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Variational quantum algorithms
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chapter.

Rough overview (in words)

The so-called noisy intermediate-scale quantum (NISQ) era is a term used to

describe the regime in which the best quantum processors have fifty to a few

hundred noisy qubits [843]. In this regime, one does not have enough qubits or

low enough error rates to carry out fault-tolerant quantum computation, and so

one is constrained to run low-depth quantum circuits. Under these constraints,

structured quantum algorithms with prescribed circuits and provable guaran-

tees are unknown. In light of this, variational quantum algorithms (VQAs) have

been proposed. We remark that, despite this original setting, it would also be

possible to run VQAs on fault-tolerant devices. While many VQAs have been

proposed for a wide range of applications, they all share the same core primi-

tive, which we describe below.

The main idea is to encode the target problem into an optimization task of

minimizing the expectation value of some parameterized quantum circuit, or

a function thereof. In each optimization step, a quantum computer is used to

evaluate expectation values at chosen parameter values, which are read by a

classical optimizer that updates the parameters for the next step. The motiva-

tion for this framework is to offload some of the computational complexity onto

the classical optimization algorithm, with an aim for the quantum subroutines

to perform classically intractable calculations.
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282 20. Variational quantum algorithms

Rough overview (in math)

Given some parameterized unitary U(θ) with adjustable parameters θ,

input state ρ, measurement operator O, and function f (·), one evaluates

C(θ) = f
(
Tr

[
OU(θ)ρU†(θ)

])
on a quantum computer, which is known as

a cost function. A classical optimizer is then tasked to solve the problem

θ∗ = argminθ f
(
Tr[OU(θ)ρU†(θ)]

)
. By careful choice of f (·), ρ, and O, one

can encode a problem of interest such that U(θ∗) enables an (approximate)

solution to the problem. For instance, the solution could correspond to the

computational basis state with which the output state U(θ∗)ρU(θ∗)† has the

largest overlap, or to the value of f (Tr[OU(θ∗)ρU(θ∗)†]) itself. In general,

one can also construct a more elaborate cost function comprising a sum of

observable-dependent functions with different input states and measurement

operators.

The parameterized circuit U(θ) is commonly referred to as the “ansatz cir-

cuit.” The choice of cost function and ansatz are key components in designing

a VQA. Namely, they should ideally satisfy the following properties:

(i) Smaller values of the cost function should correspond to better quality

of solution.

(ii) The ansatz should be sufficiently expressive to contain a unitary U(θ∗),

which yields an acceptable solution.

(iii) The ansatz should lead to a trainable cost landscape in parameter space,

such that a sufficiently good solution can be found efficiently by the

classical optimizer.

(iv) The cost function should be classically hard to simulate, given the choice

of ansatz.

It should be noted that while one would expect any VQA to satisfy the first

point by design, in general, it can be hard to satisfy all of the above require-

ments simultaneously via theoretical guarantees or even heuristically in prac-

tice. These caveats are discussed in more detail below.

Dominant resource cost (gates/qubits)

The gate complexity is wholly dependent on the choice of ansatz. Satisfy-

ing properties ((ii)) and ((iv)) may place lower bounds on the required circuit

depth. In addition, the connectivity of the device may also significantly affect

the depth of the circuit. For instance, compilation of a generic two-qubit gate

acting on an n-qubit state on hardware with 1D nearest-neighbor connectivity

incurs O(n) circuit depth.

Throughout the optimization, the cost function is evaluated at different pa-

rameter settings θ, chosen adaptively based on the outcome of prior evalua-
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20. Variational quantum algorithms 283

tions. (In the case of gradient-based optimization, one can use the parameter

shift rule [766, 918, 321, 1043] or finite difference methods.) Each evaluation

of the cost function corresponds to approximating an expectation value to some

additive error ε using finite measurement shots, where ε should be chosen to

be sufficiently small for accurate optimization over the landscape. Specifically,

it should be expected that ε is at most O(
√
Vθ[C(θ)]) in order to accurately

distinguish arbitrarily chosen points on the parameter landscape, where Vθ de-

notes the variance over uniformly distributed parameter settings.

Caveats

The optimization of certain parameterized quantum circuits is known to be

subject to the detrimental phenomena of “barren plateaus,” in which devi-

ations between different cost values with high probability (or deterministi-

cally, depending on the setting) vanish exponentially with increasing number

of qubits [663, 756, 240, 534, 742, 926, 662, 396, 850]. This is often char-

acterized by observing that Vθ[C(θ)] = O(2−βn) for some β > 0 [60]. This

mandates an exponential shot complexity for each evaluation of a cost value in

order to reliably navigate the cost landscape (when probabilistic, this should be

considered an average-case phenomenon). Note that this affects both gradient-

based and gradient-free optimization strategies. Moreover, it has been found

that many standard techniques to avoid vanishing gradients render the VQA

classically simulable [243].

If VQAs are run on noisy devices, the effects of noise are known to severely

restrict the scope for computation [12, 114, 1021, 400, 336]. This effect is

amplified on devices with limited hardware connectivity, where one has to use

additional circuit depth to compile generic gates [400, 1021].

Finally, in general, there is a lack of end-to-end theoretical guarantees for

variational quantum algorithms. In order to show advantage over classical al-

gorithms, at minimum one has to satisfy all of the properties laid out above. In

particular, the classical parameter optimization is generally left as a heuristic

subroutine. This optimization task is in general NP-hard, and can be burdened

by many local minima of poor quality [154, 41]. This leads to a slow optimiza-

tion process and many cost values may need to be evaluated.

