INDECOMPOSABLE 1-FACTORIZATIONS OF THE COMPLETE MULTIGRAPH

CHARLES J. COLBOURN, MARLENE J. COLBOURN

and ALEXANDER ROSA

(Received 23 April 1984)

Communicated by W. D. Wallis

Abstract

The existence of 1-factorizations of the complete multigraph λK_n which cannot be decomposed into 1-factorizations with smaller λ is studied.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 15

1. Introduction

Any 1-factorization of the complete graph K_{2n} provides a schedule for the 2n - 1 rounds of a simple round robin tournament for 2n teams, with each team meeting each other team exactly once. If each team is to meet each other team exactly λ times, one schedule for such a multiple round robin tournament is obtained by combining any λ schedules (whether identical or not) for a single round robin tournament. In graph-theoretic terms, combining any λ 1-factorizations of K_{2n} yields a 1-factorization of λK_{2n} .

One might ask the converse question: given a 1-factorization of λK_{2n} , $\lambda > 1$, is it the union of λ 1-factorizations of K_{2n} ? It is readily seen that the answer can be "no"; it suffices to take the 15 distinct 1-factors of K_6 , remove the 5 1-factors of the unique 1-factorization, and observe that the remaining 10 1-factors cannot be partitioned into two 1-factorizations of K_6 . A more general question would be as

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

follows: given a 1-factorization of λK_{2n} , $\lambda > 1$, can it be written as a union of 1-factorizations of $\lambda' K_{2n}$ and $\lambda'' K_{2n}$ for some λ' , $\lambda'' < \lambda$, for which $\lambda' + \lambda'' = \lambda$? If a 1-factorization cannot be written in this way, we call it *indecomposable*. We examine the existence of indecomposable 1-factorizations of K_{2n} in this paper, and show that there exist indecomposable 1-factorizations of λK_{2n} for arbitrarily high values of λ . We also settle existence of indecomposable 1-factorizations for $2 \le \lambda \le 6$, leaving a few small open cases.

2. Main results

A 1-factorization of the complete multigraph λK_{2n} is a pair (V, F) where V is the vertex set of K_{2n} , and F is a collection of $\lambda(2n - 1)$ 1-factors. A comprehensive survey of research on 1-factorizations of complete graphs is given in [3]. If no two members of F are identical as 1-factors (i.e., no 1-factors are "repeated"), the 1-factorization is said to be *simple*. We denote a 1-factorization of λK_{2n} by $OF(2n, \lambda)$; when it is indecomposable, we denote it by $IOF(2n, \lambda)$.

In what follows we need an auxiliary result on the existence of 1-factorizations of certain graphs. For $x \in Z_n$, define |x| as x if $0 \le x \le \lfloor n/2 \rfloor$, and -x if $\lfloor n/2 \rfloor < x < n$. For $n \ge 2$ and $L \subseteq \{1, 2, \ldots, \lfloor n/2 \rfloor\}$, let G(n, L) be the regular graph with vertex set Z_n and edge set E given by $\{x, y\} \in E$ if and only if $|x - y| \in L$.

LEMMA 1. Let n be an even positive integer, and let $\emptyset \neq L \subseteq \{1, 2, ..., n/2\}$. Then G(n, L) has a 1-factorization if and only if n/gcd(j, n) is even for at least one $j \in L$.

PROOF. See [2, 4].

Our first result shows that there are indecomposable 1-factorizations with arbitrarily high index λ .

THEOREM 2. There exists a simple IOF(2n, n - 1) whenever 2n - 1 is a prime.

PROOF. Let $V = Z_{2n-1} \cup \{\infty\}$, and let θ be a generator of Z_{2n-1} . Let F be the 1-factor $\{\{2i - 1, 2i\} | 1 \le i < n\} \cup \{\{0, \infty\}\}$. Let $F_i = \theta^i F$, $0 \le i \le n-2$, and let $FF = \{F_i | 0 \le i \le n-2\} \mod 2n-1$. Then (V, FF) is an OF(2n, n-1), which by construction is simple. Let us show that it is also indecomposable. Assume that there exists an $OF(2n, \lambda)(V, F')$ with $F' \subseteq FF$, $\lambda < n-1$. Consider all of the pairs $\{x, y\}$, $x, y \in Z_{2n-1}$ having |x - y| = 1. There are 2n - 1 such pairs, each of which is contained in exactly λ factors of F'. On the other hand, F' contains m 1-factors for some m < 2n - 1 whose edges $\{x, y\}$ are such that |x - y| = 1, and each of these 1-factors contains 2n - 2 such edges. Thus we have $\lambda(2n - 1) = m(2n - 2)$, which is a contradiction.

