-separated
algebraic stack locally of finite presentation over 𝔐𝑔,𝑁 .

Lemma 4.4. The space 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is locally constructible in the mapping stack

Map𝔐𝑔,𝑁
(ℭ𝑔,𝑁 ,ℭ𝔬𝔥𝑟 (𝑆, v) ×𝔐𝑔,𝑁 ).

Proof. The condition of prestability of quasimaps can be easily seen to be open. The condition (i) of
𝜖-stability is also open since ampleness of line bundles is open. We therefore have to deal with the
condition (ii). Let

U ⊂ Map𝔐𝑔,𝑁
(ℭ𝑔,𝑁 ,ℭ𝔬𝔥𝑟 (𝑆, v) ×𝔐𝑔,𝑁 )

be an open quasi-compact substack. We may assume that U contains only prestable quasimaps. Let CU
be the universal curve over U and let

f : CU → ℭ𝔬𝔥𝑟 (𝑆, v)

be the universal map. We want to stratify the space U in the way that f can be stabilized at base points to
be able to evaluate their length. First, we stratify U according to the number of base points. Namely, let
U𝑘 be moduli space of maps from prestable nodal curves to ℭ𝔬𝔥𝑟 (𝑆, v) with 𝑁 + 𝑘 markings, such that

◦ there are exactly k base points,
◦ all k base points are marked by the last k markings,
◦ the underlying map with N markings is contained in U .

These are locally closed substacks of mapping stacks with 𝑁 + 𝑘 markings. Since U is of finite type, the
number of base points is bounded from below; hence, a finite disjoint union

⋃
𝑘 U𝑘 covers U (i.e., there

exists a surjection,

𝑝 :
⋃
𝑘

U𝑘 → U ,

given by forgetting the last k makings). We now further stratify U𝑘 . Consider the universal maps,

f𝑘 : CU𝑘 → ℭ𝔬𝔥𝑟 (𝑆, v)

since all base points are contained in the regular locus of the universal curve, the maps f𝑘 can be
stabilized at base points over the generic points of irreducible components of U𝑘 (we can reduce the
components, if necessary, to talk about generic points, as this does not affect the topology). Note that
stabilisation just removes indeterminacies of the associated rational map

f𝑘 : CU𝑘 � 𝑀 (v).

In particular, there exists a dense open subset of U𝑘 , such that the quasimap f𝑘 can be stabilised at 𝑖th
base point. By passing to the complement of that open subset, repeating the argument and using the fact
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that U𝑘 is quasicompact, we obtain a finite stratification of U𝑘 into locally closed subsets,⋃
𝑗 ,𝑖

U 𝑗
𝑘,𝑖 = U𝑘 ,

such that the quasimap map f𝑘 can be stabilized at 𝑖th base point over each stratum U 𝑗
𝑘,𝑖 . We now can

evaluate the length of base points at each stratumU 𝑗
𝑘,𝑖 . The condition (ii) of 𝜖-stability involves bounding

a degree of line bundles from above; hence, this condition just picks some connected components (or
none at all) of the strata U 𝑗

𝑘,𝑖 , which we denote by U 𝑗′

𝑘,𝑖 . Since U 𝑗
𝑘,𝑖 are locally closed subsets, U 𝑗′

𝑘,𝑖 are
also locally closed and, in particular, constructible. The locus of 𝜖-stable quasimaps U 𝜖

𝑘 in U𝑘 is given
by intersections of ∪ 𝑗′U 𝑗′

𝑘,𝑖 for all i,

U 𝜖
𝑘 :=

⋂
𝑖

(⋃
𝑗′

U 𝑗′

𝑘,𝑖

)
,

which is constructible, since it involves finite intersections and finite unions. The locus of 𝜖-stable
quasimaps in U is the image of the union ∪𝑘U 𝜖

𝑘 ; that is, on the level of geometric points, we have

|𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) ∩ U | = |𝑝

(⋃
𝑘

U 𝜖
𝑘

)
|.

Since p is a map between stacks of finite type, the image of a constructible set is constructible. We
conclude that 𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽) is locally constructible. �

Proposition 4.5. The space𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is open in the mapping stack Map𝔐𝑔,𝑁

(ℭ𝑔,𝑁 ,ℭ𝔬𝔥𝑟 (𝑆, v) ×
𝔐𝑔,𝑁 ).

Proof. As we said before, the only nontrivial part of the claim is the condition (ii) of 𝜖-stability. By
Lemma 4.4, we can use the valuative criterion of openess for (locally) constructible sets. We therefore
have to show that if a family of quasimaps 𝑓 : C → ℭ𝔬𝔥𝑟 (𝑆, v) over the spectrum of a discrete valuation
ring Δ does not satisfy the condition (ii) at the generic fiber, it also does not satisfy it at the special fiber.

If the generic fiber 𝑓 ◦ : C◦ → ℭ𝔬𝔥𝑟 (𝑆, v) does not satisfy the condition (ii), then there exists a base
point 𝑏◦ ∈ C◦ which violates it. We can stabilize it to obtain another family 𝑓 ′◦ : C◦ → ℭ𝔬𝔥𝑟 (𝑆, v) over
Δ◦, which does not have a base point at 𝑏◦. It extends to the family 𝑓 ′ : C → ℭ𝔬𝔥𝑟 (𝑆, v) over Δ by
Lemma 4.9. By definition, the length of the base point 𝑏◦ is given as follows:

ℓ(𝑏◦) = L𝛽 · 𝑓 ◦ C◦ − L𝛽 · 𝑓 ′◦ C◦.

Let 𝑏0 ∈ C0 be the limit of 𝑏◦ in the central fiber C0. Then

ℓ(𝑏0) ≥ L𝛽 · 𝑓0 C0 − L𝛽 · 𝑓 ′
0
C0 = L𝛽 · 𝑓 ◦ C◦ − L𝛽 · 𝑓 ′◦ C◦.

We use the sign of inequality because 𝑏0 might still be a base point of 𝑓 ′0 whose length with respect to
𝑓 ′0 is smaller than the length with respect to 𝑓0. We therefore conclude that 𝑓0 also does not satisfy the
condition (ii). This implies that the complement of 𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽) is closed; hence, 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is

open. �

Corollary 4.6. The space 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is a quasi-separated algebraic stack of finite presentation.

Proof. First, 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is algebraic, quasi-separated and locally of finite presentation by Proposi-

tion 4.5, since mapping stacks have these properties. Second, by Lemma 4.3, Lemma 4.2 and [HL97,
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Lemma 1.7.6], the stack 𝑀 𝜖
v,𝛽

(𝑆 × 𝐶𝑔,𝑁 ) is quasi-compact. Hence by Proposition 3.7, the stack
𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is also quasi-compact, and therefore of finite presentation. �

4.3. Properness

In this section, we prove that𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is a proper Deligne–Mumford stack. To this end, we need a

few auxiliary results about sheaves on 𝑆 ×𝐶, the central among which is Hartogs’ property for families
of nodal curves over a spectrum of a discrete valuation ring Δ , established in Lemma 4.9.

Lemma 4.7. Let F be a sheaf on 𝑆 × 𝐶 flat over C, such that 𝐹𝑝 is torsion-free for a general 𝑝 ∈ 𝐶.
Then F is torsion-free. Conversely, if F is torsion-free and flat over nodes of C, then F is flat over C and
𝐹𝑝 is torsion-free for a general 𝑝 ∈ 𝐶.

Proof. Assume F is flat, such that 𝐹𝑝 is torsion-free for a general 𝑝 ∈ 𝐶. Let 𝑇 (𝐹) ⊂ 𝐹 be the maximal
torsion subsheaf. First, 𝑇 (𝐹) ≠ 𝐹 because rk(𝐹) > 0 (a general fiber of F is torsion-free and therefore
of nonzero rank). It also cannot be supported on fibers of 𝑆 × 𝐶 → 𝐶 due to the flatness of F over C;
therefore, Supp(𝑇 (𝐹)) intersects a general fiber. Since 𝐹/𝑇 (𝐹) is generically flat, restricting 𝑇 (𝐹) ⊂ 𝐹
to a general fiber 𝑝 ∈ 𝐶, we get a torsion subsheaf of 𝐹𝑝 for a general 𝑝 ∈ 𝐶, which is zero; therefore,
𝑇 (𝐹) is zero. The converse follows from the fact that torsion freeness implies flatness over a discrete
valuation ring, and torsion in a general fiber 𝐹𝑝 would produce torsion in F. �

Lemma 4.8. Let U be a regular surface, and let 𝐹1 and 𝐹2 be sheaves on 𝑆 × U flat over U . Then the
sheaf H𝑜𝑚𝑝U (𝐹1, 𝐹2) is locally free for the natural projection 𝑝U : 𝑆 × U → U .

Proof. It is enough to show thatH𝑜𝑚𝑝U (𝐹1, 𝐹2) = 𝑝U∗H𝑜𝑚(𝐹1, 𝐹2) is reflexive because being reflexive
is equivalent to being locally free on regular surfaces.

Since 𝐹1 is flat over U , by the construction from the proof of [HL97, Proposition 2.1.10], there is an
exact sequence

𝐻1 → 𝐻0 → 𝐹1 → 0,

such that 𝐻𝑖 = 𝑝∗U𝐻
′
𝑖 ⊗ O𝑆 (−𝑘𝑖) for a locally free sheaf 𝐻 ′

𝑖 on U and for a sufficiently big integer 𝑘𝑖 .
We apply H𝑜𝑚𝑝U (−, 𝐹2) to obtain an exact sequence

0 → H𝑜𝑚𝑝U (𝐹1, 𝐹2) → H𝑜𝑚𝑝U (𝐻0, 𝐹2) → H𝑜𝑚𝑝U (𝐻1, 𝐹2).

By using the identification

H𝑜𝑚(𝐻𝑖 , 𝐹2) = 𝐻∗
𝑖 ⊗ 𝐹2 = 𝑝∗U𝐻

′∗
𝑖 ⊗ 𝐹2 ⊗ O𝑆 (𝑘𝑖)

and choosing big enough 𝑘𝑖 , the flatness of 𝐹2 and [HL97, Proposition 2.1.2] imply that

H𝑜𝑚𝑝U (𝐻𝑖 , 𝐹2) = 𝐻 ′∗
𝑖 ⊗ 𝑝U∗(𝐹2 ⊗ O𝑆 (𝑘𝑖))

is a locally free sheaf. Hence, by [Sta24, Lemma 0EB8], we obtain that H𝑜𝑚𝑝U (𝐹1, 𝐹2) is reflexive. �

Lemma 4.9. Let C → Δ be a family of nodal projective curves over the spectrum of a discrete valuation
ring, and let {𝑝1, . . . , 𝑝𝑚} ⊂ C be a set of finitely many closed points in the regular locus of the central
fiber. Then any quasimap 𝑓 : C̃ = C \{𝑝1, . . . , 𝑝𝑚} → ℭ𝔬𝔥𝑟 (𝑆, v) extends to 𝑓 : C → ℭ𝔬𝔥𝑟 (𝑆, v), which
is unique up to a unique isomorphism.

Proof. Let 𝐹̃ be the family on 𝑆× C̃ corresponding to the lift of 𝑓 by 𝑠u. We then extend 𝐹̃ to a coherent
sheaf F on 𝑆 × C, quotienting our torsion, if necessary. The sheaf F is therefore flat over Δ . Moreover,
by Lemma 3.17, the sheaf F is flat over C if and only if the central fiber 𝐹0 is flat over C0. By Lemma
4.7, the central fiber 𝐹0 is flat over C0 if and only if it is torsion-free, because C0 is regular at 𝑝𝑖 . If 𝐹0
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is not torsion-free, we can remove the torsion inductively as follows. Let 𝐹0 = 𝐹 and 𝐹𝑖 be defined by
short exact sequences,

0 → 𝐹𝑖 → 𝐹𝑖−1 → 𝑄𝑖 → 0,

such that 𝑄𝑖 is the quotient of 𝐹𝑖−1
0 by the maximal torsion subsheaf. At each step, the torsion of 𝐹𝑖0 is

supported at slices 𝑆 × {𝑝𝑖}; therefore, all 𝐹𝑖 are isomorphic to 𝐹0 over 𝑆 × C̃. By the argument from
[HL97, Theorem 2.B.1], this process terminates (i.e., 𝐹𝑖 = 𝐹𝑖+1 and 𝐹𝑖0 is torsion-free for 𝑖 � 0). Let us
redefine the sheaf F. We set 𝐹 = 𝐹𝑖 for some 𝑖 � 0. Then the sheaf F induces a quasimap to ℭ𝔬𝔥(𝑆, v),
and composing it with the projection to ℭ𝔬𝔥𝑟 (𝑆, v), we thereby obtain an extension 𝑓 : C → ℭ𝔬𝔥𝑟 (𝑆, v)
of 𝑓 .

Consider now another extension 𝑓 ′ : C → ℭ𝔬𝔥𝑟 (𝑆, v). We lift both f and 𝑓 ′ to ℭ𝔬𝔥(𝑆, v) with 𝑠u.
Let F and 𝐹 ′ be the corresponding families on 𝑆 × C, which satisfy

𝐹|C̃ = 𝐹 ′

|C̃ .

We will show that F and 𝐹 ′ are in fact isomorphic, using the argument from [Kuh23, Lemma 3.25].
Let U ⊆ C be a regular open neighbourhood of {𝑝1, . . . , 𝑝𝑚} ⊂ C. By Lemma 4.8, H𝑜𝑚𝑝U (𝐹, 𝐹

′) is
locally free. Moreover, since F and 𝐹 ′ are equal away from {𝑝1, . . . , 𝑝𝑚} and a general fiber is simple,
H𝑜𝑚𝑝U (𝐹, 𝐹

′) must be a line bundle. It has a nonvanishing section given by the identity morphism,
defined away from {𝑝1, . . . , 𝑝𝑚}. Since {𝑝1, . . . , 𝑝𝑚} is of codimension 2 and H𝑜𝑚𝑝U (𝐹, 𝐹

′) is locally
free, the section extends to the whole U , providing a trivialisation H𝑜𝑚𝑝U (𝐹, 𝐹

′) � OU . Using the
tautological morphism11

𝐹|U ⊗ 𝑝∗U (H𝑜𝑚𝑝U (𝐹, 𝐹
′)) → 𝐹 ′

|U ,

and the trivialisaiton above, we therefore obtain a morphism

𝐹|U → 𝐹 ′
|U ,

which is an identity away {𝑝1, . . . , 𝑝𝑚}. Gluing it with the identity morphism over C̃, we obtain a
morphism defined over the entire C,

𝐹 → 𝐹 ′. (4.2)

It is injective, and its cokernel Q is supported over {𝑝1, . . . , 𝑝𝑚}. By pulling back to the closed fiber C0
of C, we obtain an exact sequence

0 → 𝐹|C0 → 𝐹 ′
|C0

→ 𝑄 |C0 → 0.

Note that it is exact from the left because 𝐹|C0 is torsion-free by Lemma 4.7. Since 𝐹|C0 and 𝐹 ′
|C0

have the same Chern character (equal to the one of the generic fiber), we obtain that Q must be zero;
hence, the morphism (4.2) is an isomorphism. Finally, for a fixed isomorphism of F and 𝐹 ′ over C̃, the
isomorphism over C is unique, as the isomorphism over C̃ determines a section of H𝑜𝑚𝑝U (𝐹, 𝐹

′) away
from {𝑝1, . . . , 𝑝𝑚}, which uniquely extends to the whole U . �

Remark 4.10. It is not clear if for a general smooth surface U a map 𝑓 : U \{𝑝1, . . . , 𝑝𝑚} → ℭ𝔬𝔥𝑟 (𝑆, v)
extends to the whole U , like in the case of GIT quotients in [CKM14, Lemma 4.3.2]. Hence, the
assumption that our surface is given by a family of curves C → Δ might be necessary. This form of
Hartogs’ property is good enough for proving Theorem 4.12 in the spirit of [CKM14, Section 4].

11It is defined as the composition 𝐹|U ⊗ 𝑝∗U (H𝑜𝑚𝑝U (𝐹, 𝐹 ′)) → 𝐹|U ⊗H𝑜𝑚U (𝐹, 𝐹 ′) → 𝐹 ′
|U , where the first map is given

by the adjunction.
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Lemma 4.11. Let F be the sheaf on 𝑆 × 𝐶 associated to a quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v). Then F is
simple.

Proof. We have to show that

Hom(𝐹, 𝐹) = C.

By passing to the normalisation of C, we may assume that C is smooth. The sheaf H𝑜𝑚𝑝𝐶 (𝐹, 𝐹) =
𝑝𝐶∗H𝑜𝑚(𝐹, 𝐹) is torsion-free on C, and a general fiber of F over C is simple; hence, H𝑜𝑚𝑝𝐶 (𝐹, 𝐹)
is a line bundle. Moreover, it has a nonvanishing section given by the identity morphism O𝐶 →

H𝑜𝑚𝑝𝐶 (𝐹, 𝐹). We conclude that H𝑜𝑚𝑝𝐶 (𝐹, 𝐹) is a trivial line bundle, and therefore,

Hom(𝐹, 𝐹) = 𝐻0(𝑆 × 𝐶,H𝑜𝑚(𝐹, 𝐹)) = 𝐻0 (𝐶,H𝑜𝑚𝑝𝐶 (𝐹, 𝐹)) = C,

which finishes the proof. �

Theorem 4.12. The space 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is a proper Deligne–Mumford stack.