Example use cases

• Quantum chemistry and condensed matter physics (ground state energy):

The ground state and ground state energy of a given Hamiltonian H can be

found by minimizing the cost ⟨ψ(θ)|H|ψ(θ)⟩, where |ψ(θ)⟩ = U(θ)|ψ0⟩ for

some input state |ψ0⟩ [833]. This is known as the variational quantum eigen-

solver (VQE) algorithm. A widely used ansatz for fermionic Hamiltonians
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284 20. Variational quantum algorithms

is the unitary coupled cluster (UCC) ansatz [982, 833, 197, 668, 786, 748,

629, 922]. Beyond direct variational optimization on a quantum computer,

alternative hybrid classical-quantum algorithms have been proposed to use a

variational circuit as trial states for quantum Monte Carlo [550, 539] or com-

bining the use of VQE with density matrix embedding theory [557, 923].

• Combinatorial optimization: In the quantum approximate optimization

algorithm (QAOA), combinatorial problems on bit-strings can be encoded

in the Pauli-Z basis with Hamiltonian HP [384]. By finding the state that

minimizes ⟨ϕ(θ)|HP|ϕ(θ)⟩, where |ϕ(θ)⟩ = U(θ)|0⟩, the optimal bit-string

can be extracted by sampling the optimized state in the computational

basis. A widely studied ansatz for this problem is the quantum alternat-

ing operator ansatz (which bears the same acronym as the algorithm),

inspired by Trotterized adiabatic evolution [482]. The ansatz takes the

form U(γ,β) =
∏p

l=1
e−iβlHM e−iγlHP where HM is a specific “mixing”

Hamiltonian. This ansatz is known to be computationally universal (when

p → ∞) for certain classes of Hamiltonians [706, 780]. Moreover, under

reasonable complexity-theoretic assumptions, it is known that sampling

from the output of the QAOA at p = 1 is classically hard [380]. On the other

hand, there is evidence that shallow (small p) QAOA does not perform

well [194, 507, 385, 386], leading to intuition that p may need to grow

with problem size to produce better approximate solutions than what can

be easily found classically. Alternatively, there is some evidence that an

exponential number of samples from shallow QAOA circuits may yield

polynomial speedups over classical methods for finding exactly optimal

solutions [179, 928]; see Section 4.2 on beyond-quadratic speedups for

combinatorial optimization.

• Linear system solvers: Given matrix A and vector b encoded in a quantum

state |b⟩, the goal is to variationally prepare a quantum state |x⟩ with ampli-

tudes proportional to elements of the vector x = A−1b [187, 1060, 541]. The

strategy employed is to minimize the cost ⟨x̃(θ)|HL|x̃(θ)⟩, where |x̃(θ)⟩ =
U(θ)|0⟩ and HL = A†(I − |b⟩⟨b|)A. These approaches require the assumption

that A has a decomposition into a sum of a small number of efficiently im-

plementable unitaries. Here the absolute value of the cost function bounds

the approximation error. A numerical study up to 30 qubits showed favor-

able scaling in the time to solution with respect to the matrix size, condition

number, and precision [187].

• Compiling: An interesting near-term application could be to approximate a

given unitary V with native gate sequence U(θ). This can lead to a com-

pressed approximate implementation of the unitary. One option is to con-

struct a cost function via the Hilbert–Schmidt test circuit to evaluate 1 −
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20. Variational quantum algorithms 285

|⟨Φ|V∗ ⊗ U(θ)|Φ⟩|2 = 1 −
∣∣∣2−n tr[V†U(θ)]

∣∣∣2, where |Φ⟩ is the maximally en-

tangled state [613].

• Quantum dynamics: VQAs can also be constructed to simulate real-time

and imaginary-time evolution. We discuss two examples. First, by using

the compiling primitives as outlined above, compressed gate sequences

for short-time evolution can be found [119, 757, 967, 983, 159]. This in

turn can also be used to fast forward and simulate evolution at long times

[294, 305, 420]. Second, a line of work has considered simulating open and

closed dynamics, as well as imaginary-time evolution, via McLachlan’s

variational principle [758], which gives a linear equation for parameter

dynamics
∑

j Mi, jθ̇ j = Vi describing the evolution of a parameterized

state |ψ(θ)⟩ [684, 1074, 751]. Here, Mi, j and Vi can both be found on

a quantum computer with basic circuit primitives, leading to a hybrid

classical-quantum algorithm. While a full review of variational quantum

algorithms for dynamics is beyond the scope of this section, we refer the

reader to more complete reviews in [1074, 241].

• Factoring: Variational methods for factoring have been proposed that exploit

a mapping between the factoring problem and that of finding the ground

state of an Ising Hamiltonian [39]. The authors use the QAOA ansatz and

heuristically find that p = O(n) rounds of the ansatz can lead to a good

solution overlap for small system sizes.

• Machine learning: Here one employs a parameterized quantum circuit to

construct a hypothesis family. Variational methods have been proposed for

both classical and quantum data for classification [919, 766, 914, 513, 306],

generative models [1008, 117, 362], autoencoders [879, 1014, 1009], and

beyond [878, 547]. Specific ansatzes have been proposed in these contexts,

sometimes referred to as quantum neural networks, in analogy with their

classical counterparts. “Classically inspired” quantum neural networks have

been proposed, such as perceptron-based QNNs [22, 1014, 381, 112] and a

quantum analog to the convolutional neural network [306], as well as ap-

proaches based on tensor networks [451, 548].

Further reading

• See [241, 148] for extensive reviews of VQAs, including a summary of dif-

ferent widely studied ansatzes, applications, and challenges.
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