Any nonempty set of edges of a 1-factor F is a subfactor of F. An $OF(2n, \lambda)$ (V, F) is said to be a sub-OF of an $OF(2s, \lambda)$ (W, G) if $V \subseteq W$, and for each $f \in F$ there is a $g \in G$ such that f is a subfactor of g. We also say that (V, F) is embedded in (W, G).

THEOREM 3. Any $OF(2n, \lambda)$ can be embedded in a simple $OF(2s, \lambda)$ for $s \ge 2n$ provided $\lambda \le 2n - 1$.

PROOF. Let (V, F) be an $OF(2n, \lambda)$ with $V = \{v_1, v_2, \dots, v_{2n}\}$ and $F = \{F_{i,j} | 1 \le i \le 2n - 1, 1 \le j \le \lambda\}$. Note that (V, F) is not required to be simple. However, we may assume without loss of generality that if (V, F) contains repeated 1-factors whenever $F_{i,j}$ and $F_{k,l}$ are identical as 1-factors, then $i \ne k$.

Let w = s - n, and consider the complete graph K_{2w} with vertex set Z_{2w} (we assume here that $V \cap Z_{2w} = \emptyset$). The graph $G(2w, \{w - n + 1, w - n + 2, ..., w\}$) is regular of degree 2n - 1, and by Lemma 1 has a 1-factorization. Let H_i , $1 \le i \le 2n - 1$ be the 1-factors of such a 1-factorization. We construct a set K of 1-factors on the 2s vertices $V \cup Z_{2w}$, taking $K = \{K_{i,j} = F_{i,j} \cup H_i | 1 \le i \le 2n - 1, 1 \le j \le \lambda\}$. K is a set of $\lambda(2n - 1)$ distinct 1-factors.

The remaining 1-factors involve edges between V and Z_{2w} , and are constructed as follows. Let $A = \{A_r | 1 \le r \le w - n\}$ be a set of w - n disjoint pairs: $A_r = \{a_r, b_r\}, a_r, b_r \in Z_{2w}, |a_r - b_r| = r, A_r \cap A_q = \emptyset$ for $r \ne q$. Such a set A always exists and is easy to construct by taking a Skolem or hooked Skolem (w - 1)sequence and omitting from it the n - 1 pairs with largest differences $w - n + 1, \ldots, w - 1$.

Let $Y = \{y_1, \ldots, y_{2n}\} = Z_{2w} - \bigcup_{r=1}^{w-n} A_r$. Define, for $i \in Z_{2w}$, $M_i = \{\{v_i, y_i + i\} | 1 \le t \le 2n\} \cup \{\{a_r + i, b_r + i\} | 1 \le r \le w - n\}$. Clearly M_i is a 1-factor of K_{2s} on $V \cup Z_{2w}$. Now let C be any $\lambda \times 2n$ Latin rectangle, and let b_j be the permutation given by the *j*th row of C. Let $M_{i,j} = \{\{v_i, y_{tb_j} + i\} | 1 \le t \le 2n\} \cup \{\{a_r + i, b_r + i\} | 1 \le r \le w - n\}$. It is straightforward to verify that $M = \{M_{i,j} | i \in Z_{2w}, 1 \le j \le \lambda\}$ is a set of $2w\lambda$ distinct 1-factors, and further that $(V \cup Z_{2w}, K \cup M)$ is a simple $OF(2s, \lambda)$ containing the (not necessarily simple) $OF(2n, \lambda)(V, F)$.

COROLLARY 4. If there exists an $IOF(2n, \lambda)$ with $\lambda \leq 2n - 1$, there exists a simple $IOF(2s, \lambda)$ for $s \geq 2n$.

[3]

Before proceeding further, we observe that any $OF(4, \lambda)$, $\lambda > 1$, is trivially decomposable. Thus if an $IOF(2n, \lambda)$ exists for $\lambda > 1$, then $n \ge 3$.

THEOREM 5. A simple IOF(2n, 2) exists if and only if $n \ge 3$.