Proof. We use identification from Theorem 3.16. By Corollary 4.6 and Lemma 4.11, the forgetful map

𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ) → 𝔐𝑔,𝑁

is representable by algebraic spaces. By 𝜖-stability, 𝜖-stable sheaves are fixed by at most a finite discrete
subgroup of the automorphism group of a curve. We therefore conclude that 𝑀 𝜖

v,𝛽
(𝑆 × 𝐶𝑔,𝑁 ) is a

quasi-separated Deligne–Mumford stack of finite type. Using the valuative criteria of properness for
quasi-separated Deligne–Mumford stacks of finite type [Sta24, Section 0CLY] and Lemma 4.9, the
proof of properness then proceeds as in the GIT case [CKM14, Proposition 4.3.1]. �

4.4. Sheaves of fixed determinant

Assume C is smooth. We define

𝑀0+
v,𝛽 (𝑆 × 𝐶)

to be the fiber of 𝑀0+
v,𝛽

(𝑆×𝐶𝑔,0) over the curve𝐶 ∈ 𝔐𝑔,0(C). Unpacking the definition of 𝜖-stability for
sheaves, we obtain that the space 𝑀0+

v,𝛽
(𝑆 ×𝐶) parametrises sheaves F on 𝑆 ×𝐶 subject to the following

conditions:

◦ ch(𝐹) = (ch(v), 𝛽),
◦ F is torsion-free,
◦ a general fiber of F is stable,
◦ the group {𝑔 ∈ Aut(𝐶) | 𝑔∗𝐹 � 𝐹} is finite,
◦ det(𝑝𝐶∗(𝑝

∗
𝑆u ⊗ 𝐹)) � O𝐶 .

If 𝑔(𝐶) ≥ 1 and 𝛽 ≠ 0, then the group of automorphisms of C fixing F is automatically finite. All of
the conditions above are standard except the last one, as one usually fixes the determinant of F. Let

𝑀v,𝛽 (𝑆 × 𝐶)

be the moduli space of sheaves subject to all conditions above, except the last one. Instead, we require
the following:

◦ det(𝐹) � 𝐿 for a fixed line bundle L, such that c1(𝐿) = c1 (𝐹).
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There exists a map that relates two moduli spaces,

𝑝 : 𝑀v,𝛽 (𝑆 × 𝐶) → 𝑀0+
v,𝛽 (𝑆 × 𝐶),

𝐹 ↦→ 𝐹 ⊗ 𝑝∗𝐶 det(𝑝𝐶∗(𝑝
∗
𝑆u ⊗ 𝐹))−1.

It is étale and surjective, as is shown in the following lemma.

Lemma 4.13. The map p is étale and surjective of degree rk(v)2𝑔.

Proof. In fact, we will show that p is a finite-group torsor. Let

Γ := Pic0(𝐶) [rk(v)]

be the rk(v)-torsion points of Pic0(𝐶). The group Γ acts on the moduli space 𝑀v,𝛽 (𝑆 ×𝐶) by tensoring
with line bundles because det(𝐹 ⊗ 𝐴) = det(𝐹) ⊗ 𝐴⊗rk(v) for a line bundle 𝐴 ∈ Pic(𝑆 ×𝐶). The action
is free, because the following holds:

det(𝑝𝐶∗(𝑝
∗
𝑆u ⊗ 𝐹 ⊗ 𝑝∗𝐶𝐴) � det(𝑝𝐶∗(𝑝

∗
𝑆u ⊗ 𝐹) ⊗ 𝐴,

which is due to 𝜒(v · 𝑢) = 1. The map p is Γ-invariant. In particular, we have the induced map

𝑀v,𝛽 (𝑆 × 𝐶)/Γ → 𝑀0+
v,𝛽 (𝑆 × 𝐶). (4.3)

Conversely, the inverse of this map is given by a Γ-torsor on 𝑀0+
v,𝛽

(𝑆×𝐶) which parametrises sheaves
F in 𝑀0+

v,𝛽
(𝑆 × 𝐶) together with a rk(v)th-root of det(𝐹) ⊗ 𝐿−1. Using the assumption ℎ1 (𝑆) = 0 and

the identification Pic0(𝑆 × 𝐶) � Pic0(𝐶), this torsor is constructed as the fiber product,

𝑀0+
v,𝛽

(𝑆 × 𝐶)
1

rk(v) Pic0 (𝐶)

𝑀0+
v,𝛽

(𝑆 × 𝐶) Pic0 (𝐶)

·rk(v)

det(𝐹 ) ⊗𝐿−1

There exists a Γ-equivariant map,

𝑀0+
v,𝛽 (𝑆 × 𝐶)

1
rk(v) → 𝑀v,𝛽 (𝑆 × 𝐶), 𝐹 ↦→ 𝐹 ⊗ (det(𝐹)−1 ⊗ 𝐿)

1
rk(v) ,

which induces the inverse of (4.3). We conclude

𝑀v,𝛽 (𝑆 × 𝐶)/Γ � 𝑀
0+
v,𝛽 (𝑆 × 𝐶);

in particular, 𝑀v,𝛽 (𝑆 × 𝐶) is a Γ-torsor over 𝑀0+
v,𝛽

(𝑆 × 𝐶). A finite-group torsor is étale over the base.
The cardinality of Γ is rk(v)2𝑔. �

5. Obstruction theory

5.1. Comparing two obstruction theories

Let F𝑟 be the universal family on 𝑆 × ℭ𝔬𝔥𝑟 (𝑆, v); that is, F𝑟 is the descend of F ⊗ 𝑝∗ℭ𝔬𝔥(𝑆,v)𝜆(u)
−1

from 𝑆 × ℭ𝔬𝔥(𝑆, v) to 𝑆 × ℭ𝔬𝔥𝑟 (𝑆, v). Let

tr : 𝑅H𝑜𝑚𝜋ℭ𝔬𝔥𝑟 (𝑆,v) (F𝑟 ,F𝑟 ) → 𝐻∗(𝑆,O𝑆) ⊗ Oℭ𝔬𝔥𝑟 (𝑆,v)
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be the universal trace map. We define

𝑅H𝑜𝑚𝜋ℭ𝔬𝔥𝑟 (𝑆,v) (F𝑟 ,F𝑟 )0 := Cone(tr) [−1] .

The complex above defines a perfect obstruction on ℭ𝔬𝔥𝑟 (𝑆, v),

(Tvir)∨ := (𝑅H𝑜𝑚𝜋ℭ𝔬𝔥𝑟 (𝑆,v) (F𝑟 ,F𝑟 )0 [1])∨ → Lℭ𝔬𝔥𝑟 (𝑆,v) ,

for example; see [STV15] for more details. Note that the complex (Tvir)∨ is of amplitude [-1,1] due to
the presence of non-discrete automorphisms of the unstable part of ℭ𝔬𝔥𝑟 (𝑆, v). Let

𝜋1 : C𝑔,𝑁 → 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽),

f : C𝑔,𝑁 → ℭ𝔬𝔥𝑟 (𝑆, v)

be the canonical projection from the universal curve and the universal map. On the other hand, let

𝜋2 : 𝑆 × C𝑔,𝑁 → 𝑀 𝜖
v,𝛽 (𝑆 × 𝐶𝑔,𝑁 ),

F ∈ Coh(𝑆 × C𝑔,𝑁 )

be the canonical projection from the universal threefold and the universal sheaf. We have two naturally
defined obstruction-theory complexes:

◦ a map-theoretic obstruction complex 𝜋1∗f
∗Tvir,

◦ a sheaf-theoretic obstruction complex 𝑅H𝑜𝑚𝜋2 (F, F)0 [1].

In fact, these two complexes are isomorphic.

Proposition 5.1. There is a natural isomorphism of complexes,

𝑅H𝑜𝑚𝜋2 (F, F)0 [1] � 𝜋1∗f
∗Tvir.

Proof. Consider the following diagram:

𝑆 × C𝑔,𝑁 𝑆 × ℭ𝔬𝔥𝑟 (𝑆, v)

C𝑔,𝑁 ℭ𝔬𝔥𝑟 (𝑆, v)

𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)

id×f

𝜋2

𝜋ℭ𝔬𝔥𝑟 (𝑆,v)

f

𝜋1

The trace map

tr : 𝑅H𝑜𝑚(F𝑟 ,F𝑟 ) → Oℭ𝔬𝔥𝑟 (𝑆,v)

has a section given by the inclusion of the identity morphism Oℭ𝔬𝔥𝑟 (𝑆,v) → 𝑅H𝑜𝑚(F𝑟 ,F𝑟 ); therefore,

𝑅H𝑜𝑚(F𝑟 ,F𝑟 ) � 𝑅H𝑜𝑚(F𝑟 ,F𝑟 )0 ⊕ Oℭ𝔬𝔥𝑟 (𝑆,v) ,

and by the moduli interpretation of ℭ𝔬𝔥𝑟 (𝑆, v), we get that

(f × id)∗F𝑟 � F.
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Hence, by functoriality of the trace and the splitting above, we obtain that

(f × id)∗𝑅H𝑜𝑚(F𝑟 ,F𝑟 )0 � 𝑅H𝑜𝑚(F, F)0.

By the base change theorem,

𝑅H𝑜𝑚𝜋2 (F, F)0 � 𝜋1∗f
∗𝑅H𝑜𝑚𝜋ℭ𝔬𝔥𝑟 (𝑆,v) (F𝑟 ,F𝑟 )0.

This proves the claim. �

Proposition 5.2. Assume Tvir is a locally free sheaf in degree 0 over the stable locus 𝑀 (v). Then the
complex 𝜋1∗f

∗Tvir is of perfect amplitude [0, 1]. In particular, this holds for moduli spaces of sheaves
on 𝐾3 surfaces and del Pezzo surfaces.

Proof. A sheaf 𝐹 ∈ 𝑀 𝜖
v,𝛽

(𝑆 ×𝐶𝑔,𝑁 ) (C) is perfect since it is a family of sheaves on a smooth surface S
over C. A threefold 𝑆 × 𝐶 has at worst normal crossing singularities; its dualizing sheaf is therefore a
line bundle. Moreover, by Lemma 4.11, the sheaf F is simple. Using Serre’s duality and simplicity of
F, we conclude that

Ext𝑖 (𝐹, 𝐹)0 = 0, 𝑖 ∉ {1, 2, 3}.

Hence, 𝑅H𝑜𝑚𝜋2 (F, F)0 [1] is at most of amplitude [0, 2]. By Proposition 5.1, the complex 𝜋1∗f
∗Tvir is

therefore also at most of amplitude [0, 2]. We need to show that it is zero in degree 2. It is enough to check
it over a point [ 𝑓 : (𝐶, p) → ℭ𝔬𝔥𝑟 (𝑆, v)] ∈ 𝑄 𝜖

𝑔,𝑛 (𝑀 (v), 𝛽) (C). Consider the distinguished triangle

𝜏≤0 𝑓
∗Tvir → 𝑓 ∗Tvir → 𝜏≥1 𝑓

∗Tvir →, (5.1)

where 𝜏... is the truncation of complex with respect to the standard t-structure. Taking the long exact
sequence of cohomologies associated to (5.1), we obtain

· · · → 𝐻2 (𝐶, 𝜏≤0 𝑓
∗Tvir) → 𝐻2 (𝐶, 𝑓 ∗Tvir) → 𝐻2 (𝐶, 𝜏≥1 𝑓

∗Tvir) → . . .

Let us now analyse the terms in the long exact sequence. First, f maps generically to the stable locus
𝑀 (v). By the assumption, Tvir

|𝑀 (v) is a locally free sheaf concentrated in degree 0. Hence, the object
𝑓 ∗Tvir is generically a locally free sheaf concentrated in degree 0. Moreover, Tvir is of perfect amplitude
[−1, 1]. These two facts imply that 𝜏≥1 𝑓

∗Tvir is a 0-dimensional sheaf in degree 1 supported on the base
points of f ; therefore,

𝐻2 (𝐶, 𝜏≥1 𝑓
∗Tvir) = 0.

Since C is a curve,

𝐻2 (𝐶, 𝜏≤0 𝑓
∗Tvir) = 0.

By the long exact sequence, we therefore obtain that 𝐻2 (𝐶, 𝑓 ∗Tvir) = 0. �

Theorem 5.3. There exists an obstruction-theory morphism

𝜙 : (𝜋1∗f
∗Tvir)∨ → L𝑄𝜖

𝑔,𝑁 (𝑀 (v) ,𝛽)/𝔐𝑔,𝑁 .

Moreover, if 𝜖 = 0+, under the assumption of Proposition 5.2, the corresponding virtual fundamental
classes coincide with those of Donaldson–Thomas theory.
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Proof. By [TV07, TV08, Lur12] and [STV15], there exists a derived algebraic stackRℭ𝔬𝔥𝑟 (𝑆, v) whose
classical truncation is ℭ𝔬𝔥𝑟 (𝑆, v),

𝑡0(Rℭ𝔬𝔥𝑟 (𝑆, v)) � ℭ𝔬𝔥𝑟 (𝑆, v),

and

𝑗∗TRℭ𝔬𝔥𝑟 (𝑆,v) � T
vir

with respect to the natural inclusion 𝑗 : ℭ𝔬𝔥𝑟 (𝑆, v) ↩→ Rℭ𝔬𝔥𝑟 (𝑆, v).
A derived enhancement gives rise to an obstruction theory of the underlying classical stack; see

[STV15, Section 1] for more details. By Proposition 4.5, the stack 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) is open in the

mapping stack Map𝔐𝑔,𝑁
(ℭ𝑔,𝑁 ,ℭ𝔬𝔥𝑟 (𝑆, v) ×𝔐𝑔,𝑁 ). Hence, the obstruction-theory morphism

𝜙 : (𝜋1∗f
∗Tvir)∨ → L𝑄𝜖

𝑔,𝑁 (𝑀 (v) ,𝛽)/𝔐𝑔,𝑁

can be given by the derived mapping stack

RMap𝔐𝑔,𝑁
(ℭ𝑔,𝑁 ,Rℭ𝔬𝔥𝑟 (𝑆, v) ×𝔐𝑔,𝑁 ),

which is algebraic by [TV08, Lur12]. We refer to [HLP23, Theorem 5.1.1] for a more recent treatment
of derived mapping stacks; the stackRℭ𝔬𝔥𝑟 (𝑆, v) satisfies the requirements of [HLP23, Theorem 5.1.1].
The obstruction-theory complex is perfect by Proposition 5.2.

By [Sie04], a virtual fundamental class depends only on Chern characters of the corresponding
obstruction-theory complex. The second part of the claim therefore follows from Proposition 5.1. �

Let

[𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)]vir ∈ 𝐻∗(𝑄

𝜖
𝑔,𝑁 (𝑀 (v), 𝛽))

be the associated virtual fundamental class. Invoking the identification presented in Proposition 5.1, the
relative virtual dimension of the moduli space over 𝔐𝑔,𝑁 can be computed via the virtual dimension of
the relative moduli space of sheaves,

rel. vdim =
∑
𝑖

(−1)𝑖+1ext𝑖 (𝐹, 𝐹)0

= −

∫
𝑆×𝐶

(ch(𝐹) · ch(𝐹∨) − 1) · td𝑆×𝐶

= −

∫
𝑆×𝐶

((ch(v), 𝛽) · (ch(v)∗,−𝛽∗) − 1) · td𝑆×𝐶

= 𝛽0 · (c1 (v) · c1 (𝑆)) − rk(v) · (𝛽1 · c1 (𝑆)) − (𝑔 − 1) dim(𝑀 (v)),

where 𝛽0 and 𝛽1 are the components of 𝛽 ∈ Λ of cohomogical degrees 0 and 2, respectively. The class
with the superscript ‘*’ stands for a class of the dual object. On the other hand, the Riemann–Roch
formula gives us that

rel. vdim = deg( 𝑓 ∗Tvir) − (𝑔 − 1) dim(𝑀 (v)).

Hence, we conclude that

deg( 𝑓 ∗Tvir) = 𝛽0 · (c1 (v) · c1 (𝑆)) − rk(v) · (𝛽1 · c1 (𝑆)). (5.2)
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5.2. Invariants

Moduli spaces𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) have the usual structures to define the enumerative invariants in the spirit

of Gromov–Witten theory:

◦ evaluation maps at marked points

ev𝑖 : 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) → 𝑀 (v), 𝑖 = 1, . . . , 𝑁,

◦ cotangent line bundles

𝐿𝑖 := 𝑠∗𝑖 (𝜔C𝑔,𝑁 /𝑄𝜖
𝑔,𝑁 (𝑀 (v) ,𝛽) ), 𝑖 = 1, . . . , 𝑁,

where 𝑠𝑖 : 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) → C𝑔,𝑁 are universal markings, and C𝑔,𝑁 is the universal curve over

𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽). We denote

𝜓𝑖 := c1 (𝐿𝑖), 𝑖 = 1, . . . , 𝑁.

Definition 5.4. Under the assumption of Proposition 5.2, the descendent 𝜖-invariants are

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓

𝑘𝑁 〉 𝜖𝑔,𝛽 :=
∫
[𝑄𝜖

𝑔,𝑁 (𝑀 (v) ,𝛽) ]vir

𝑖=𝑁∏
𝑖=1

ev∗𝑖 (𝛾𝑖)𝜓
𝑘𝑖
𝑖 ,

where 𝛾1, . . . , 𝛾𝑁 ∈ 𝐻∗(𝑀 (v)) and 𝑘1, . . . , 𝑘𝑁 are nonnegative integers.

Remark 5.5. We can also define another kind of invariants by the identification of quasimaps with the
relative moduli space of sheaves from Proposition 3.14. Consider

𝑆 × C𝑔,𝑁

𝑆 × 𝐶𝑔,𝑁 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)

𝜋1 𝜋2

where C𝑔,𝑁 is the universal curve over 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽), 𝐶𝑔,𝑁 is the universal curve over 𝑀𝑔,𝑁 , and 𝜋1

is the morphism given by stabilisation of curves. For the unstable values of g and N, we set the product
𝑆 × 𝑀𝑔,𝑁+1 to be S. For a class 𝛾̃ ∈ 𝐻𝑙 (𝑆 × 𝐶𝑔,𝑁 ), define the following operation on cohomology:

ch𝑘+2(𝛾̃) : 𝐻∗(𝑄
𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)) → 𝐻∗−2𝑘+2−𝑙 (𝑄

𝜖
𝑔,𝑁 (𝑀 (v), 𝛽)),

ch𝑘+2(𝛾̃) (𝜉) = 𝜋2∗
(
ch𝑘+2(F) · 𝜋

∗
1 (𝛾̃) ∩ 𝜋∗2 (𝜉)

)
.

Descendent Donaldson–Thomas invariants are then defined by

〈𝜏𝑘1 (𝛾̃1), . . . , 𝜏𝑘𝑟 (𝛾̃𝑟 )〉
𝜖
𝑔,𝑛,𝛽

= (−1)𝑘1+1ch𝑘1+2(𝛾̃1) ◦ . . . ◦ (−1)𝑘𝑟+1ch𝑘𝑟+2(𝛾̃𝑟 )
(
[𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽)]vir
)
.

We can also combine descendent quasimap invariants and descendent Donaldson–Thomas invariants,

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓

𝑘𝑁 | 𝜏𝑘1 (𝛾̃1), . . . , 𝜏𝑘𝑟 (𝛾̃𝑟 )〉
𝜖
𝑔,𝑁 ,𝛽 ,

which are essentially a combination of relative and absolute Donaldson–Thomas invariants of the relative
geometry

𝑆 × 𝐶𝑔,𝑁 → 𝑀𝑔,𝑁
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for different 𝜖-stabilities. However, we will not be concerned with the absolute Donaldson–Thomas
invariants defined above in the present work.

The discussion in [CKM14, Section 6] also applies to 𝜖-invariants in our setting. In particular, 𝜖-
invariants satisfy an analogue of the Splitting Axiom in Gromov–Witten theory, and there exists a
projection to the moduli of stable nodal curves

𝑝 : 𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) → 𝑀𝑔,𝑁

by taking the stabilisation of the domain of a quasimap, so that the classes

𝑝∗

(
𝑖=𝑁∏
𝑖=1

ev∗𝑖 (𝛾𝑖)𝜓
𝑘𝑖
𝑖

)
∈ 𝐻∗(𝑀𝑔,𝑁 )

give rise to a Cohomological field theory without a unit12 on 𝐻∗(𝑀 (v)).

6. Hilbert schemes

6.1. Ideal sheaves

We now restrict to the case of Hilbert schemes of points on a surface 𝑆 [𝑛] . Hence, in this section, we
assume that

ch(v) = (1, 0,−𝑛).

Punctorial Hilbert schemes are special because there exists a canonical trivialisation of 𝜏 : ℭ𝔬𝔥(𝑆, v) →
ℭ𝔬𝔥𝑟 (𝑆, v). It is given by the determinant of the universal sheaf F on 𝑆 × ℭ𝔬𝔥(𝑆, v),

det(F) ∈ Pic(𝑆 × ℭ𝔬𝔥(𝑆, v)).

Indeed, it is a line bundle of C∗-weight 1 because F is of rank 1. Hence, the family F ⊗ det(F)−1

descends to 𝑆 × ℭ𝔬𝔥𝑟 (𝑆, v), giving the section

𝑠det : ℭ𝔬𝔥𝑟 (𝑆, v) → ℭ𝔬𝔥(𝑆, v).

Applying the same analysis as in Section 3.5, we obtain that there exists a canonical identification,

𝜙 : det(F ⊗ det(F)−1)
∼
−→ O𝑆×ℭ𝔬𝔥(𝑆,v) .

Hence, for any quasimap 𝑓 : 𝐶 → ℭ𝔬𝔥𝑟 (𝑆, v), the determinant of the sheaf F on 𝑆 ×𝐶 associated to the
lift 𝑠det ◦ 𝑓 can be canonically trivialised,

𝜙 : det(𝐹) ∼
−→ O𝑆×𝐶 .

If C is smooth, then since F is a torsion-free sheaf of rank 1, its double dual 𝐹∨∨ is locally free and
therefore isomorphic to det(𝐹). This is proved for families in [Kol90, Lemma 6.13]. If C is not smooth,
then because F is flat over nodes of C, we arrive at the same conclusion by passing to the normalisation
of C. More generally, for families of nodal curves, we can also apply [Kol90, Lemma 6.13] (which is
stated only for the smooth case) to conclude that 𝐹∨∨ is locally free as follows. First, since the question
is local, we can split 𝜋 : C → 𝐵 into the 𝜋-smooth locus 𝑈1, and a Zariski neighbourhood 𝑈2 of the
𝜋-singular locus. We require 𝑈2 to be disjoint from the base locus of quasimaps, so that 𝐹|𝑆×U2 is flat

12In the quasimap theory for 𝜖 ≤ 1, forgetting a marking is not permitted in general because it might turn a rational bridge into
a rational tail which does not satisfy 𝜖 -stability; hence, a string equation might not hold true.
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and torsion-free over U2 by the prestabiity of quasimaps. We then apply [Kol90, Lemma 6.13] to the
smooth maps 𝑆 ×𝑈1 → 𝐵 and 𝑆 ×𝑈2 → 𝑈2.

Overall, 𝜙 gives us a canonical identification, 𝐹∨∨ � det(𝐹) � O𝑆×𝐶 , and since F admits an
embedding into its double dual, we obtain that F canonically embeds into the trivial sheaf,

𝐹 ↩→ 𝐹∨∨ � O𝑆×𝐶 .

Finally, F is a family of 0-dimensional subschemes on S at a general point of C. We conclude that F is
an ideal sheaf I of a 1-dimensional subscheme,

𝐹 � 𝐼,

such that if the associated quasimap f is of degree 𝛽, then

ch(𝐼) = ((1, 0,−𝑛), 𝛽) ∈ Λ ⊕ Λ(−1).

We now will translate 𝜖-stability of quasimaps into an explicit condition that involves only ideal sheaves
and the associated subschemes.

6.2. Explicit 𝝐-stability for ideal sheaves

Let Γ be a 1-dimensional subscheme on 𝑆 × 𝐶, and let I be the associated ideal sheaf. The fiber 𝐼𝑝 of
I over a regular point 𝑝 ∈ 𝐶 is stable13 if and only if Γ is flat over C at p; cf. Remark 6.2. On the other
hand, a subscheme Γ is flat over 𝑝 ∈ 𝐶 if and only if it does not have embedded points or non-dominant
components over p. The latter requirement is equivalent to the condition that the structure sheaf OΓ of
Γ does not have O𝐶 -torsion over p.

Let

𝑇 𝑝 ⊆ OΓ

be the maximal O𝐶 -torsion subsheaf of OΓ supported over a regular point 𝑝 ∈ 𝐶. The sheaf OΓ/𝑇
𝑝 is

then flat over p. By using the composition

O𝑆×𝐶 → OΓ → OΓ/𝑇
𝑝 ,

we conclude thatOΓ/𝑇
𝑝 is the structure sheaf of a subscheme, which we denote by Γ𝑝 . By the discussion

above, the ideal sheaf 𝐼Γ𝑝 of Γ𝑝 is associated to the stabilisation of the quasimap f at the point p in the
sense of Section 3.4. By construction, we have the following identity in the K-group of 𝑆 × 𝐶:

[𝐼] − [𝐼Γ𝑝 ] = −[𝑇 𝑝] .

By Lemma 3.6, we obtain an expression for the length of p in terms of 𝑇 𝑝 ,

ℓ(𝑝) = 𝑚 · deg(𝑇 𝑝) + 𝜒(𝑇 𝑝),

where we used that 𝑇 𝑝 is of rank 0 after the projection to S; the integer m is chosen such that Proposition
3.7 holds, and the degree deg(𝑇 𝑝) is defined as ch(𝑇 𝑝) · c1 (O𝑆 (1)). Hence, the condition (ii) of
Definition 3.11 translates into the following:

𝑚 · deg(𝑇 𝑝) + 𝜒(𝑇 𝑝) ≤ 1/𝜖 .

13A sheaf of rank 1 is stable if and only if it is torsion-free.
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The condition (i) of Definition 3.11 can also be translated into a statement about the degree and the
Euler characteristics of Γ over rational bridges and rational tails. First, given a rational bridge 𝐵 ⊆ 𝐶,
then by using Lemma 3.6, we obtain that the following must be satisfied:

−𝑚 · deg(𝑝𝑆∗𝐼 |𝐵) + 𝜒(v)rk(𝑝𝑆∗𝐼 |𝐵) − 𝜒(𝑝𝑆∗𝐼 |𝐵) > 0.

This simplifies to

𝑚 · deg(OΓ |𝐵) + 𝜒(OΓ |𝐵) − 𝑛 > 0,

where deg(OΓ |𝐵) is defined as ch(OΓ |𝐵)d · c1 (O𝑆 (1)). The term n is there to cancel the fiber contribu-
tion14 ch(OΓ |𝐵)f to 𝜒(OΓ |𝐵).

Similarly, given a rational tail 𝑅 ⊆ 𝐶, then the following must be satisfied:

𝑚 · deg(OΓ |𝑅) + 𝜒(OΓ |𝑅) − 𝑛 > 1/𝜖 .

Finally, by the prestability of quasimaps, OΓ has to be flat over nodes and marked points. Summing up
the discussion above, and using the main results of Section 4 and 5, we obtain the following.

Corollary 6.1. The space 𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽) is a proper Deligne–Mumford stack with a perfect obstruction

theory. There exists a natural identification of moduli spaces, which respects perfect obstruction theories,

𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽) � Hilb𝜖

𝑛,𝛽
(𝑆 × 𝐶𝑔,𝑁 ),

where

Hilb𝜖
𝑛,𝛽

(𝑆 × 𝐶𝑔,𝑁 ) : (𝑆𝑐ℎ/C)◦ → 𝐺𝑟𝑝𝑑

is the moduli space of triples (𝐶, p, 𝐼), satisfying the following properties for some fixed integer 𝑚 � 0:

◦ I is the ideal sheaf a 1-dimensional subscheme Γ on 𝑆×𝐶, such that OΓ is flat over nodes and marked
points of C,

◦ ch(OΓ) = ((0, 0, 𝑛),−𝛽) ∈ Λ ⊕ Λ(−1),
◦ 𝑚 · deg(𝑇 𝑝) + 𝜒(𝑇 𝑝) ≤ 1/𝜖 for all points 𝑝 ∈ 𝐶,
◦ 𝑚 · deg(OΓ |𝑅) + 𝜒(OΓ |𝑅) − 𝑛 > 1/𝜖 for all rational tails 𝑅 ⊆ 𝐶,
◦ 𝑚 · deg(OΓ |𝐵) + 𝜒(OΓ |𝐵) − 𝑛 > 0 for all rational bridges 𝐵 ⊆ 𝐶.

Proof. Using the discussion in Section 6.1 and in the beginning of Section 6.2, the identification of the
moduli stacks follows from the same arguments as in Theorem 3.16. The rest follows from the main
results of Section 4 and 5. �

Remark 6.2. Let I be the ideal sheaf associated to a quasimap f, whose target is a Hilbert scheme of
points. The fiber 𝐼𝑠 over a node 𝑠 ∈ 𝐶 is stable if and only if it is torsion-free, which is equivalent to
injectivity on the left of the exact sequence

𝐼𝑠 → O𝑆×{𝑠} → OΓ𝑠 → 0,

which in turn is equivalent to Tor1
𝑆×𝐶 (OΓ,O𝑆×{𝑠}) = 0. In relative Donaldson–Thomas theory, the latter

condition is referred to as admissibility. It is one of the stability conditions of ideal sheaves on threefolds
with normal crossing singularities.

14For example, if the quasimap is constant on a rational bridge B, then the associated OΓ satisfies the following identity:
𝑚 · deg(OΓ|𝐵) + 𝜒 (OΓ|𝐵) − 𝑛 = 0; that is, it is unstable with respect to 𝜖 -stability as expected.
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Remark 6.3. Fix a smooth curve C with 𝑔 ≥ 1 and 𝛽 ≠ 0. By Corollary 6.1, the moduli space of 0+-
stable quasimaps from C can be identified with a moduli space of 1-dimensional subschemes on 𝑆 ×𝐶,

𝑄𝐶 (𝑆
[𝑛] , 𝛽) � Hilb𝑛,𝛽 (𝑆 × 𝐶).

On the other hand, for a fixed smooth curve with one marking (𝐶, 𝑝), we obtain a moduli space of
1-dimensional subschemes relative to the divisor 𝑆 × {𝑝} ⊂ 𝑆 × 𝐶,

𝑄 (𝐶,𝑝) (𝑆
[𝑛] , 𝛽) � Hilb𝑛,𝛽 (𝑆 × 𝐶/𝑆𝑝).

Moreover, pulling back a class from 𝑆 [𝑛] by the evaluation map associated to a marking on the left is
equivalent to pulling back the class from a relative divisor on the right.

6.3. Changing the t-structure

Consider the following torsion pair in the abelian category Coh(𝑆):

T = {𝐴 ∈ Coh(𝑆) | dim(𝐴) = 0},
T ⊥ = {𝐴′ ∈ Coh(𝑆) | Hom(𝐴, 𝐴′) = 0,∀𝐴 ∈ T }.

Let

Coh♯ (𝑆) = 〈T ⊥, T [−1]〉

be the corresponding perverse abelian heart; see [HRS96] for the construction of abelian hearts associ-
ated to torsion pairs. A 2-term complex 𝐴• = [𝐴0

𝑑
−→ 𝐴1] belongs to Coh♯ (𝑆) if and only if

ker(𝑑) ∈ T ⊥, coker(𝑑) ∈ T .

A family of objects in Coh♯ (𝑆) over a base scheme B is a perfect object

𝐹 ∈ Dperf (𝑆 × 𝐵),

such that for all closed points 𝑏 ∈ 𝐵, we have

𝐹𝑏 := 𝐿𝜄∗𝑏𝐹 ∈ Coh♯ (𝑆),

where 𝜄𝑏 : 𝑆 × {𝑏} ↩→ 𝑆 × 𝐵. We will refer to 𝐹𝑏 as fibers of F. Punctorial Hilbert schemes sit inside
the rigidification of the corresponding moduli stack,

𝑆 [𝑛] ⊂ ℭ𝔬𝔥♯𝑟 (𝑆, v) := ℭ𝔬𝔥♯ (𝑆, v)��� C∗,

which is constructed, for example, in [Lie06]. As in the case of the standard heart, we have a canonical
section given by the determinant of the universal sheaf,

𝑠det : ℭ𝔬𝔥♯𝑟 (𝑆, v) → ℭ𝔬𝔥♯ (𝑆, v),

which exists because the universal object is also of rank 1.
Recall that a stable pair on a scheme X is a 1-dimensional sheaf G with a section 𝑔 ∈ 𝐻0 (𝑋, 𝐺),

viewed as a 2-term complex,

𝐼• = [O𝑋
𝑔
−→ 𝐺],
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such that G is pure and coker(𝑔) is 0-dimensional. We refer to [PT09] for the theory of stable pairs in
the context of enumerative geometry.

In what follows, we will also use the Abramovich–Polishchuk heart on 𝑆 × 𝐶 associated to the
perverse heart on S for a smooth curve C, and denoted by Coh♯ (𝑆 × 𝐶). By the definition from [AP06,
Section 1.1], an object 𝐹 ∈ Db(𝑆 × 𝐶) is in Coh♯ (𝑆 × 𝐶) if and only if

𝑝𝑆∗(𝐹 ⊗ O𝐶 (𝑚)) ∈ Coh♯ (𝑆), for all 𝑚 � 0.

We now prove the following.

Proposition 6.4. Let 𝑓 : 𝐶 → ℭ𝔬𝔥♯𝑟 (𝑆, v) be a prestable quasimap and let F be the family on 𝑆 × 𝐶
associated to 𝑠det ◦ 𝑓 . Then F is a stable pair. Conversely, given a stable pair 𝐼• on 𝑆 × 𝐶 whose fibers
are ideal sheaves over nodes of C, then it is a family of objects in Coh♯ (𝑆).

Proof. The object F is of rank 1, and det(𝐹) � O𝑆×𝐶 by the choice of the section 𝑠det. Hence, by [Tod10,
Lemma 3.11], in order to show that F is a stable pair, we have to establish the following properties:

(i) H𝑖 (𝐹) = 0, for 𝑖 ≠ 0, 1,
(ii) H0(𝐹) is a rank 1 torsion-free sheaf and H1(𝐹) is 0-dimensional,

(iii) Hom(𝑄 [−1], 𝐹) = 0 for any 0-dimensional sheaf Q,

whereH𝑖 (𝐹) is the cohomology of a complex with respect to the standard t-structure. Note that the proof
of [Tod10, Lemma 3.11 (ii)] easily extends to the case of a threefold with normal crossing singularities,
as long as F satisfies the first two properties above and its restriction to the singular locus is an ideal
sheaf (i.e., it is admissible over the singular locus). Indeed, in this case, H0(𝐹) is an ideal sheaf by the
discussion in Section 6.1, H1(𝐹) is supported away from the singularity, and F fits into the distinguished
triangle,

H0(𝐹) → 𝐹 → H1(𝐹) [−1] → .

Then [Tod10, Lemma 3.11 (ii)] follows from the same arguments as in the smooth case.
(i) Consider two distinguished triangles that the object F fits in,

𝜏≤−1𝐹 → 𝐹 → 𝜏≥0𝐹 →,

𝜏≤1𝐹 → 𝐹 → 𝜏≥2𝐹 →,

where the truncation is taken with respect to the standard t-structure. First, over a dense open subsect
𝑈 ⊆ 𝐶, which contains all nodes, F is a family of rank 1 sheaves. Hence,

(𝜏≤−1𝐹)|𝑈 = 0, (𝜏≥2𝐹)|𝑈 = 0.

We now deal with 𝑝 ∈ 𝐶 \𝑈. By using the distinguished triangles above and the associated long exact
sequences of sheaf cohomologies (cohomologies with respect to the standard t-structure), we obtain the
long exact sequence

· · · → H−2((𝜏≥0𝐹)𝑝) → H−1((𝜏≤−1𝐹)𝑝) → H−1(𝐹𝑝) → . . .