PROOF. An IOF(6, 2) exists by Theorem 2 (and also by the remarks in the introduction). Theorem 3 then gives a simple IOF(2n, 2) for all $n \ge 6$. It remains only to exhibit solutions for n = 4 and 5. One simple IOF(8, 2) has $V = Z_7 \cup \{\infty\}$, and $F = F' \cup F''$ where $F' = \{\{0, \infty\}, \{1, 6\}, \{2, 3\}, \{4, 5\} \mod 7\}$ and $F'' = \{\{0, \infty\}, \{1, 5\}, \{2, 4\}, \{3, 6\} \mod 7\}$.

An IOF(10, 2) is developed similarly with $F' = \{\{0, \infty\}, \{1, 4\}, \{2, 6\}, \{3, 7\}, \{5, 8\} \mod 9\}$ and $F'' = \{\{0, \infty\}, \{1, 3\}, \{2, 4\}, \{5, 6\}, \{7, 8\} \mod 9\}.$

THEOREM 6. A simple IOF(2n, 3) exists if and only if $n \ge 4$.

PROOF. An exhaustive search easily verifies that there is no IOF(6, 3), whether simple or not. Theorem 2 yields a simple IOF(8, 3), and then Theorem 3 gives a simple IOF(2n, 3) for every $n \ge 8$. It remains only to give simple IOF(2n, 3) for n = 5, 6, and 7; these are given in the appendix.

THEOREM 7. A simple IOF(2n, 4) exists if and only if $n \ge 4$.

PROOF. Necessity is obvious. For sufficiency, Theorem 3 together with a simple IOF(2n, 4) for n = 4, 5, 6, and 7 is enough; these IOFs are given in the appendix.

THEOREM 8. A simple IOF(2n, 5) exists for n = 5, 6, 7 and all $n \ge 10$.

PROOF. A simple IOF(12, 5) exists by Theorem 2, and a simple IOF(10, 5) and IOF(14, 5) are given in the appendix; Theorem 3 then gives simple IOF(2n, 5) for all $n \ge 10$.

THEOREM 9. A simple IOF(2n, 6) exists for all $n \ge 6$.

PROOF. A simple IOF(14, 6) exists by Theorem 2, and a simple IOF(12, 6) is given in the appendix. Theorem 3, together with a nonsimple IOF(8, 6) given in the appendix, give simple IOF(2n, 6) for all $n \ge 8$.

Of course, the application of the techniques developed does not merely apply to small values of λ ; for example, we have

THEOREM 10. (i) A simple $IOF(2n, \lambda)$ for $\lambda = 8$ or 9 exists for n = 6, 7 and all $n \ge 12$.

(ii) A simple IOF(2n, 10) exists for n = 7 and all $n \ge 14$. (iii) A simple IOF(2n, 12) exists for all $n \ge 16$.

PROOF. Simple IOF(12, 8), IOF(14, 8), IOF(12, 9), IOF(14, 9) and IOF(14, 10) and a nonsimple IOF(16, 12) are given in the appendix. The rest follows from Theorem 3.

3. Conclusions and open problems

There are exactly three nonisomorphic OF(6, 2)'s of which exactly one is indecomposable [5]. There exists no indecomposable IOF(6, 3), whether simple or not. This can be determined by exhaustive search. Virtually nothing else is known about the enumeration of $OF(2n, \lambda)$'s for $\lambda > 1$.

One might ask what is the maximum $\lambda = \lambda(2n)$ such that there exists a simple $IOF(2n, \lambda)$. Taking all distinct 1-factors of K_{2n} obviously produces a simple OF(2n, (2n - 3)!!), where n!! is the product of all odd numbers up to n. Thus $\lambda(2n) \leq (2n - 3)!! - 1$. One has $\lambda(6) = 2$, but nothing else seems to be known about $\lambda(2n)$.

Let us mention one other (undoubtedly difficult) problem concerning 1-factorizations of λK_{2n} . Suppose $P = (p_1, p_2, \dots, p_k)$ is a partition of the number (2n - 3)!!. Is it possible to partition the 1-factors of K_{2n} on V into subsets F_1, \dots, F_k such that each (V, F_i) is an $IOF(2n, p_i)$? Let us call P admissible if the answer is yes. It is easily seen that (1, 2) is the only admissible partition for n = 3. Cameron [1] has shown that for n = 4, the partition (1*15) is admissible but it follows from Theorems 5-7 that many other partitions are admissible for n = 4.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada under grants numbered A5047 (CJC), A0579 (CJC), A5483 (MJC), A0764 (MJC) and A7268 (AR).