Since 𝐶 \𝑈 contains only regular points, fibers (𝜏≥0𝐹)𝑝 are of amplitude [−1, 𝑎] for some a. On the
other hand, fibers 𝐹𝑝 are of amplitude [0, 1]. We conclude that H−1((𝜏≤−1𝐹)𝑝) = 0. The same applies
to cohomologies of lower degrees; hence,

(𝜏≤−1𝐹)𝑝 = 0, 𝑝 ∈ 𝐶 \𝑈.

By the same reasoning, we obtain that the sheaf cohomology H𝑖 ((𝜏≥2𝐹)𝑝) = 0 for 𝑖 ≥ 2. Since 𝜏≥2𝐹
is of amplitude [2, 𝑏] for some b, by truncating 𝜏≥2𝐹 and repeating the argument, we obtain that the
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underived fiber 𝜄∗𝑝𝜏≤2 (𝜏≥2𝐹) is trivial. Together with the vanishing of the higher sheaf cohomology, we
conclude

(𝜏≥2𝐹)𝑝 = 0, 𝑝 ∈ 𝐶 \𝑈.

Overall, we obtain that 𝜏≤−1𝐹 = 0 and 𝜏≥2𝐹 = 0, since an object is trivial, if and only if all of its fibers
are. Hence, F must be of amplitude [0, 1].

(ii) Since 𝐹𝑝 is an ideal sheaf for a general 𝑝 ∈ 𝐶 and 𝐹𝑝 ∈ Coh♯ (𝑆) for all 𝑝 ∈ 𝐶, the sheaf H1(𝐹)

must be 0-dimensional by the definition of Coh♯ (𝑆). Consider now the distinguished triangle,

H0(𝐹) → 𝐹 → H1(𝐹) [−1] →, (6.1)

and assume there is a nonzero torsion subsheaf (in the standard heart),

𝑇 (H0 (𝐹)) ↩→ H0(𝐹).

First, because a general fiber of F is an ideal sheaf, 𝑇 (H0 (𝐹)) is supported on fibers over C. In
particular, H0(𝐹) is not flat over some point 𝑝 ∈ 𝐶. Hence, 𝐿𝜄∗𝑝H0(𝐹) is strictly of amplitude [−1, 0]
and 𝐿𝜄∗𝑝H1(𝐹) [−1] is at most of amplitude [0, 1] because C is 1-dimensional and p can be assumed to
be regular (since F is an ideal sheaf over nodes). This contradicts the assumption that F is a family of
objects in Coh♯ (𝑆), which are at most of amplitude [0, 1]. Hence, H0(𝐹) must be torsion-free.

(iii) Assume Hom(𝑄 [−1], 𝐹) ≠ 0 for a 0-dimensional sheaf Q. Note that around nodes, F is a family
of rank 1 sheaves; hence, the 0-dimensional sheaf 𝑄 [−1] might be supported only away from nodes.
Since 𝑄 [−1] is supported away from nodes, we can apply the results of [AP06], assuming that C is
smooth. In particular, the object𝑄 [−1] is in the heart Coh♯ (𝑆×𝐶) on 𝑆×𝐶 by the definition of the heart
[AP06, Section 1.1.1]. The family F is also in Coh♯ (𝑆 × 𝐶) by [AP06, Corollary 3.3.3]. By passing to
the image of a morphism, it is enough to consider 𝑄 [−1] as a torsion subobject of F. Let 𝑇 (𝐹) ⊂ 𝐹 be
the maximal torsion subobject. Then 𝐹 ′ := 𝐹/𝑇 (𝐹) is a torsion-free object; hence, it is flat by [AP06,
Corollary 3.1.3]. Restricting to a fiber over some 𝑝 ∈ 𝐶, we obtain an exact sequence in Coh♯ (𝑆 × 𝐶),

0 → 𝑇 (𝐹)𝑝 → 𝐹𝑝 → 𝐹 ′
𝑝 → 0

because 𝐹 ′ is flat. We get that 𝑇 (𝐹)𝑝 ∈ Coh♯ (𝑆). Since both F and 𝐹 ′ are families of perverse
objects, which are generically isomorphic (generically they are families of rank 1 sheaves), we have
ch(𝐹𝑝) = ch(𝐹 ′

𝑝) for all 𝑝 ∈ 𝐶. By exactness of the sequence above, we conclude that ch(𝑇 (𝐹)𝑝) = 0
for all 𝑝 ∈ 𝐶. It is not difficult to check that an object 𝐴• ∈ Coh♯ (𝑆) is trivial if and only if ch(𝐴•) = 0
(this follows from the same result in the standard heart Coh(𝑆)). Hence, 𝑇 (𝐹)𝑝 = 0 for all 𝑝 ∈ 𝐶, which
implies that 𝑇 (𝐹) = 0. We conclude that 𝑄 = 0.

Conversely, given now a stable pair 𝐼•. To show that it is a family of objects in Coh♯ (𝑆), we must
show that 𝐼•𝑝 ∈ Coh♯ (𝑆) for all 𝑝 ∈ 𝐶. We may assume that C is smooth by passing to the normalisation
since it does not change the fibers, and fibers of 𝐼• over nodes are ideal sheaves. By definition, 𝐼• sits in
a distinguished triangle

ker(𝑔) → 𝐼• → coker(𝑔) [−1] → .

Applying 𝑝𝑆∗(− ⊗O𝐶 (𝑚)) for 𝑚 � 0 to the triangle, we obtain that 𝑝𝑆∗(ker(𝑔) ⊗O𝐶 (𝑚)) is a torsion-
free sheaf and 𝑝𝑆∗(coker(𝑔) ⊗O𝐶 (𝑚)) is a 0-dimensional sheaf. Hence, 𝑝𝑆∗(𝐼• ⊗O𝐶 (𝑚)) ∈ Coh♯ (𝑆)
for𝑚 � 0. By the definition [AP06, Section 1.1], we obtain that 𝐼• is contained in the heart Coh♯ (𝑆×𝐶)
on 𝑆×𝐶. Moreover, by the assumption that G is pure, 𝐼• is torsion-free in the sense of [AP06, Defintion
3.1.1]. Hence, by [AP06, Corollary 3.1.3], we conclude that it is a family of objects in Coh♯ (𝑆). �
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The determinant-line-bundle construction in this setting also provides us with the map

𝜆 : 𝐾0(𝑆) → Pic(ℭ𝔬𝔥♯ (𝑆, v)).

The line bundles L0 and L1 satisfy the same properties as in the case of the standard heart.

Lemma 6.5. Let 𝑓 : 𝐶 → ℭ𝔬𝔥♯ (𝑆, v) be a prestable quasimap of degree 𝛽. Then there exists 𝑚0 ∈ N

which depends only on 𝛽, v and O𝑆 (1),15 such that for all 𝑚 ≥ 𝑚0, the quasimap is non-constant if and
only if

L0 ⊗ L𝑚
1 · 𝑓 𝐶 > 0.

This also holds true for all subcurves 𝐶 ′ ⊆ 𝐶 and the induced maps for the same choice of m.

Proof. The proof is similar to the one of Proposition 3.7. We use Proposition 6.4 to identify objects
associated to perverse quasimaps with stable pairs. We then consider the distinguished triangle

ker(𝑔) → 𝐼• → coker(𝑔) [−1] →,

where ker(𝑔) is an ideal sheaf, and coker(𝑔) is a 0-dimensional sheaf. Let 𝑓 ′ be the quasimap associated
to ker(𝑔). Note that it is a quasimap to the pair (𝑆 [𝑛] ,ℭ𝔬𝔥♯𝑟 (𝑆, v)) because the subscheme associated to
ker(𝑔) does not have embedded points. By Lemma 3.6, which can be proved in this setting using the
same arguments as in the standard heart, we obtain that

L0 ⊗ L𝑚
1 · 𝑓 𝐶 = L0 ⊗ L𝑚

1 · 𝑓 ′ 𝐶 − 𝜒(coker(𝑔) [−1])
= L0 ⊗ L𝑚

1 · 𝑓 ′ 𝐶 + 𝜒(coker(𝑔)).

The quantity 𝜒(coker(𝑔)) is positive if and only if coker(𝑔) is nontrivial. We then apply the arguments
of Proposition 3.7 to the quasimap 𝑓 ′. �

Fixing a positive line bundle L𝛽 from Lemma 6.5 once and for ever for all 𝛽 ∈ Eff(𝑆 [𝑛] ,ℭ𝔬𝔥♯𝑟 (𝑆, v)),
we can define the notion of 𝜖-stability as in Definition 3.11.

Definition 6.6. Let

𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽)♯ : (𝑆𝑐ℎ/C)◦ → 𝐺𝑟𝑝𝑑

be the moduli space of 𝜖-stable quasimaps of genus g and degree 𝛽 with N marked points associated to
a pair (𝑆 [𝑛] ,ℭ𝔬𝔥♯𝑟 (𝑆, v)).

For properness of these moduli spaces, we will need a version of Proposition 4.9 for the perverse
heart.

Lemma 6.7. Let C → Δ be a family of nodal projective curves, and let {𝑝1, . . . , 𝑝𝑚} ⊂ C be a set
of finitely many closed points in the regular locus of the central fiber. Then any quasimap 𝑓 : C̃ = C \

{𝑝1, . . . , 𝑝𝑚} → ℭ𝔬𝔥♯𝑟 (𝑆, v) extends to 𝑓 : C → ℭ𝔬𝔥♯𝑟 (𝑆, v), which is unique up to unique isomorphism.

Proof. Employing the same proof as the one of Lemma 4.9 is problematic in this case, as we do not
know how to extend objects in the derived category (unlike sheaves), so we follow a different strategy.

Restricting 𝑓 to the generic fiber C◦ of C over Δ , we obtain a stable pair 𝐼•,◦ on 𝑆 × C◦, which
is flat over C◦; hence, it is flat over Δ by Lemma 3.17 (the argument of Lemma 3.17 easily extends
to complexes). By the properness of the relative moduli space of stable pairs P(𝑆 × C/Δ), it can be
completed to a pair 𝐼• on 𝑆 × C. We refer to [LW15, Section 5] for the properness of stable pairs on
threefolds with normal crossing singularities. By Lemma 4.7, the central fiber may be non-flat only

15While Hilbert schemes of points are independent of stability, we still need O𝑆 (1) for the definition of L1.
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over nodes. Hence, by Lemma 4.7 and Lemma 3.17, it defines a quasimap with indeterminacies (i.e., a
non-everywhere defined quasimap, or a rational quasimap),

𝑓 : C � ℭ𝔬𝔥♯𝑟 (𝑆, v),

such that indeterminacies are possibly only at the nodes of the central fiber. We will show that it does
not have any indeterminacies.

First, f also defines a rational map,

𝑓rat : C � 𝑆 [𝑛] ,

and so does 𝑓 ,

𝑓rat : C � 𝑆 [𝑛] .

The corresponding graphs in Hilb(𝑆 [𝑛] ×C) agree generically; therefore, by the separatedness of Hilbert
schemes, they are equal; that is,

𝑓rat = 𝑓rat.

If 𝑝𝑖 is not a limit of base points of 𝑓 , then there is a neighbourhood 𝑈 ⊂ C around 𝑝𝑖 , where

𝑓 |𝑈\{𝑝𝑖 } = 𝑓rat |𝑈\{𝑝𝑖 } = 𝑓rat |𝑈\{𝑝𝑖 } = 𝑓 |𝑈\{𝑝𝑖 } .

We then define 𝑓 |𝑈 = 𝑓 |𝑈 (f is defined at 𝑝𝑖 because 𝑝𝑖 is in the regular locus). Since quasimaps
to ℭ𝔬𝔥♯𝑟 (𝑆, v) are given by stable pairs, which do not have automorphisms other than the C∗-scaling
(which is removed, because ℭ𝔬𝔥♯𝑟 (𝑆, v) is rigidified), we can glue maps in a unique way, thereby
extending 𝑓 to 𝑝𝑖 .

If 𝑝𝑖 is a limit base point of 𝑓 , let 𝐵𝑖 ⊂ C be the section corresponding to these base points. Then
there is some neighbourhood U around 𝐵𝑖 , such that

𝑓 |𝑈\𝐵𝑖 = 𝑓rat |𝑈\𝐵𝑖 = 𝑓rat |𝑈\𝐵𝑖 = 𝑓 |𝑈\𝐵𝑖 ,

but since 𝑓 |C◦ = 𝑓 |C◦ , we conclude that 𝑓𝑈\{𝑝𝑖 } = 𝑓𝑈\{𝑝𝑖 }. We then proceed as before. Let

𝑓 ′ : C → ℭ𝔬𝔥♯𝑟 (𝑆, v)

be the resulting extension and 𝐼•′ be the associated family. By the separatedness of relative moduli
spaces of stable pairs (see, for example, [LW15, Section 5]), we get that 𝐼•′ � 𝐼•, and that the extension
is unique. In particular, 𝑓 = 𝑓 ′. �

Using the discussion above, we can adopt the proofs of the main results for the standard heart to the
case of the perverse heart. For the expression of 𝜖-stability in terms of stable pairs 𝐼• = [O𝑆×𝐶

𝑔
−→ 𝐺]

like in Corollary 6.1, we define [𝑇 𝑝] as a K-theoretic sum of the O𝐶 -torsion of G over p, denoted by
𝑇 ′𝑝 , and the restriction of coker(𝑔) over p,

[𝑇 𝑝] := [𝑇 ′𝑝] + [coker(𝑔)𝑝],

while instead of OΓ, we take the sheaf G; cf. the proof of Lemma 6.5.
Theorem 6.8. The space 𝑄 𝜖

𝑔 (𝑆
[𝑛] , 𝛽)♯ is a proper Deligne–Mumford stack with a perfect obstruction

theory. There exists a natural identification of moduli spaces, which respects perfect obstruction theories,

𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽)♯ � P𝜖

𝑛,𝛽
(𝑆 × 𝐶𝑔,𝑁 ),
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where

P𝜖
𝑛,𝛽

(𝑆 × 𝐶𝑔,𝑁 ) : (𝑆𝑐ℎ/C)◦ → 𝐺𝑟𝑝𝑑

is the moduli space of triples (𝐶, p, 𝐼•), satisfying the following properties for some fixed integer𝑚 � 0:

◦ 𝐼• = [O𝑆×𝐶
𝑔
−→ 𝐺] is a stable pair, such that G is flat over nodes and marked points of C, and

coker(𝑔) is supported away from nodes and marked points,
◦ ch(𝐺) = ((0, 0, 𝑛),−𝛽) ∈ Λ ⊕ Λ(−1),
◦ 𝑚 · deg([𝑇 𝑝]) + 𝜒([𝑇 𝑝]) ≤ 1/𝜖 for all points 𝑝 ∈ 𝐶,
◦ 𝑚 · deg(𝐺 |𝑅) + 𝜒(𝐺 |𝑅) − 𝑛 > 1/𝜖 for all rational tails 𝑅 ⊆ 𝐶,
◦ 𝑚 · deg(𝐺 |𝐵) + 𝜒(𝐺 |𝐵) − 𝑛 > 0 for all rational bridges 𝐵 ⊆ 𝐶.

Proof. First, as in the case of the standard heart, Corollary 4.6, we deduce that𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽)♯ is a quasi-

separated algebraic stack locally of finite presentation. Indeed, this follows from the representability
of mapping stacks [HR19] since the stack ℭ𝔬𝔥♯ (𝑆, v) is algebraic, locally of finite presentation and
has affine stabilizers (given by invertible elements in Hom(𝐴•, 𝐴•)) by [Lie06]. On the other hand,
P𝜖
𝑛,𝛽

(𝑆 × 𝐶𝑔,𝑁 ) is a quasi-separated algebraic stack locally of finite presentation as a relative moduli
space of coherent systems by arguments from [LW15, Section 4] (see also [LP93]).

Consider now another moduli space P𝜖
𝑛,𝛽

(𝑆×𝐶𝑔,𝑁 )
′, whose B-valued points are given by quadruples

(C, p, 𝐹, 𝜙), where F is an object in Dperf (𝑆 × C) with a trivialisation of the determinant 𝜙 : det(𝐹) ∼
−→

O𝑆×C , (C, p) is a family of nodal curves over B, and over geometric points 𝑏 ∈ 𝐵 objects 𝐹|𝑆×C𝑏

define 𝜖-stable quasimaps to ℭ𝔬𝔥♯𝑟 (𝑆, v). This is indeed a well-defined 2-functor by the construction of
ℭ𝔬𝔥♯ (𝑆, v) in [Lie06]. By arguments of Theorem 3.16, we have an identification of 2-functors,

𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽)♯ � P𝜖

𝑛,𝛽
(𝑆 × 𝐶𝑔,𝑁 )

′. (6.2)

We obtain that P𝜖
𝑛,𝛽

(𝑆 × 𝐶𝑔,𝑁 )
′ is algebraic. Since the universal stable pair on P𝜖

𝑛,𝛽
(𝑆 × 𝐶𝑔,𝑁 ) defines

a family of objects in P𝜖
𝑛,𝛽

(𝑆 × 𝐶𝑔,𝑁 )
′, there is a natural map between algebraic stacks,

P𝜖
𝑛,𝛽

(𝑆 × 𝐶𝑔,𝑁 ) → P𝜖
𝑛,𝛽

(𝑆 × 𝐶𝑔,𝑁 )
′, (6.3)

which is an equivalence on geometric points16 by Proposition 6.4 (note that the proposition extends to
curves over a field of characteristic 0).

One can readily verify that [PT09, Theorem 2.7] extends to the case of relative threefolds 𝑆 ×C → 𝐵
with nodal fibers, as long as stable pairs are admissible over nodes. More precisely, in the terminology
of [PT09], the result holds17 for a nilpotent thickening given by an extension 𝑆 × C0 ⊂ 𝑆 × C flat over
𝐵0 ⊂ 𝐵. It implies that (6.3) is formally étale, and since both stacks are locally of finite presentation,
it is étale. Moreover, it is an equivalence on geometric points, inducing an isomorphism on stabilisers.
Hence, by [Sta24, Section 0DUD], (6.3) is an isomorphism. Using (6.2), we therefore obtain the desired
identification,

𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽)♯ � P𝜖

𝑛,𝛽
(𝑆 × 𝐶𝑔,𝑁 ).

We now deal with the properness of 𝑄 𝜖
𝑔,𝑁 (𝑆 [𝑛] , 𝛽)♯. It is quasi-compact, and therefore of finite

presentation, by Lemma 6.5 and the quasi-compactness of moduli spaces of stable pairs on threefolds

16In fact, it is already enough to conclude that the virtual intersection theories of these moduli spaces are equivalent by the
results of [Man12] because the relative obstruction theories of both spaces are given by 𝑅 Hom(𝐼 • , 𝐼 •)0, which follows from the
first-order version of [PT09, Theorem 2.7].

17The proof of [PT09, Theorem 2.7] involves projective dimension and Serre’s duality arguments, which extend to a moving
threefold; if stable pairs are admissible over nodes, the same arguments apply to a singular threefold 𝑆 ×𝐶; see also Section 6.1
for how to prove [Kol90, Lemma 6.13] in the singular case.
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with normal crossing singularities (see [LW15, Section 5.25]). The stability of stable pairs and 𝜖-stability
imply that the stack is Deligne–Mumford. For the properness, we use Lemma 6.7 and the proof presented
in [CKM14, Proposition 4.3.1]. The existence and the compatibility of the perfect obstruction theories
follows from the same arguments as in Proposition 5.1 and 5.2. We refer to [TV07] and [STV15] for the
derived enhancement of a moduli space of objects with a fixed determinant in Db(𝑆). �

Definition 6.9. Theorem 6.8 allows us to define perverse descendent 𝜖-invariants,

〈𝛾1𝜓
𝑘1 , . . . , 𝛾𝑁𝜓

𝑘𝑁 〉
♯,𝜖
𝑔,𝛽 :=

∫
[𝑄𝜖

𝑔,𝑁 (𝑆 [𝑛] ,𝛽)♯ ]vir

𝑖=𝑁∏
𝑖=1

ev∗𝑖 (𝛾𝑖)𝜓
𝑘𝑖
𝑖 ,

where all terms have the same meaning as in Definition 5.4.

Remark 6.10. As in the case of the standard heart, for a fixed smooth curve C with 𝑔 ≥ 1 and 𝛽 ≠ 0,
by Theorem 6.8, we have an identification with the moduli space of stable pairs,

𝑄𝐶 (𝑆
[𝑛] , 𝛽)♯ � P𝑛,𝛽 (𝑆 × 𝐶).

The same applies to a curve with a marking,

𝑄 (𝐶,𝑝) (𝑆
[𝑛] , 𝛽)♯ � P𝑛,𝛽 (𝑆 × 𝐶/𝑆𝑝).

6.4. Affine plane

A punctorial Hilbert scheme of the affine planeC2 admits two equivalent descriptions. One is a Nakajima
quiver variety, which is a GIT construction,

(C2) [𝑛] = [𝜇−1 (0)/GL𝑛]
𝑠 ⊂ [𝜇−1(0)/GL𝑛] .

We refer to [Gin12] for the notation. Another description is provided by a moduli space of framed
sheaves on P2. Both descriptions sit in some bigger stacks. To match the unstable loci, one has to
consider a non-standard heart of Db (P2) – namely, the perverse heart Coh♯ (P2). Let

ℭ𝔬𝔥♯fr (P
2, v),

be the stack of objects in Coh♯ (P2) with framing at the line at infinity ℓ∞ ⊂ P2. Framing kills C∗-
automorphisms; hence, rigidification is not necessary. Then by [BFG06, Theorem 5.7], we have a
canonical isomorphism

[𝜇−1 (0)/GL𝑛] � ℭ𝔬𝔥♯fr (P
2, v),

which identifies stable loci on both sides. Hence, moduli spaces of GIT quasimaps [CKM14] and our
moduli spaces of quasimaps to (C2) [𝑛] are isomorphic,

𝑄0+
𝑔,𝑁 ((C2) [𝑛] , 𝛽)GIT � 𝑄0+

𝑔,𝑁 ((C2) [𝑛] , 𝛽)♯ .

Moreover, since [𝜇−1(0)/GL𝑛] is a local complete intersection, an easy virtual-dimension calculation
shows that the obstruction-theory map,

𝑅H𝑜𝑚𝜋 (F ,F)0 [1]∨ → L
ℭ𝔬𝔥♯fr (P

2 ,v) ,

is an isomorphism. Hence, obstruction theories of both quasimap theories also match. We conclude that
GIT and moduli-of-sheaves quasimap theories are equivalent in this case.
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7. Wall-crossing

7.1. I-function

We fix a parametrized projective line P1 with a C∗-action,

𝑡 [𝑥 : 𝑦] = [𝑡𝑥 : 𝑦], 𝑡 ∈ C∗,

such that 0 := [0 : 1] and ∞ := [1 : 0]. By convention, we set

𝑧 := 𝑒C∗ (Cstd),

where Cstd is the weight 1 representation of C∗. We now define a Vertex space; see Remark 7.2 for the
origin of the notation. Let

𝑉 (𝑀 (v), 𝛽) : (𝑆𝑐ℎ/C)◦ → 𝑆𝑒𝑡

be the space of quasimaps 𝑓 : P1 → ℭ𝔬𝔥𝑟 (𝑆, v) subject to two conditions:
◦ f is of degree 𝛽,
◦ 𝑓 (∞) ∈ 𝑀 (v) ⊂ ℭ𝔬𝔥𝑟 (𝑆, v).
Note that we do not impose stability on quasimaps (i.e., they are allowed to have infinitely many
automorphisms), and we do not identify maps by automorphisms of P1.

Using the argument from Theorem 3.16, the space 𝑉 (𝑀 (v), 𝛽) can be viewed a moduli space of
sheavs F on 𝑆 × P1 subject to the following conditions:
◦ ch(𝐹) = (ch(v), 𝛽),
◦ F is torsion-free,
◦ the fiber 𝐹∞ is stable,
◦ det(𝑝P1∗(𝑝

∗
𝑆u ⊗ 𝐹)) � OP1 .

By construction, there is a natural evaluation map,

ev : 𝑉 (𝑀 (v), 𝛽) → 𝑀 (v), 𝑓 ↦→ 𝑓 (∞).

Moreover, by acting on the source of quasimaps, we obtain a C∗-action on 𝑉 (𝑀 (v), 𝛽). Under the
assumption of Proposition 5.2, the space𝑉 (𝑀 (v), 𝛽) has a perfect obstruction theory. However, it is not
proper; only its C∗-fixed locus

𝑉 (𝑀 (v), 𝛽)C∗

is proper. Indeed, this follows from properness of the space of all prestable quasimaps from P1 and
the fact that 𝑉 (𝑀 (v), 𝛽)C∗ is just a connected component of its C∗-fixed locus. We use the virtual
localisation of [GP99] to construct its virtual fundamental class,

[𝑉 (𝑀 (v), 𝛽)]vir :=
[𝑉 (𝑀 (v), 𝛽)C∗ ]vir

𝑒C∗ (N vir)
∈ 𝐻∗(𝑉 (𝑀 (v), 𝛽)C∗ ) [𝑧±],

where N vir is the virtual normal complex of 𝑉 (𝑀 (v), 𝛽)C∗ inside 𝑉 (𝑀 (v), 𝛽), and z is the equivariant
parameter. We are now ready to define Givental’s I-function, introduced in the context of GIT quasimaps
in [CKM14]. It will govern the quasimap wall-crossing formulas.
Definition 7.1. We define

𝐼𝛽 (𝑧) := ev∗ [𝑉 (𝑀 (v), 𝛽)]vir ∈ 𝐻∗(𝑀 (v)) [𝑧±],
𝜇𝛽 (𝑧) := [𝑧𝐼𝛽 (𝑧)]𝑧≥0 ∈ 𝐻∗(𝑀 (v)) [𝑧] .
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I-function and its truncation are then defined as the following generating series:

𝐼 (𝑞, 𝑧) := 1 +
∑
𝛽≠0

𝐼𝛽 (𝑧)𝑞
𝛽 ∈ 𝐻∗(𝑀 (v)) [𝑧±] [[𝑞𝛽]],

𝜇(𝑞, 𝑧) :=
∑
𝛽≠0

𝜇𝛽 (𝑧)𝑞
𝛽 ∈ 𝐻∗(𝑀 (v)) [𝑧] [[𝑞𝛽]] .

Remark 7.2. In the context of Donaldson–Thomas theory, I-functions are also known as Vertex func-
tions. The latter terminology originates from [MNOP06a, MNOP06b]. To pay tribute to both theories,
we denote I-functions by ‘I’, while the spaces that are used to define them by ‘V’.

7.2. Master space and wall-crossing

For the material discussed in this section, we refer the reader to [Zho22]. Here, we just glide over the
machinery developed in [Zho22], adjusting some minor details to our needs.

The space R>0 ∪ {0+,∞} of 𝜖-stabilities is divided into chambers, in which the moduli space
𝑄 𝜖
𝑔,𝑁 (𝑀 (v), 𝛽) stays the same, and as 𝜖 crosses a wall between chambers, the moduli space changes

discontinuously. Given a class 𝛽 ∈ Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)), for a class 𝛽′ ∈ Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v))
which is a summand of 𝛽, we define

deg(𝛽′) := 𝛽′(L𝛽),

and, in this section, we define 𝜖-stability of quasimaps of degree 𝛽′ with respect to the line bundle L𝛽 .
Let 𝜖0 = 1/𝑑0 ∈ R>0 be a wall for 𝛽 ∈ Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)) and 𝜖−, 𝜖+ be some values that are

close to 𝜖0 from left and right of the wall, respectively. Assuming

2𝑔 − 2 + 𝑁 + 𝜖0 deg(𝛽) > 0

(i.e., 𝜖-stability is defined18 on both sides of the wall), we define

𝑀𝑄 𝜖0
𝑔,𝑁 (𝑀 (v), 𝛽) → 𝑀𝔐𝑔,𝑁 ,𝑑

to be the master space with the projection to a moduli space of curves with calibrated tails, constructed
in [Zho22]. The construction applies to our case verbatim. The space 𝑀𝔐𝑔,𝑁 ,𝑑 is a P1-bundle over
𝔐𝑔,𝑁 ,𝑑 . The latter space is obtained by a series of blow-ups of a moduli space of semistable curves
weighted by the degree 𝔐ss

𝑔,𝑁 ,𝑑 , such that the total degree is 𝑑 = deg(𝛽). As in the GIT case, we have
the following result.

Theorem 7.3. The space 𝑀𝑄 𝜖0
𝑔,𝑁 (𝑀 (v), 𝛽) is a proper Deligne–Mumford stack.

Proof. With Lemma 4.9, the proof is exactly the same as in GIT case. We therefore refer to [Zho22,
Section 5]. �

The master space also carries a perfect obstruction theory, which is obtained in the same way as the
one for 𝑄 𝜖

𝑔,𝑁 (𝑀 (v), 𝛽). Let

f : C𝑔,𝑁 → ℭ𝔬𝔥𝑟 (𝑆, v),
𝜋 : C𝑔,𝑁 → 𝑀𝑄 𝜖0

𝑔,𝑁 (𝑀 (v), 𝛽)

be the universal quasimap and the canonical projection.

18If 2𝑔 − 2 + 𝑁 + 𝜖0 deg(𝛽) ≤ 0, then the moduli space of 𝜖 −-stable quasimaps is empty.
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Theorem 7.4. There exists an obstruction-theory morphism

𝜙 : (𝜋∗f∗Tvir)∨ → L𝑀𝑄
𝜖0
𝑔,𝑁 (𝑀 (v) ,𝛽)/𝑀𝔐𝑔,𝑁 ,𝑑

.

If Tvir
|𝑀 (v) is a locally free sheaf in degree 0, then the complex 𝜋∗f∗Tvir is of perfect amplitude [0, 1].

Proof. The first claim follows from the same arguments as in Theorem 5.3. The second claim follows
from the arguments of Proposition 5.2. �

Using the master space, we can establish the wall-crossing formula.

Theorem 7.5. Given a wall 𝜖0 ∈ R>0. Assuming 2𝑔 − 2 + 𝑁 + 𝜖0 deg(𝛽) > 0, we have

〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉

𝜖−
𝑔,𝛽 = 〈𝜆1𝜓

𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉

𝜖+
𝑔,𝛽

+
∑
𝛽

〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 , 𝜇𝛽1 (−𝜓𝑁+1), . . . , 𝜇𝛽𝑘 (−𝜓𝑁+𝑘 )〉

𝜖+
𝑔,𝛽0

/𝑘!,

where 𝛽 runs through all the (𝑘 + 1)-tuples of effective classes

𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑘 ),

such that 𝛽 =
∑𝑖=𝑘
𝑖=0 𝛽𝑖 , and deg(𝛽𝑖) = 𝑑0 for all 𝑖 ∈ {1, . . . , 𝑘}. The 𝜖+-stability for the class 𝛽0 is given

by L𝛽 . The same holds for perverse quasimap invariants 〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉

♯,𝜖
𝑔,𝛽 .

Sketch of Proof. Here, we will only sketch the proof. For all the details, we refer to [Zho22, Section 6],
as the proof in our case is exactly the same as the one for GIT quasimaps.

The master space 𝑀𝑄 𝜖0
𝑔,𝑁 (𝑀 (v), 𝛽) carries a natural C∗-action, such that the C∗-fixed locus is a

union of the following three types of spaces (up to finite coverings):

◦ 𝑄 𝜖 −

𝑔,𝑁 (𝑀 (v), 𝛽),
◦ 𝑄 𝜖 +

𝑔,𝑁 (𝑀 (v), 𝛽), the base change of 𝑄 𝜖 +

𝑔,𝑁 (𝑀 (v), 𝛽) from 𝔐𝑔,𝑁 ,𝑑 to 𝔐𝑔,𝑁 ,𝑑 ,
◦ 𝑌 ×𝑀 (v)𝑘

∏𝑘
𝑖=1𝑉 (𝑀 (v), 𝛽𝑖)C

∗ , where Y is a finite-group gerbe over the space 𝑄 𝜖 +

𝑔,𝑁+𝑘 (𝑀 (v), 𝛽0).

Applying the virtual localisation formula and taking the equivariant residue, we obtain certain relations
between the classes associated to the spaces above. Projecting everything to a point, we get the wall-
crossing formula.

All efforts are aimed at the careful construction of the master space and the analysis of moving and
fixed parts of the obstruction theories at fixed loci. For more details, we refer the reader to [Zho22,
Section 6]. �

Remark 7.6. In the GIT setup, there are naturally defined maps [𝑊/𝐺] → [C𝑛+1/C∗], which induce
𝑄 𝜖
𝑔,𝑁 (𝑊/𝐺, 𝛽) → 𝑄 𝜖

𝑔,𝑁 (P𝑛, 𝑑). This allows to give a more refined class-valued wall-crossing by
pushforwarding the classes on 𝑀𝑄 𝜖0

𝑔,𝑁 (𝑊/𝐺, 𝛽) to 𝑄 𝜖 −

𝑔,𝑁 (P𝑛, 𝑑) instead of a point. In our case, this
seems to be less natural. Even though ℭ𝔬𝔥𝑟 (𝑆, v) is Zariski locally a GIT stack, we do not have these
naturally defined maps, because it is unclear if a line bundle L𝛽 is ample on any of the GIT loci through
which the universal quasimap factors. Moreover, these loci change as we change 𝛽.

It is also possible to pushforward the classes to 𝑀𝑔,𝑁 instead of𝑄 𝜖
𝑔,𝑁 (P𝑛, 𝑑). The problem with this

approach is that the projection

𝑄 𝜖
𝑔,𝑁+𝑘 (𝑀 (v), 𝛽) → 𝑀𝑔,𝑁

involves stabilisation of a curve, which implies that𝜓-classes do not pullback to𝜓-classes. Consequently,
the wall-crossing formula becomes inefficient to state.
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Crossing all walls from 𝜖 = 0+ to 𝜖 = ∞ and applying Theorem 7.5 inductively, we obtain a statement
that relates two extremal values of 𝜖 .

Corollary 7.7. Assuming (𝑔, 𝑁) ≠ (0, 1), we have

〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉0+

𝑔,𝛽 = 〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉∞𝑔,𝛽

+
∑
𝛽

〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 , 𝜇𝛽1 (−𝜓𝑁+1), . . . , 𝜇𝛽𝑘 (−𝜓𝑁+𝑘 )〉

∞
𝑔,𝛽0

/𝑘!,

where 𝛽 runs through all the (𝑘 + 1)-tuples of effective quasimap classes

𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑘 ),

such that 𝛽 =
∑𝑖=𝑘
𝑖=0 𝛽𝑖 , and 𝛽𝑖 ≠ 0 for all 𝑖 ∈ {1, . . . , 𝑘}. The same holds for perverse quasimap

invariants 〈𝜆1𝜓
𝑘1
1 , . . . , 𝜆𝑁𝜓

𝑘𝑁
𝑁 〉

♯,𝜖
𝑔,𝛽 .

The result above can be restated as a change-of-variables relation of the following generating series.
Let 𝜖 ∈ {0+,∞}. We define

𝐹 𝜖
𝑔 (t(𝑧)) :=

∞∑
𝑁=0

∑
𝛽≥0

𝑞𝛽

𝑁!
〈t(𝜓), . . . , t(𝜓)〉 𝜖𝑔,𝑁 ,𝛽 ,

where t(𝑧) ∈ 𝐻∗(𝑀) [[𝑧]] is a generic element, and the unstable terms are set to be zero.

Corollary 7.8. For all 𝑔 ≥ 1, we have

𝐹0+
𝑔 (t(𝑧)) = 𝐹∞

𝑔 (t(𝑧) + 𝜇(−𝑧)).

For 𝑔 = 0, the same equation holds true modulo constant and linear terms in t.

7.3. The genus-zero case

If

2𝑔 − 2 + 𝑁 + 𝜖0 deg(𝛽) ≤ 0,

then the moduli space 𝑄 𝜖 −

0,1 (𝑀 (v), 𝛽) is empty, and the wall-crossing formula takes a different form.