Appendix

We list here the "base" 1-factors for the $IOF(2n, \lambda)$'s referred to in Section 2. These were produced using a straightforward backtracking algorithm by computer. The vertex set is always taken to be $Z_{2n-1} \cup \{\infty\}$. Simple *IOF*(10, 3)

$\{0,\infty\}$	{1,8}	{2,3}	{4,5}	{6,7}
$\{0,\infty\}$	{1,3}	{2,7}	{4,6}	{5,8}
$\{0,\infty\}$	{1,6}	{2,5}	{3,8}	{4,7}

Simple *IOF*(12, 3)

$\{0,\infty\}$	$\{1,7\}$	{2,3}	{4,5}	$\{6, 10\}$	{8,9 }
$\{0,\infty\}$	$\{1,7\}$	{2,9}	{3,5}	{4,6}	{8,10}
$\{0,\infty\}$	{1,4}	{2,7}	{3,10}	{5,8}	{6,9 }

Simple *IOF*(14, 3)

$\{0,\infty\}$	{1,12}	{2,3}	{4,5}	{6,7}	$\{8, 10\}$	{9,11}
$\{0,\infty\}$	$\{1, 10\}$	{2,11}	{3,12}	{4,7}	{5,8}	{6,9 }
$\{0,\infty\}$	$\{1,7\}$	$\{2, 10\}$	{3,8}	{4,9 }	{5,11}	{6,12}

Simple IOF(8, 4)

$\{0,\infty\}$	$\{1, 2\}$	{3,6}	{4,5}
$\{0,\infty\}$	{1,4}	{2,3}	{5,6}
$\{0,\infty\}$	{1,6}	{2,4}	{3,5}
$\{0,\infty\}$	{1,5}	{2,4}	{3,6}

Simple *IOF*(10, 4)

$\{0,\infty\}$	{1,2}	{3,4}	{5,6}	{7,8}
$\{0,\infty\}$	{1,4}	{2,7}	{3,5}	{6,8}
$\{0,\infty\}$	{1,7}	{2,6}	{3,5}	{4,8}
$\{0,\infty\}$	{1,3}	{2,6}	{4,7}	{5,8}

Simple $IOF(12, 4)$)
---------------------	---

$\{0,\infty\}$	{1,2}	{3,4}	$\{5, 10\}$	{6,7}	{8,9}
$\{0,\infty\}$	{1,10}	{2, 8}	{3,5}	{4,6}	{7,9}
$\{0,\infty\}$	{1,4}	{2,5}	{3,8}	{6,9 }	{7,10}
$\{0,\infty\}$	{1,7}	{2,6}	{3,10}	{4,8}	{5,9}

[6]

Simple IOF(14, 4)

$\{0,\infty\}$	{1,2}	{3,4}	{5,11}	{6,12}	{7,8}	{9,10}
$\{0,\infty\}$	{1,3}	{2,10}	{4,12}	{5,7}	{6,8}	{9,11}
$\{0,\infty\}$	{1,8}	{2,5}	{3,6}	{4, 11}	$\{7, 10\}$	{9,12}
$\{0,\infty\}$	{1,6}	{2,10}	{3,12}	{4,8}	{5,9}	$\{7, 11\}$

Simple IOF(10, 5)

$\{0,\infty\}$	$\{1, 2\}$	{3,4}	{5,6}	{7,8}
$\{0,\infty\}$	{1,5}	{2,6}	{3,7}	{4,8}
$\{0,\infty\}$	{1,4}	{2,3}	{5,7}	{6,8}
$\{0,\infty\}$	{1,7}	{2,5}	{3,6}	{4,8}
$\{0,\infty\}$	{1,7}	{2,4}	{3,5}	{6,8}

Simple IOF(14, 5)

$\{0,\infty\}$	$\{1, 8\}$	{2,3}	{4,5}	{6,7}	{9,10}	{11,12}
$\{0,\infty\}$	<i>{</i> 1 <i>,</i> 3 <i>}</i>	{2,4}	{5,7}	$\{6, 12\}$	{8,10}	{9,11}
$\{0,\infty\}$	$\{1, 11\}$	{2,12}	{3,10}	{4,7}	{5,8}	{6,9 }
$\{0,\infty\}$	{1,10}	{2,11}	{3,7}	{4,8}	{5,9}	{6,12}
$\{0,\infty\}$	{1,6}	{2,8}	{3,11}	{4,9}	{5,10}	{7,12}