Theorem 7.9. For 𝜖 ∈ ( 1
deg(𝛽) ,

1
deg(𝛽)−1 ), we have

ev∗

(
[𝑄 𝜖

0,1 (𝑀 (v), 𝛽)]vir

𝑧(𝑧 − 𝜓1)

)
= [𝐼𝛽 (𝑧)]𝑧≤−2 ,

where [. . . ]𝑧≤−2 means that we take a truncation up to 𝑧−2.

Proof. See [Zho22, Lemma 7.2.1]. �

To express the wall-crossing formula above in terms of a change of variables, we do the following.
Let {𝐵𝑖} be a basis of 𝐻∗(𝑀 (v)) and {𝐵𝑖} be its dual basis with respect to the intersection pairing. Let

𝐽0+ (t(𝑧), 𝑞, 𝑧) :=
t(−𝑧)
𝑧

+ 𝐼 (𝑞, 𝑧) +
∑

𝛽≥0,𝑁 ≥0

𝑞𝛽

𝑁!

∑
𝑖

𝐵𝑖 〈
𝐵𝑖

𝑧(𝑧 − 𝜓)
, t(𝜓), . . . , t(𝜓)〉0+

0,1+𝑁 ,𝛽 ,
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where unstable terms are set to be zero, and let

𝐽∞(t(𝑧), 𝑞, 𝑧) :=
t(−𝑧)
𝑧

+ 1 +
∑

𝛽≥0,𝑁 ≥0

𝑞𝛽

𝑁!

∑
𝑖

𝐵𝑖 〈
𝐵𝑖

𝑧(𝑧 − 𝜓)
, t(𝜓), . . . , t(𝜓)〉∞0,1+𝑁 ,𝛽 .

Then Theorem 7.5 and Theorem 7.9 imply the following.

Corollary 7.10. We have

𝐽∞(t(𝑧) + 𝜇(−𝑧)) = 𝐽0+ (t(𝑧)).

Proof. We again refer to [Zho22, Section 7.4]. �

8. Semi-positive targets

8.1. I-function.

The complexity of I-functions largely depends on virtual dimensions of corresponding Vertex spaces.
There is a big class of moduli spaces for which I-functions can be given a more explicit form.

Definition 8.1. A pair (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)) is semi-positive if for all prestable quasimaps 𝑓 : 𝐶 →

ℭ𝔬𝔥𝑟 (𝑆, v), the following holds:

deg( 𝑓 ∗Tvir) ≥ 0.

An example of a semi-positive target would be a Hilbert scheme of points 𝑆 [𝑛] on a del Pezzo surface
(e.g., P2). Indeed, by the ampleness of the anti-canonical bundle, Corollary 6.1 and (5.2), we obtain that

deg( 𝑓 ∗Tvir) = 𝛽0 · (c1 (v) · c1 (𝑆)) − rk(v) · (𝛽1 · c1 (𝑆))

= −𝛽1 · c1 (𝑆) ≥ 0,

where by Corollary 6.1, the class −𝛽1 is an effective curve class on S. In particular, 𝛽1 · c1 (𝑆) = 0 if and
only if 𝛽1 = 0.

Consider now the expansion

𝜇(𝑞, 𝑧) = 𝐼1(𝑞) + (𝐼0 (𝑞) − 1)𝑧 + 𝐼−1(𝑞)𝑧
2 + 𝐼−2(𝑞)𝑧

3 + . . .

We will show that all terms 𝐼𝑘 with 𝑘 ≤ −1 vanish for a semi-positive target.

Lemma 8.2. For a semi-positive target, we have

𝐼𝑘 = 0, if 𝑘 ≤ −1.

Proof. The virtual dimension of 𝑉 (𝑀 (v), 𝛽) is equal to

deg( 𝑓 ∗Tvir) + dim(𝑀 (v)).

Hence, cohomological degrees of classes

ev∗ [𝑉 (𝑀 (v), 𝛽)]vir ∈ 𝐻∗(𝑀 (v)) [𝑧±]

are equal to

deg( 𝑓 ∗Tvir),
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such that z is of cohomological degree 2. Cohomological degrees of 𝐼𝑘 are therefore of the following
form:

2𝑘 − 2 deg( 𝑓 ∗Tvir).

The assumption of semi-positivity and the fact that 𝐻∗(𝑀 (v)) is non-negatively graded imply the
claim. �

The terms 𝐼0(𝑞) and 𝐼1(𝑞) have the following useful expression, which we, however, will not use in
this work.

Proposition 8.3. For a semi-positive target, we have

(i)

𝐼0(𝑞)
−1 = 1 +

∑
𝛽≠0

𝑞𝛽 〈[pt],1,1〉0+
0,𝛽 ,

(ii)

𝐼1(𝑞) = 𝑓0(𝑞)1 +
∑
𝑗

𝑓 𝑗 (𝑞)𝐷 𝑗 ,

where {𝐷 𝑗 } is a basis of 𝐻2(𝑀 (v)), and

𝑓0 (𝑞)

𝐼0(𝑞)
=

∑
𝛽≠0

𝑞𝛽 〈[pt],1〉0+
0,𝛽

𝑓 𝑗 (𝑞)

𝐼0(𝑞)
=

∑
𝛽≠0

∑
𝑗

𝑞𝛽 〈𝐷 𝑗 ,1〉0+
0,𝛽 .

Proof. The result follows from the same arguments as [CK14a, Corollary 5.5.4]. However, it can be
obtained more directly via the wall-crossing formula, Corollary 7.7, by plugging in the insertions above
and using the string and divisor equations on the Gromov–Witten side. �

8.2. Computations

We will now explicitly compute I-functions associated to a perverse pair (𝑆 [𝑛] ,ℭ𝔬𝔥♯𝑟 (𝑆, v)) for a del
Pezzo surface S. We start with some notational preparations. To derive expressions for I-functions,
we first need to remind the reader how the cohomology of 𝑆 [𝑛] looks like. By the virtual dimension
constraints, we only need the degree 2 cohomology, or, dually, the degree 2 homology. The homology
𝐻2 (𝑆

[𝑛] ,Z) admits a Nakajima–Grojnowski basis,

𝐻2 (𝑆,Z) ⊕ Z
∼
−→ 𝐻2 (𝑆

[𝑛] ,Z),

(𝛾, 𝑘) ↦→ 𝛾𝑛 + 𝑘𝐴,

where the classes above are defined in terms of Nakajima–Grojnowski operators as follows:

𝛾𝑛 = 𝔮−1 (𝛾)𝔮−1([pt])𝑛−11𝑆 , 𝐴 = 𝔮−2([pt])𝔮−1([pt])𝑛−21𝑆 .

We refer to [Obe18, Section 1] for the notation and the definition of Nakajima–Grojnowski operators in
the similar context. In more geometric terms, if a class 𝛾 is represented by a curve Γ ⊂ 𝑆, then the class
𝛾𝑛 is represented by the curve Γ𝑛 ⊂ 𝑆 [𝑛] which is given by letting one point move along Γ and keeping
𝑛 − 1 other distinct points fixed. The class A is given by the locus of length 2 non-reduced structures on
a fixed point 𝑝 ∈ 𝑆, keeping other 𝑛− 2 reduced points fixed. We will use the same notation for the dual
cohomology classes in 𝐻2(𝑆 [𝑛] ,Z).
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Let us now discuss degrees of quasimaps. By Corollary 6.1, the sheaves associated to quasimaps are
ideals of 1-dimensional subschemes; hence, a class −𝛽 is of the following form:

−𝛽 = (0, 𝛾, 𝑘) ∈ 𝐻0 (𝑆) ⊕ 𝐻1,1 (𝑆) ⊕ 𝐻4(𝑆), (8.1)

where the negative sign amounts to considering Chern characters of subschemes rather than their
ideals. For simplicity, we will denote a class −𝛽 just by (𝛾, 𝑘). The decomposition above and the one
given by Nakajima–Grojnowski basis are related. Given a map 𝑓 : 𝐶 → 𝑆 [𝑛] , then with respect to the
identification above. We have

𝑓∗ [𝐶] = 𝛾𝑛 + 𝑚𝐴.

By [Obe18, Lemma 2], the associated Chern character is of the following form:

−𝛽 = (𝛾, 𝑘) = (𝛾, 𝑚 − c1 (𝑆) · 𝛾/2) . (8.2)

Using this formula, we can write degrees of quasimaps in terms of curve classes in 𝐻2(𝑆
[𝑛] ,Z). In fact,

this is the most convenient basis to express I- functions because 𝛽 is not necessarily an integral class.
We therefore will use the following identification:

Q[[𝑞𝛽]]
∼
−→Q[[𝑞𝛾 , 𝑦]], 𝑞𝛽 = 𝑞𝛾 · 𝑦𝑚,

𝛽 ↦→(𝛾, 𝑚).

Remark 8.4. Another expression of degrees of quasimaps in the case of 𝑆 [𝑛] involves Euler character-
istics of the associated subscheme Γ, which is related to m as follows,

𝜒(Γ) = 𝑚 + 𝑛(1 − 𝑔(𝐶)).

This is useful to keep in mind for Lemma 8.6.

With this notation, we will compute I-functions in Proposition 8.6, a result which was kindly
communicated to the author by Georg Oberdieck. However, before doing that, we need the following
lemma about exceptional classes on del Pezzo surfaces.

Lemma 8.5. Let S be a del Pezzo surface and 𝛾 ∈ 𝐻2(𝑆,Z) be an effective curve class, such that
𝛾 · c1 (𝑆) = 1. If c1 (𝑆)

2 ≠ 1, then 𝛾 is an exceptional class (i.e. 𝛾 = [P1] and 𝛾2 = −1). If c1 (𝑆)
2 = 1,

then 𝛾 is an exceptional class or 𝛾 = c1 (𝑆).

Proof. Assume c1 (𝑆)
2 ≠ 1. Then by [Kol90, Proposition 3.4], the divisor c1 (𝑆) is base-point free.

Hence, a curve Γ in the class 𝛾 is irreducible and is mapped with degree 1 onto a line via the anti-
canonical map. This implies that Γ � P1. By the adjunction formula, we get that 𝛾2 = −1.

Assume c1 (𝑆)
2 = 1. Then c1 (𝑆) is not base-point free. In this case, S is a blow-up of P2 in 8 generic

points. We use a direct lattice computation to show that 𝛾 = c1 (𝑆) or 𝛾 is exceptional. The cohomology
of S can be described as follows:

𝐻2(𝑆,Z) = Z〈𝐻, 𝐸1, . . . , 𝐸8〉,

𝐻2 = 1, 𝐸2
𝑖 = −1, 𝐻 · 𝐸𝑖 = 0, 𝐸𝑖 · 𝐸 𝑗 = 0 for 𝑖 ≠ 𝑗 ,

such that the anti-canonical class has the following expression

c1 (𝑆) = 3𝐻 −

8∑
𝑖=1

𝐸𝑖 .
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Consider now a class

𝛾 = 𝑎0𝐻 +

8∑
𝑖=1

𝑎𝑖𝐸𝑖 .

By the assumption,

𝛾 · c1 (𝑆) = 3𝑎0 +

8∑
𝑖=1

𝑎𝑖 = 1. (8.3)

By the Cauchy–Schwarz inequality applied to the standard Euclidean pairing of vectors (𝑎1, . . . , 𝑎8)
and (1, . . . , 1), and (8.3), we obtain the following bound:

(1 − 3𝑎0)
2

8
≤

8∑
𝑖=1

𝑎2
𝑖 , (8.4)

such that the equality holds if and only if (𝑎1, . . . , 𝑎8) = (𝑎, . . . , 𝑎). Consider now the self-intersection
product,

𝛾2 = 𝑎2
0 −

8∑
𝑖=1

𝑎2
𝑖 .

Using the bound (8.4), we obtain

𝛾2 ≤ −
𝑎2

0 − 6𝑎0 + 1
8

.

Using the fact that 𝛾2 is an integer, we conclude 𝛾2 ≤ 1, such that the equality holds if and only if
(𝑎1, . . . , 𝑎8) = (−1, . . . ,−1) and 𝑎0 = 3. In other words, 𝛾2 = 1 if and only if 𝛾 = c1 (𝑆). Assume now
𝛾2 ≤ 0. Then by the adjunction formula, we obtain that a curve Γ in the class 𝛾 satisfies

2𝑔𝑎 (Γ) − 2 = 𝛾2 − 𝛾 · c1 (𝑆) ≤ −1.

Moreover, Γ is irreducible by 𝛾 · c1 (𝑆) = 1 and the ampleness of c1 (𝑆). Hence, 𝑔𝑎 (Γ) = 0 and 𝛾2 = −1.
Since Γ is Gorenstein, we also get that Γ � P1. �

Proposition 8.6 (Georg Oberdieck). Assume S is a del Pezzo surface, such that c1 (𝑆)
2 ≥ 2. Then for a

perverse pair (𝑆 [𝑛] ,ℭ𝔬𝔥♯𝑟 (𝑆, v)), we have

𝐼0(𝑞, 𝑦) = 1,

𝐼1(𝑞, 𝑦) = log(1 + 𝑦)c1(𝑆)𝑛 +
1

1 + 𝑦

���
∑

𝛾 ·c1 (𝑆)=1
𝑞𝛾

���1.
If c1 (𝑆)

2 = 1, the same holds with the exception that the second term in 𝐼1(𝑞, 𝑦) acquires a contribution
from 𝛾 = c1(𝑆).

Proof. The pair (𝑆 [𝑛] ,ℭ𝔬𝔥♯𝑟 (𝑆, v)) is semi-positive. Hence, by Lemma 8.2 and its proof, and (5.2), we
only need to consider classes (𝛾, 𝑚), such that

𝛾 · c1 (𝑆) ≤ 1.
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Since c1 (𝑆) is ample, we have 𝛾 · c1 (𝑆) = 0 if and only if 𝛾 = 0. We therefore start our analysis with
classes of the form

−𝛽 = (0, 𝑚).

In this case,

𝐼0(𝑞) ∈ 𝐻
0(𝑆 [𝑛] ) [[𝑞𝛽]], 𝐼1(𝑞) ∈ 𝐻

2 (𝑆 [𝑛] ) [[𝑞𝛽]] .

To evaluate 𝐼0(𝑞), it is enough to compute its pairing 〈𝐼0 (𝑞), [𝑃]〉 with a point class [𝑃] ∈ 𝐻4𝑛 (𝑆 [𝑛] ).
Moreover, using [BF97, Proposition 5.10]19 and a pushforward-pullback theorem for the fiber product
with respect to the embedding of a point 𝑃 ↩→ 𝑆 [𝑛] , we obtain that this pairing can be computed as the
virtual degree of the fiber,

〈𝐼 (0,𝑚) ,0, [𝑃]〉 = deg[ev−1(𝑃)]vir,

where the equivariant localisation is used to define the quantity on the right. Let 𝑃 ∈ 𝑆 [𝑛] be represented
by a collection of n distinct points on S. We identify P with the corresponding subset of points 𝑃 ⊂ 𝑆.
Then the fiber above parametrizes stable pairs supported on 𝑃 × P1 ⊂ 𝑆 × P1, which are admissible over
∞ ∈ P1. In other words,

ev−1(𝑃) �
∐
𝑚

𝑛∏
𝑖=1

Sym𝑚𝑖C ⊂
∐
𝑚

𝑛∏
𝑖=1

Sym𝑚𝑖P1,

where the union is taken over n-tuples of positive integers (𝑚1, . . . , 𝑚𝑛), such that 𝑚 =
∑𝑖=𝑛
𝑖=1 𝑚𝑖 . The

deformation theory of such pairs inside a threefold 𝑆 × P1 is completely local; hence, it can be assumed
that 𝑆 = C2 (see [PT09, Section 4.2] for the deformation theory). In this case, the local model is
provided by C2×Sym𝑚𝑖C, and taking the fiber removes deformations coming from the first factor. Since
C2 carries a symplectic form, the obstruction theory acquires a surjective cosection which remains intact
after taking the fiber. Hence, the contribution of

∏𝑛
𝑖=1 Sym𝑚𝑖C is zero if at least one 𝑚𝑖 is nonzero.

We conclude that all classes of the form (0, 𝑚) with nonzero m do not contribute to 𝐼0(𝑞). Hence,
〈𝐼0(𝑞), [𝑃]〉 = 1, which implies that 𝐼0(𝑞) = 1.

We now consider the term 𝐼1(𝑞). The class A can be represented by a smooth curve (this is needed to
apply [BF97, Proposition 5.10]) – namely, P1. By the same arguments as above, we therefore obtain that

〈𝐼1(𝑞), 𝐴〉 = 0,

since this is again a completely local question with the difference that a stable pair acquires a varying
non-reduced structure of multiplicity 2 along one of the components of 𝑃 × P1.

Now let us evaluate 𝐼1(𝑞) at the classes in 𝐻2 (𝑆,Z) ⊆ 𝐻2(𝑆
[𝑛] ,Z). Since S is a del Pezzo surface,

𝐻2 (𝑆,Z) is generated by exceptional curve classes and a hyperplane class. Hence, we may assume that
𝛾𝑛 is represented by a smooth curve of the form Γ𝑛. The fiber product with respect to Γ𝑛 ↩→ 𝑆 [𝑛] has
the following form:

ev−1(Γ𝑛) =
∐
𝑚

(
(Γ × Sym𝑚1C) ×

𝑛∏
𝑖=2

Sym𝑚𝑖C

)
.

As before, the only nonvanishing contribution comes from the case when 𝑚1 = 𝑚. In this case, each
factor Sym0C contributes 1 to the product formula, while the contribution of Γ×Sym𝑚C is independent

19We use the fact the evaluation map can be upgraded to a map of derived schemes, such that 𝑆 [𝑛] is a classical smooth scheme,
while the fiber is taken in the category of derived schemes; this gives us the compatibility of obstruction theories.
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of n. We conclude that

〈𝐼𝑆
[𝑛]

1 (𝑞), 𝛾𝑛〉 = 〈𝐼𝑆1 (𝑞), 𝛾〉. (8.5)

Hence, we may assume 𝑛 = 1. In this case, the fixed locus

𝑉 (𝑆, (0, 𝑚))C
∗

= P1, (0,𝑚) (𝑆 × C)
C∗

is isomorphic to S, parametrizing stable pairs of the form

𝐼• = [OP1
pt
→ OP1

pt
(𝐷)],

where P1
pt = P

1 × {pt} for a point pt ∈ 𝑆, and 𝐷 = 𝑚 · [0]. The obstruction theory was computed in
[PT09, Section 4.2],

Def𝐼 • = 𝐻0(P1,O𝐷 (𝐷)) ⊕ 𝑇𝑆,pt

Obs𝐼 • = 𝐻0(P1,O𝐷 (𝐷) ⊗ 𝜔𝑆×P1 )∨ = 𝐻0(P1,O𝐷 (𝐷) ⊗ 𝜔P1)∨ ⊗ 𝜔∨
𝑆,pt.

Recall that the C∗-action on P1 is given by 𝑡 · [𝑥 : 𝑦] = [𝑡𝑥 : 𝑦]. The coordinate function 𝑋 = 𝑥/𝑦
acquires the dual scaling, 𝑡 · 𝑋 = 𝑡−1𝑋 , and hence has weight −𝑧. Let us analyse the C∗-equivariant
structure of the obstruction theory. First,

𝐻0(P1,O𝐷 (𝐷)) = (𝑋−𝑚) ⊗ C[𝑋]/𝑋𝑚 = C𝑋−𝑚 ⊕ C𝑋−𝑚+1 ⊕ . . . ⊕ C𝑋−1,

which therefore has weights 𝑧, 2𝑧, . . . , 𝑚𝑧 as a C∗-representation. Moreover, the fiber 𝜔P1 ,0 over 0 ∈ P1

has weight −𝑧, so we get that 𝐻0 (P1,O𝐷 (𝐷) ⊗ 𝜔P1) has weights 0, 𝑧, . . . , (𝑚 − 1)𝑧; therefore, its dual
has weights (−𝑚 + 1)𝑧, . . . ,−𝑧, 0. We therefore obtain the following:

ev∗ [𝑉 (𝑆, (0, 𝑚))]vir = 𝑝𝑆∗

(
𝑒C∗ (Obsmov

𝐼 • )

𝑒C∗ (Defmov
𝐼 • )

)
=

(−𝑧 + c1 (𝑆)) · · · ((−𝑚 + 1)𝑧 + c1 (𝑆))

𝑧 · 2𝑧 · · ·𝑚𝑧
· c1 (𝑆)

=
(−1)𝑚−1(𝑚 − 1)!𝑧𝑚−1

𝑚!𝑧𝑚
· c1 (𝑆) + (. . .) · c1 (𝑆)

2

=
(−1)𝑚−1

𝑚𝑧
· c1(𝑆) + (. . .) · c1 (𝑆)

2.

By using (8.5), we conclude that

ev∗ [𝑉 (𝑆 [𝑛] , (0, 𝑚))]vir =
(−1)𝑚−1

𝑚𝑧
· c1 (𝑆)𝑛 +𝑂 (1/𝑧2).

This computes the part of 𝐼 (𝑞, 𝑦) which is contained in 𝐻2(𝑆 [𝑛] ),

[𝐼1(𝑞, 𝑦)]deg=2 = log(1 + 𝑦)c1 (𝑆)𝑛.

Assume now

−𝛽 = (𝛾, 𝑘) = (𝛾, 𝑚 − c1 (𝑆) · 𝛾/2) ,
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such that 𝛾 · c1 (𝑆) = 1. By Lemma 8.5, 𝛾 is an exceptional curve class, or 𝛾 = c1 (𝑆) on a degree 1 del
Pezzo surface. We assume that 𝛾 is the former. By the virtual dimension constraint, we have that

𝐼0(𝑞) = 1, 𝐼1(𝑞) ∈ 𝐻
0(𝑆 [𝑛] ) [[𝑞𝛽]] .

As before, to evaluate 𝐼1(𝑞), we need to compute its pairing with a point class 〈𝐼1(𝑞), [𝑃]〉. We take P
to be a collection of n distinct points disjoint from P1 which represents 𝛾. In this case, the fiber over P
consists of stable pairs supported on the vertical Γ inside S in the class 𝛾 and stable pairs supported on
n disjoint horizontal P1 inside 𝑆 × P1. More precisely, the fiber has the following expression:

ev−1(𝑃) =
∐
𝑚

(
(Sym𝑚0Γ × C) ×

𝑛∏
𝑖=1

Sym𝑚𝑖C

)
,

such that 𝑚0 + 1 +
∑
𝑖 𝑚𝑖 = 𝑚 (we add 1 because Γ is vertical (i.e., 𝑛 = 0); see Remark 8.4 for more

details). As before, the nonvanishing contribution is due to 𝑚0 = 𝑚 − 1. In this case, factors Sym0C
contribute 1 to the product formula. The remaining factor Sym𝑚−1Γ ×C can be computed for 𝑛 = 0 via
localisation on the vertex space,

𝑉 (𝑆 [0] , (𝛾, 𝑚)) = P0, (𝛾,𝑚) (𝑆 × C
1).

This is essentially the situation of a rigid smooth curve inside a threefold because Γ is rigid. Using the
obstruction-theory computations from [PT09, Section 4.2] again, we get the following expressions for
a stable pair 𝐼• ∈ P0, (𝛾,𝑚) (𝑆 × C)

C∗ :

Def𝐼 • = 𝐻0 (P1,O𝐷 (𝐷)) ⊕ 𝜔∨
P1 ,0

Obs𝐼 • = 𝐻0 (P1,O𝐷 (𝐷) ⊗ 𝜔𝑆 ⊗ 𝜔P1)∨ = 𝐻0(O𝐷 (𝐷) ⊗ 𝜔𝑆)
∨ ⊗ 𝜔∨

P1 ,0.

Using the notation of [PT09, Section 4.2], we define 𝐾𝑚 to be the tautological rank m vector bundle on
Sym𝑚Γ associated to the restriction of 𝜔𝑆 to Γ. The analysis in the end of [PT09, Section 4.2] applies
to our case verbatim with the difference that we acquire equivariant parameters. The only source of
equivariance is 𝜔∨

P1 ,0, which has weight z. Since 𝛾 · c1 (𝑆) = 1, we conclude that

∑
𝑚

deg[P0, (𝛾,𝑚) (𝑆 × C
1)]vir𝑦𝑚+1 =

∑
𝑚

∫
Sym𝑚Γ

𝑒C∗ (Obsmov
𝐼 • )

𝑒C∗ (Defmov
𝐼 • )

𝑦𝑚+1

=
∑
𝑚

∫
Sym𝑚Γ

∑
𝑖 𝑧

𝑚−𝑖c𝑖 (𝐾𝑚)

𝑧
𝑦𝑚+1

=
𝑦

(1 + 𝑦)𝑧
.

Overall, we obtain the part of 𝐼1(𝑞, 𝑦) which is contained in 𝐻0(𝑆 [𝑛] ) if S is not of degree 1,

[𝐼1(𝑞, 𝑦)]deg=0 =
𝑦

1 + 𝑦

���
∑

𝛾 ·c1 (𝑆)=1
𝑞𝛾

��� .
The same holds for a degree 1 del Pezzo surface with the difference that there is a term associated to
c1 (𝑆), which cannot be computed by the same methods, as curves in this class are not rigid. By [Kol90,
Lemma 3.2.2], ℎ0 (𝑆, 𝜔𝑆) ≥ 2; hence, the contribution of c1 (𝑆) is potentially nontrivial. �
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For Hilbert schemes of points, we define

〈𝛾1, . . . , 𝛾𝑁 〉
♯,𝜖
𝑔,𝛾 :=

∑
𝑚

〈𝛾1, . . . , 𝛾𝑁 〉
♯,𝜖
𝑔, (𝛾,𝑚)

𝑦𝑚.

Using the wall-crossing formula from Theorem 7.5, Proposition 8.6, and string and divisor equations,
we obtain the following result. Note that we assume 𝑁 > 2 to apply divisor and string equations for the
degree-0 invariants in the wall-crossing formula.

Corollary 8.7. Assume 𝑁 > 2. Then for Hilbert schemes of points 𝑆 [𝑛] on a del Pezzo surface S, we have

〈𝛾1, . . . , 𝛾𝑁 〉
♯,0+
𝑔,𝛾 = (1 + 𝑦)c1 (𝑆) ·𝛾 · 〈𝛾1, . . . , 𝛾𝑁 〉

♯,∞
𝑔,𝛾 .

In particular, 3-point genus-0 Gromov–Witten invariants of 𝑆 [𝑛] are determined by Pandharipande–
Thomas theory invariants of 𝑆 × P1 with relative insertions.

A. Stability of fibers

A.1. Stability of fibers versus stability

In this section, we will compare the stability of fibers of a sheaf F on 𝑆 ×𝐶 with the stability of F itself.
The main results of the section is Corollary A.2, where we show that 𝜖-stable sheaves are in fact slope
stable if for v and O𝑆 (1), all semistable sheaves are slope stable on S. In Corollary A.7, we show its
converse under the assumption that rk(v) = 2 and there are no strictly slope semistable sheaves.

A.2. Notation

Let 𝑆 × 𝐶 → 𝐶 be a trivial surface fibration over a connected nodal curve C, and let

𝜋 :
⋃
𝑖

𝑆 × 𝐶𝑖 → 𝑆 × 𝐶

be its normalisation, such that 𝑆×𝐶𝑖 are its irreducible components. For simplicity, we assume ℎ1 (𝑆) = 0.
We fix very ample line bundles O𝑆 (1) on S and O𝐶 (1) on C. We denote

𝐿𝑘 = O𝑆 (1) �O𝐶 (𝑘), 𝑑𝑖 = deg(O𝐶 (1)|𝐶𝑖 ),

𝑑𝑆 = c1 (O𝑆 (1))2, 𝑑𝐶 =
𝑚∑
𝑖=1

𝑑𝑖 ,

𝑞𝑖 =
𝑑𝑖
𝑑𝐶

.

Given a sheaf F on 𝑆 × 𝐶, let

𝐹𝑖 := 𝜋∗𝐹|𝑆×𝐶𝑖 .

Using the Künneth decomposition on 𝑆 × 𝐶𝑖 ,

𝐻2(𝑆 × 𝐶𝑖) = 𝐻2(𝑆) ⊕ Q,

the first Chern class of a sheaf 𝐹𝑖 can be expressed accordingly,

c1 (𝐹𝑖) = c1 (𝐹𝑖, 𝑝) ⊕ 𝛽0 (𝐹), (A.1)
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where 𝐹𝑖, 𝑝 is a fiber of 𝐹𝑖 over a general point 𝑝 ∈ 𝐶𝑖 . With respect to this decomposition, we have

c1(𝐹𝑖) · c1 (𝐿𝑘 )
2 = 2𝑘𝑑𝑖 · c1 (𝐹𝑖, 𝑝) · c1 (O𝑆) + 𝑑𝑆 · 𝛽0 (𝐹𝑖). (A.2)

For latter, it is convenient to define the following quantities:

𝛽0 (𝐹) : =
∑
𝑖

𝛽0 (𝐹𝑖), r̃k(𝐹) :=
∑
𝑖

𝑞𝑖 · rk(𝐹𝑖),

deg(𝐹𝑖)f : = c1 (𝐹𝑖, 𝑝) · c1 (O𝑆 (1)).

For more about the quantities on the left, we refer to Section 3.2; the quantity on the right can be
seen as a weighted rank of a sheaf. If F has the same rank on all irreducible components, then
r̃k(𝐹) = rk(𝐹𝑖) = rk(𝐹).

A.3. Slope functions

Recall that for a possibly singular and reducible variety 𝑆 × 𝐶, the slope of a non-torsion sheaf F with
respect to a line bundle 𝐿𝑘 can be defined as follows:

𝜇̂𝑘 (𝐹) =
𝑎2 (𝐹)

𝑎3 (𝐹)
,

where 𝑎𝑖 (𝐹) are the coefficients of the Hilbert polynomial

𝑃(𝐹, 𝑡) = 𝜒(𝐹 ⊗ 𝐿𝑡𝑘 ) =
∑
𝑛

𝑎𝑛 (𝐹)
𝑡𝑛

𝑛!
.

In the smooth case, we have

𝜇̂𝑘 (𝐹) =
𝜇𝑘 (𝐹)

𝑎3 (O𝑆×𝐶 )
+
𝑎2 (O𝑆×𝐶 )

𝑎3 (O𝑆×𝐶 )
,

where 𝜇𝑘 (𝐹) is defined via the degree and the rank of F. A sheaf F is slope semistable if 𝜇̂𝑘 (𝐹) ≥ 𝜇̂𝑘 (𝐺)

for all proper subsheaves 0 ≠ 𝐺 ⊂ 𝐹. It is slope stable if the inequality is strict.
For us, a more convenient function to measure the difference of slopes of two sheaves 𝐺 ⊆ 𝐹 with

respect to 𝐿𝑘 is

𝜇̂𝑘 (𝐹, 𝐺) =
𝑎2 (𝐹) · 𝑎3 (𝐺) − 𝑎2 (𝐺) · 𝑎3 (𝐹)

𝑎3 (O𝑆×𝐶 )
.

We will now derive a more explicit expression for 𝜇̂𝑘 (𝐹, 𝐺). First, consider the normalisation sequence

0 → 𝐹 →
⊕
𝑖

𝜋∗𝐹𝑖 →
⊕
𝑠∈nodes

𝐹𝑠 → 0.

The sequence is exact on the left because F is torsion-free. We get that

𝑎3 (𝐹) =
∑
𝑖

𝑎3 (𝐹𝑖),

𝑎2 (𝐹) =
∑
𝑖

𝑎2 (𝐹𝑖) −
∑
𝑠

𝑎2 (𝐹𝑠).
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Using the Grothendieck–Riemann–Roch theorem, we also obtain

𝑎3 (𝐹𝑖) = rk(𝐹𝑖) · 𝑑𝑆 · 𝑘𝑑𝑖 ,

𝑎2 (𝐹𝑖) = c1 (𝐹𝑖) · c1(𝐿𝑘 )
2 + rk(𝐹𝑖) · 𝑎2 (O𝑆×𝐶𝑖 ),

𝑎2 (O𝑆×𝐶𝑖 ) = 𝑑𝑆 · (1 − 𝑔(𝐶𝑖)) + 𝑘𝑑𝑖 · c1 (O𝑆 (1)) · c1 (𝑆),

𝑎2 (𝐹𝑠) = rk(𝐹𝑠) · 𝑑𝑆 .

(A.3)

Assume F is flat. Then the rank and the degree of fibers of F are constant; hence, for any chosen i,
we define

rk(𝐹) := rk(𝐹𝑖), deg(𝐹)f := deg(𝐹𝑖)f .

We then split 𝜇̂𝑘 (𝐹, 𝐺) into two summands,

𝜇̂𝑘 (𝐹, 𝐺) = 𝑁0 + 𝑁1, (A.4)

where the first summand 𝑁0 corresponds to the contributions of fibers over nodes, which admits a very
simple expression after substitution of (A.3),

𝑁0 : = −
(
∑
𝑠 𝑎2 (𝐹𝑠)) · 𝑎3 (𝐺) − (

∑
𝑠 𝑎2 (𝐺𝑠)) · 𝑎3 (𝐹)

𝑑𝑆 · 𝑘𝑑𝐶

= 𝑑𝑆 · rk(𝐹) ·
∑
𝑠

(
rk(𝐺𝑠) − r̃k(𝐺)

)
.

While the second summand 𝑁1 corresponds to contributions from restrictions to irreducible
components 𝐹𝑖 ,

𝑁1 :=
(
∑
𝑖 𝑎2 (𝐹𝑖)) · 𝑎3 (𝐺) − (

∑
𝑖 𝑎2 (𝐺𝑖)) · 𝑎3 (𝐹)

𝑑𝑆 · 𝑘𝑑𝐶
.

Substituting (A.2) and (A.3), we obtain

𝑁1 =

(
𝑑𝑆 · 𝛽0(𝐹) + 2𝑘𝑑𝐶 · deg(𝐹)f + rk(𝐹) ·

∑
𝑖

𝑎2 (O𝑆×𝐶𝑖 )

)
· r̃k(𝐺)

−

(
𝑑𝑆 · 𝛽0 (𝐺) +

∑
𝑖

(
2𝑘𝑑𝑖 · deg(𝐺𝑖)f + rk(𝐺𝑖) · 𝑎2 (O𝑆×𝐶𝑖 )

))
· rk(𝐹).

Now let us rearrange the terms in 𝑁1, cancelling some of them, and express it as

𝑁1 = 𝑁1,0 + 𝑁1,1 + 𝑁1,2, (A.5)

where

𝑁1,0 : = rk(𝐹) ·
∑
𝑖

(
r̃k(𝐺) · 𝑎2 (O𝑆×𝐶𝑖 ) − rk(𝐺𝑖) · 𝑎2 (O𝑆×𝐶𝑖 )

)
,

= 𝑑𝑆 · rk(𝐹) ·
∑
𝑖

(
(r̃k(𝐺) − rk(𝐺𝑖)) · (1 − 𝑔(𝐶𝑖))

)
𝑁1,1 : = 𝑑𝑆 ·

(
r̃k(𝐺) · 𝛽0 (𝐹) − rk(𝐹) · 𝛽0 (𝐺)

)
,

𝑁1,2 : =
∑
𝑖

2𝑘𝑑𝑖 · (rk(𝐺𝑖) deg(𝐹)f − rk(𝐹) deg(𝐺𝑖)f) .
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The terms 𝑁1,1 and 𝑁1,2 have obvious interpretations. The term 𝑁1,1 is the slope difference associated
to the ‘degree’ parts of the Chern characters of F and G in the sense of Section 3.2, while the term 𝑁1,2
is the slope difference associated to the fiber parts of F and G. However, the summands 𝑁0 and 𝑁1,0 can
be uniformly bounded from above and below, as is shown in the next lemma, which is also a summary
of the preceding discussion.