Nonsimple IOF(8, 6)

$\{0,\infty\}$	$\{1, 2\}$	{3,4}	{5,6}	twice
$\{0,\infty\}$	{1,4}	{2,5}	{3,6}	
$\{0,\infty\}$	{1,3}	{2,5}	{4,6}	three times

Simple IOF(12, 6)

$\{0,\infty\}$	{1,2}	{3,4}	{5,6}	{7,9}	$\{8, 10\}$
$\{0,\infty\}$	{1,3}	{2,4}	{5,6}	{7,8}	{9, 10}
$\{0,\infty\}$	{1,4}	{2,5}	{3,6}	{7,9}	{8,10}
$\{0,\infty\}$	{1,4}	{2,8}	{3,6}	{5,9}	{7,10}
$\{0,\infty\}$	{1,5}	{2,9}	{3,7}	{4,8}	{6,10}
$\{0,\infty\}$	{1,6}	{2,7}	{3,8}	{4,9}	{5,10}

Simple IOF(12, 8)

$\{0,\infty\}$	$\{1, 2\}$	{3,4}	$\{5, 10\}$	{6,7}	{8,9}
$\{0,\infty\}$	<i>{</i> 1 <i>,</i> 2 <i>}</i>	{3,8}	{4,5}	{6,7}	{9,10}
$\{0,\infty\}$	{1,5}	{2,7}	{3,9}	{4,8}	{6,10}
$\{0,\infty\}$	{1,6}	{2,7}	{3,10}	{4,8}	{5,9}
$\{0,\infty\}$	{1,9}	{2,7}	{3,6}	{4,10}	{5,8}
$\{0,\infty\}$	$\{1, 10\}$	{2,4}	{3,5}	{6,8}	{7,9}
$\{0,\infty\}$	{1,9}	$\{2, 10\}$	{3,6}	{4,7}	{5,8}
$\{0,\infty\}$	{1,10}	{2,6}	{3,5}	{4,8}	{7,9}

Simple IOF(14, 8)

$\{0,\infty\}$	$\{1, 11\}$	{2,3}	{4 , 5 }	<i>{</i> 6 <i>,</i> 7 <i>}</i>	{8,9}	{10,12}
$\{0,\infty\}$	{1,3}	{2,12}	{4,5}	{6,7}	{8,9}	{10,11}
$\{0,\infty\}$	{1,4}	{2,6}	{3,7}	{5,8}	{9,11}	{10,12}
$\{0,\infty\}$	{1,3}	{2,4}	{5,8}	{6, 10}	$\{7, 11\}$	{9,12}
$\{0,\infty\}$	$\{1, 11\}$	{2,12}	{3,5}	{4,8}	$\{6, 10\}$	{7,9}
$\{0,\infty\}$	{1,5}	{2,9}	{3,8}	{4, 11}	{6,10}	{7,12}
$\{0,\infty\}$	{1,9}	{2,7}	{3,8}	{4,12}	{5,10}	{6,11}
$\{0,\infty\}$	{1,7}	{2,8}	{3,9}	{4, 10}	{5,11}	{6,12}

Simple *IOF*(12, 9)

$\{0,\infty\}$	$\{1, 4\}$	$\{2, 10\}$	{3,5}	{6,8}	{7,9}
$\{0,\infty\}$	{1,9}	{2,4}	{3,5}	{6,8}	$\{7, 10\}$
$\{0,\infty\}$	{1,2}	{3,6}	{4,7}	{5,8}	{9, 10}
$\{0,\infty\}$	{1,10}	{2,4}	{3,6}	{5,8}	{7,9}
$\{0,\infty\}$	{1,2}	{3,4}	{5,6}	{7,8}	{9,10}
$\{0,\infty\}$	{1,6}	{2,3}	{4,9}	{5,10}	{7,8}
$\{0,\infty\}$	{1,6}	{2,7}	{3,8}	{4,9}	{5,10}
$\{0,\infty\}$	{1,5}	{2,9}	{3,7}	{4,8}	{6,10}
$\{0,\infty\}$	{1,7}	{2,6}	{3,10}	{4,8}	{6,10}