Lemma A.1. Assume F is flat over C and rk(𝐹) > 0. Consider a subsheaf 𝐺 ⊆ 𝐹. Then

𝑗=2∑
𝑗=1

𝑁1, 𝑗 + 𝑁 (𝑑𝑆 , 𝐶, rk(𝐹)) > 𝜇̂𝑘 (𝐹, 𝐺) >

𝑗=2∑
𝑗=1

𝑁1, 𝑗 − 𝑁 (𝑑𝑆 , 𝐶, rk(𝐹)),

where 𝑁 (𝑑𝑆 , 𝐶, rk(𝐹)) is a number that depends only on C, 𝑑𝑆 and rk(𝐹); 𝑁1,1 and 𝑁1,2 are defined
as above.

Proof. We use (A.4) and (A.5). Since

rk(𝐹) ≥ r̃k(𝐺) ≥ 0, rk(𝐹) ≥ rk(𝐺𝑖) ≥ 0, (A.6)

we obtain that

𝑑𝑆 · rk(𝐹)2 ·
���

∑
𝑔 (𝐶𝑖)≠0

(𝑔(𝐶𝑖) − 1) + 𝑅��� > 𝑁1,0 > −𝑑𝑆 · rk(𝐹)2 ·
���

∑
𝑔 (𝐶𝑖)≠0

(𝑔(𝐶𝑖) − 1) + 𝑅��� ,
where R is the number of rational components in C.

For an upper bound of 𝑁0, one has to do a little bit of work. For simplicity, assume C has just one
node. Consider the sequence

0 → 𝑇 (𝜋∗𝐺) → 𝜋∗𝐺 → 𝐺 → 0,

where 𝑇 (𝜋∗𝐺) is the maximal torsion subsheaf of the pullback 𝜋∗𝐺. Since the normalisation of C is
smooth and of dimension 1, the sheaf 𝐺 is flat over the normalisation. Hence, restricting the sequence
to the fiber over a preimage 𝑠𝑖 of the node 𝑠 ∈ 𝐶, we obtain

0 → 𝑇 (𝜋∗𝐺)𝑠𝑖 → 𝜋∗𝐺𝑠𝑖 → 𝐺𝑠𝑖 → 0, 𝑖 ∈ {1, 2}.

Flatness of 𝐺̃ also implies that rk(𝐺𝑖) = rk(𝐺𝑠𝑖 ), where we interpret 𝐺𝑖 as the sheaf on the unique
component if s is a non-separating node. Moreover, 𝜋∗𝐺𝑠𝑖 = 𝐺𝑠 . Hence,

rk(𝑇 (𝜋∗𝐺)𝑠𝑖 ) + rk(𝐺𝑖) = rk(𝐺𝑠). (A.7)

Consider now the normalisation sequence,

0 → 𝐺 → 𝜋∗𝜋
∗𝐺 → 𝐺𝑠 → 0.

Since G is torsion-free, the pushforward 𝜋∗(⊕𝑖𝑇 (𝜋∗𝐺)𝑠𝑖 ) must inject into 𝐺𝑠 ,

𝜋∗(⊕𝑖𝑇 (𝜋
∗𝐺)𝑠𝑖 ) ↩→ 𝐺𝑠;

hence, we obtain that

𝑖=2∑
𝑖=1

rk(𝑇 (𝜋∗𝐺)𝑠𝑖 ) ≤ rk(𝐺𝑠). (A.8)
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Combing (A.7) and (A.8), we obtain

0 ≤ rk(𝐺𝑠) ≤

𝑖=2∑
𝑖=1

rk(𝐺𝑖).

Using (A.6) and the bound above, we obtain a bound on 𝑁0,

2𝐵𝑑𝑆 · rk(𝐹)2 > 𝑁1,0 > −2𝐵𝑑𝑆 · rk(𝐹)2,

where B is the number of nodes in C. Combing bounds on 𝑁0 and 𝑁1,0, we obtain that

𝑁 (𝑑𝑆 , 𝐶, rk(𝐹)) = 𝑑𝑆 · rk(𝐹)2 ·
���

∑
𝑔 (𝐶𝑖)≠0

(𝑔(𝐶𝑖) − 1) + 𝑅 + 2𝐵��� .
�

A.4. Stability of fibers implies stability

For the next corollary, following the discussion in Section 4.1, we define

𝐿𝑘 := O𝑆 (1) � 𝑓 ∗L𝑘
𝛽 .

We refer to Section A.3 for the definition of slopes for singular varieties.

Corollary A.2. Assume that for v and O𝑆 (1), all semistable sheaves are slope stable, or rk(v) = 1.
Fix a class 𝛽 ∈ Eff (𝑀 (v),ℭ𝔬𝔥𝑟 (𝑆, v)) and 𝜖 ∈ R>0 ∪ {0+,∞}. There exists 𝑘0 ∈ Z, such that 𝜖-stable
sheaves with the Chern character (ch(v), 𝛽) are slope stable with respect to 𝐿𝑘 for all 𝑘 ≥ 𝑘0.

Proof. If rk(v) = 1, the claim holds for a simple reason: on a smooth variety, a rank 1 sheaf is stable if
and only if it is torsion-free. More precisely, by tensoring sheaves with a line bundle, we may assume
v = (1, 0,−𝑛). Then if we choose a right section of ℭ𝔬𝔥(𝑆, v) → ℭ𝔬𝔥𝑟 (𝑆, v), sheaves F associated to
quasimaps are ideal sheaves of curves, as explained in Section 6.1. Ideal sheaves are stable with respect
to all ample line bundles on 𝑆 × 𝐶.

We therefore assume rk(v) ≥ 2. Given an 𝜖-stable sheaf F, a general fiber of F over C is stable and,
in particular, torsion-free. Hence, by Lemma 4.7, the sheaf F is torsion-free itself. Moreover, by the
stability of a general fiber of F, a general fiber of any saturated subsheaf 𝐺 ⊂ 𝐹 is non-destabilizing.
Hence, by Lemma A.1, the difference of slopes,

𝜇̂𝑘 (𝐹) − 𝜇̂𝑘 (𝐺),

with respect to a line bundle 𝐿𝑘 can be made positive for a large enough k. Indeed, in the notation
of Lemma A.1, the term 𝑁1,2, which depends just on Chern characters of general fibers, can be made
arbitrarily big, while the term 𝑁1,1 does not depend on k. Moreover, if G is non-destabilizing for some
𝑘 ′, then it stays non-destabilizing for all 𝑘 ≥ 𝑘 ′ for the same reason.

Now, for a fixed 𝑘 ′, the family of 𝐿𝑘′-destabilising subsheaves of F is bounded by [HL97, Lemma
1.7.9]. By the boundedness of this family and the discussion above, there exists 𝑘0 ≥ 𝑘 ′, such that all
subsheaves in this family become non-destabilizing. On the other hand, all other subsheaves remain
non-destabilizing. Hence, F is slope stable for all 𝑘 ≥ 𝑘0.

By Corollary 4.6, the family of 𝜖-stable quasimaps is bounded; therefore, there exists a uniform
choice of 𝑘0, such that the above conclusion holds for all 𝜖-stable sheaves. �
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A.5. Stability implies stability of fibers

Proposition A.3. Assume C is smooth. Fix a class

𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ 𝐻
∗(𝑆 × 𝐶),

such that 𝛼0 = 2 (i.e., rk = 2). There exists 𝑘0 ∈ N, such that for all 𝑘 ≥ 𝑘0 and for all torsion-
free sheaves F with ch(𝐹) = 𝛼, the following statement holds: a saturated20 subsheaf 𝐺 ⊂ 𝐹 is slope
𝐿𝑘 -destabilizing if 𝐺 𝑝 ⊂ 𝐹𝑝 is slope destabilizing for a general 𝑝 ∈ 𝐶.
Proof. We will prove the proposition by restricting to a hyperplane section and then applying [HL97,
Theorem 5.3.2] together with [HL97, Remark 5.3.5].

By (A.1), we can decompose the first Chern class of F as follows:

c1 (𝐹) = c1 (𝐹𝑝) ⊕ 𝛽0(𝐹) ∈ 𝐻
2(𝑆) ⊕ Q,

where each summand is in the corresponding Künneth component, and 𝐹𝑝 is a general fiber of F over
𝑝 ∈ 𝐶. The intersection numbers with a curve class c1 (𝐿𝑛) · c1 (𝐿𝑚) take the following form:

c1 (𝐹) · c1 (𝐿𝑛) · c1 (𝐿𝑚) = (𝑛 + 𝑚)𝑑𝐶 · deg(𝐹)f + 𝑑𝑆 · 𝛽0 (𝐹). (A.9)

In particular, slope-stability with respect to a curve class c1 (𝐿1) ·c1 (𝐿2𝑘−1) coincides with slope-stability
with respect to a curve class c1(𝐿𝑘 ) · c1 (𝐿𝑘 ).

Consider now a general smooth hyperplane section

𝐻 ∈ 𝐻0(𝑆 × 𝐶, 𝐿1).

Let 2𝑘0 − 1 be the smallest odd integer such that [HL97, Remark 5.3.5] and [HL97, Theorem 5.3.2]
hold for the surface fibration 𝐻 → 𝐶, the class 𝛽 |𝐻 and a polarisation 𝐿2𝑘0−1 |𝐻 .

Consider now a saturated subsheaf 𝐺 ⊂ 𝐹, such that 𝐺 𝑝 ⊂ 𝐹𝑝 is destabilizing for a general 𝑝 ∈ 𝐶.
Then this also holds for a restriction 𝐺 |𝐻 ⊂ 𝐹|𝐻 . Hence, by [HL97, Theorem 5.3.2], the subsheaf
𝐺 |𝐻 destabilizes 𝐹|𝐻 with respect to 𝐿2𝑘0−1 |𝐻 . This implies that G destabilises F with respect to
c1 (𝐿1) · c1 (𝐿2𝑘0−1), and by (A.9) with respect to c1 (𝐿𝑘0 ) · c1 (𝐿𝑘0 ). The same applies to all 𝑘 ≥ 𝑘0. �

Remark A.4. The proof of Proposition A.3 is inspired by the proof of [Tho00, Proposition 4.2], which,
however, contains a mistake. A restriction of a sheaf F to a hyperplane section is stable with respect
to the polarisation that defines the hyperplane section, which is not necessarily suitable in the sense of
[HL97, Theorem 5.3.2]. If one adds fiber classes to the polarisation to make it suitable, then one has to
take a hyperplane section of a bigger degree, for which suitable polarisation may be different.
Remark A.5. We assume that rk = 2 because for fibred surfaces, Proposition A.3 does not work for
rk > 2. Indeed, destabilizing sheaves might be of higher rank; hence, [HL97, (5.3)] is no longer true.
For rk > 2, the correct approach is provided by [Yos96, Proposition 6.2], so in the end, Corollary A.6
still holds true for fibered surfaces. However, we do not know how to use the hyperplane-restriction
tricks in the context of [Yos96] to extend the result to higher dimensions.
Corollary A.6. Let C be a nodal curve. Fix classes 𝛼𝑖 ∈ 𝐻∗(𝑆 × 𝐶𝑖), such that 𝛼𝑖,0 = 2. There exists
𝑘0 ∈ N, such that for all 𝑘 ≥ 𝑘0 and for all sheaves F flat over C with ch(𝐹𝑖) = 𝛼𝑖 , the following
statement holds: a saturated subsheaf𝐺 ⊂ 𝐹 is slope 𝐿𝑘 -destabilizing if𝐺 𝑝 ⊂ 𝐹𝑝 is slope destabilizing
for a general 𝑝 ∈ 𝐶.
Proof. By (A.4), the slope difference 𝜇̂𝑘 (𝐹𝑖 , 𝐺𝑖) on a component of the normalisation 𝐶𝑖 can be
expressed as follows:

𝜇̂𝑘 (𝐹𝑖 , 𝐺𝑖) = 𝑑𝑆 · (rk(𝐺𝑖) · 𝛽0(𝐹𝑖) − rk(𝐹) · 𝛽0 (𝐺𝑖)) + 2𝑘𝑑𝑖 · (rk(𝐺𝑖) deg(𝐹)f − rk(𝐹) deg(𝐺𝑖)f) .

20Saturation is needed to ensure that fibers are indeed subsheaves 𝐺𝑝 ⊂ 𝐹𝑝 for a general point p.
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Note that the terms 𝑁0 and 𝑁1,0 vanish because 𝐶𝑖 is smooth and irreducible. Lemma A.1 therefore
gives us that

𝜇̂𝑘 (𝐹, 𝐺) <
∑
𝑖

𝜇̂𝑘 (𝐹𝑖 , 𝐺𝑖) + 𝑑𝑆 ·
∑
𝑖

(
r̃k(𝐺) − rk(𝐺𝑖)

)
· 𝛽0 (𝐹𝑖) + 𝑁 (𝑑𝑆 , 𝐶, rk(𝐹)),

where we used 𝛽0(𝐹) =
∑
𝑖 𝛽0(𝐺𝑖) and 𝛽0 (𝐹) =

∑
𝑖 𝛽0 (𝐺𝑖). Applying Proposition A.3 to each compo-

nent 𝐶𝑖 and increasing k by a finite amount to cancel extra bounded contributions on the right of the
inequality above, we can make the quantity 𝜇̂𝑘 (𝐹, 𝐺) negative. Since the last two summands on the
right can be bounded in terms of the given Chern-character data and degree of O𝐶 (1) on irreducible
components, the resulting k is uniform for all F in the given class. �

Corollary A.7. Assume we are in the situation of Corollary A.6, and that there are no strictly slope
semistable sheaves on fibers. There exists 𝑘0 ∈ N, such that for all 𝑘 ≥ 𝑘0 and for all sheaves F flat
over C with ch(𝐹𝑖) = 𝛼𝑖 , the following statement holds: a sheaf F is slope 𝐿𝑘 -stable, only if 𝐹𝑝 is slope
stable for a general 𝑝 ∈ 𝐶.
Proof. Assume 𝐹𝑝 is not slope stable for all 𝑝 ∈ 𝐶 (i.e., it is slope unstable by the assumption). Then by
[HL97, Section 2.3], we can construct a relative Harder–Narasimhan filtation over an open dense subset
in C. We extend it to the whole curve C and take its lowest piece, 𝐺 ⊂ 𝐹. We may assume that G is
saturated because by construction the injection 𝐺 ↩→ 𝐹 restricts to an injection 𝐺 𝑝 ↩→ 𝐹𝑝 for a general
𝑝 ∈ 𝐶. Hence, taking the saturation does not affect a general fiber of G (i.e., it remains destabilizing).
The claim then follows from Corollary A.6 applied to the subsheaf G. �

B. Flatness

B.1. Flatness is an open condition

We will show that flatness of sheaves on 𝑆 × 𝐶 over C is an open condition for sheaves on 𝑆 × 𝐶.
We managed to bypass this result in the main part of the article by working with quasimaps instead of
sheaves in some places (e.g., Proposition 4.5).

Let ℭ𝔬𝔥𝔐𝑔,𝑁
(𝑆 × ℭ𝑔,𝑁 ) be the stack of all coherent sheaves F on moving threefolds 𝑆 × 𝐶. Let

ℭ𝔬𝔥flat
𝔐𝑔,𝑁

(𝑆 × ℭ𝑔,𝑁 ) ⊂ ℭ𝔬𝔥𝔐𝑔,𝑁
(𝑆 × ℭ𝑔,𝑁 )

be the locus of sheaves on 𝑆 × 𝐶 flat over C.
Lemma B.1. The locus ℭ𝔬𝔥flat

𝔐𝑔,𝑁
(𝑆 × ℭ𝑔,𝑁 ) is an open substack.

Proof. Let 𝜋 : C → 𝐵 be family of curves, and let F be a family of sheaves on 𝑆 × C flat over B. Assume
that the sheaf 𝐹𝑏0 on 𝑆 × C𝑏0 is flat over C𝑏0 for some closed point 𝑏0 ∈ 𝐵. We will show that there is a
Zariski open neighbourhood 𝑈 ⊂ 𝐵 containing 𝑏0, such that for all 𝑏 ∈ 𝑈, the sheaf 𝐹𝑏 is flat over C𝑏 .

By Lemma 3.17, the family F is flat at C𝑏0 ⊂ C. Hence by the usual openness of flatness, there is a
Zariski open neighbourhood U ′ ⊆ C containing C𝑏0 , over which F is flat. We want to make U ′ proper
and flat over B (i.e., we want to get rid of fibers, which are not completely contained in U ′). The set U ′

intersects a fiber C𝑏 but does not fully contain it if and only if C𝑏 intersects the complement U ′𝑐 . Hence,
we can get rid of such fibers by the following construction,

U = U ′ ∩ 𝜋−1 (𝜋(U ′𝑐))𝑐 ⊆ C .

Since 𝜋 is a closed map, we obtain that U is a Zariski open neighbourhood, such that U intersect a fiber
C𝑏 , if and only if U contains it. Moreover, U is not empty because C𝑏0 ⊂ U . By construction, the image
of U in B,

𝜋(U ) ⊆ 𝐵
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is the desired Zariski open neighbourhood. Hence, there is a Zariski open neighbourhood around all
sheaves 𝐹 ∈ ℭ𝔬𝔥flat

𝔐𝑔,𝑁
(𝑆 × ℭ𝑔,𝑁 ) (C) inside the stack ℭ𝔬𝔥𝔐𝑔,𝑁

(𝑆 × ℭ𝑔,𝑁 ) which is also contained in
ℭ𝔬𝔥flat

𝔐𝑔,𝑁
(𝑆 × ℭ𝑔,𝑁 ). We conclude that ℭ𝔬𝔥flat

𝔐𝑔,𝑁
(𝑆 × ℭ𝑔,𝑁 ) is open. �
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