$\{0,\infty\}$	{1,4}	{2,3}	{5,7}	$\{6, 8\}$	{9,10}	$\{11, 12\}$
$\{0,\infty\}$	{1,2}	{3,6}	{4,5}	{7,9}	{8,10}	{11,12}
$\{0,\infty\}$	{1,2}	{3,4}	{5,8}	{6,7}	{9,11}	$\{10, 12\}$
$\{0,\infty\}$	$\{1, 11\}$	{2,4}	{3,6}	{5,8}	{7,9}	{10,12}
$\{0,\infty\}$	{1,9}	{2,10}	{3,6}	{4,8}	{5,12}	$\{7, 11\}$
$\{0,\infty\}$	{1,9}	{2,11}	{3,7}	{4, 10}	{5,8}	{6,12}
$\{0,\infty\}$	{1,7}	{2,6}	{3,8}	{4, 11}	{5,10}	{9,12}
$\{0,\infty\}$	{1,6}	{2,10}	{3,9}	{4,8}	{5,12}	$\{7, 11\}$
$\{0,\infty\}$	{1,8}	{2,7}	{3,11}	{4, 10}	{5,9}	{7,12}

Simple *IOF*(14, 10)

$\{0,\infty\}$	{1,12}	{2,3}	{4,8}	{5,7}	{6,9 }	$\{10, 11\}$
$\{0,\infty\}$	{1,12}	{2,6}	{3,5}	{4, 7 }	{8,9}	{10,11}
$\{0,\infty\}$	{1,6}	{2,5}	{3,4}	{7,9}	{8,10}	{11,12}
$\{0,\infty\}$	$\{1, 2\}$	{3,8}	{4,7}	{5,6}	{9,11}	{10,12}
$\{0,\infty\}$	$\{1, 11\}$	{2,4}	{3,5}	{6,12}	{7,8}	{9,10}
$\{0,\infty\}$	$\{1, 11\}$	{2,12}	{3,10}	{4 ,7 }	{5,8}	{6,9}
$\{0,\infty\}$	{1,10}	{2,6}	{3,12}	{4,8}	{5,9}	$\{7, 11\}$
$\{0,\infty\}$	{1,9}	{2,7}	{3,8}	{4,12}	{5,10}	{6,11}
$\{0,\infty\}$	{1,7}	{2, 8}	{3,9}	{4, 10}	{5,11}	{6,12}
$\{0,\infty\}$	{1,8}	{2,11}	{3,7}	{4,9}	{5,10}	{6,12}

Nonsimple IOF(16, 12)

$\{0,\infty\}$	{1,14}	{2,3}	{4,5}	{6,7}	{8,9}	$\{10, 11\}$	{12,13}	twice
$\{0,\infty\}$	{1,4}	{2,7}	{3,14}	{5,13}	{6,12}	$\{8, 10\}$	{9,11}	five times
$\{0,\infty\}$	{1,6}	{2,14}	{3,7}	{4, 10}	{5,13}	$\{8, 11\}$	{9,12}	
$\{0,\infty\}$	$\{1, 10\}$	{2,5}	{3,14}	{4,9}	{6,13}	$\{7, 11\}$	{8,12}	
{0,∞}	$\{1,7\}$	{2,12}	{3,14}	{4,9}	{5,10}	{6,13}	$\{8, 11\}$	
$\{0,\infty\}$	$\{1, 11\}$	{2,8}	{3,14}	{4,10}	{5,12}	{6,9 }	$\{7, 13\}$	
$\{0,\infty\}$	{1,9}	$\{2, 10\}$	{3,7}	$\{4, 14\}$	{5,13}	{6,12}	$\{8, 11\}$	

References

- [1] P. Cameron, Parallelisms of complete designs (Cambridge University Press, Cambridge 1976).
- [2] A. Hartman, "Tripling quadruple systems", Ars Combinatoria 10 (1980), 255-309.
- [3] E. Mendelsohn and A. Rosa, "One-factorizations of the complete graph-a survey", J. Graph Theory, to appear.
- [4] G. Stern and H. Lenz, "Steiner triple systems with given subspaces; another proof of the Doyen-Wilson theorem", Boll. Un. Mat. Ital. A (5) 17 (1980), 109-114.
- [5] W. D. Wallis, "A tournament problem", J. Austral. Math. Soc. Ser. B 24 (1983), 289-291.

Department of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1 Canada Department of Mathematical Sciences McMaster University Hamilton, Ontario, L8S 4K1 Canada