Bull. Aust. Math. Soc. **84** (2011), 481–483 doi:10.1017/S0004972711002504

A RESULT ON MONOTONICALLY LINDELÖF GENERALIZED ORDERED SPACES

AI-JUN XU and WEI-XUE SHI[⊠]

(Received 26 March 2011)

Abstract

In this paper, we show that the character of any monotonically Lindelöf generalized ordered (GO) space is not greater than ω_1 , which gives a negative answer to a question posed by Levy and Matveev ['Some questions on monotone Lindelöfness', *Questions Answers Gen. Topology* **26** (2008), 13–27, Question 51].

2010 *Mathematics subject classification*: primary 54F05; secondary 54D20. *Keywords and phrases*: monotonically Lindelöf, generalized ordered spaces.

1. Introduction

A topological space X is *monotonically Lindelöf* if there is an operator r which assigns to every open cover \mathcal{U} of X a countable open cover $r\mathcal{U}$ of X that refines \mathcal{U} such that if \mathcal{U} refines \mathcal{V} then $r\mathcal{U}$ refines $r\mathcal{V}$. In [1, Example 2.2, Corollary 2.4], Bennett *et al.* proved that a monotonically Lindelöf linearly ordered topological space (LOTS) need not be first countable and any monotonically Lindelöf compact LOTS is first countable. So, Levy and Matveev posed the following question.

QUESTION [4, Question 51]. Can the character of a monotonically Lindelöf generalized ordered space be greater than ω_1 ?

In this paper, we give a negative answer to this question. For undefined terms and notation we refer to [2, 5, 7].

2. Main results

DEFINITION 2.1 [6]. Let *L* be a compact LOTS. For $x \in L$, put

 $0-cf(x) = min\{|C| : C \text{ is a cofinal subset of } (\leftarrow, x)\}$

and

 $1-cf(x) = min\{|C| : C \text{ is a coinitial subset of } (x, \rightarrow)\};$

0-cf(x) denotes the left cofinality of x, and 1-cf(x) denotes the right one of x.

This work is supported by NSFC (no:10971092), NJFU (no:163101088).

© 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

Note that 0-cf(x) and 1-cf(x) are dual notions, so we only discuss the left cofinality 0-cf(x) in the following. For a compact LOTS *L*, observe that 0-cf(x) = 0 if x is the left endpoint of *L*, 0-cf(x) = 1 if x has an immediate predecessor in *L*, and 0-cf(x) is a regular cardinal otherwise. It is well known that a GO-space X can be embedded as a dense subspace into the compact LOTS l(X) that is called the minimal linearly ordered compactification of X (see [3]). For a GO-space X and $x \in X$, the left cofinality 0-cf(x) means the cofinality defined in its minimal linearly ordered compactification l(X). By [3, Lemma 3.5], if 0-cf(x) $\geq \omega$, then there exists a cofinal increasing sequence $\{x_0(\alpha) \in X \mid \alpha < 0\text{-cf}(x)\}$. In addition, x has an immediate predecessor or $[x, \rightarrow)$ is open in X if 0-cf(x) = 1.

The next definition was introduced by Matveev.

DEFINITION 2.2. Let x be a point of a space X. Then X is said to be monotonically Lindelöf at x if there exists an operator r_x that assigns to every nonempty family \mathcal{F} of neighborhoods of x a nonempty countable family $r_x \mathcal{F}$ of neighborhoods of x so that $r_x \mathcal{F}$ refines \mathcal{F} and $r_x \mathcal{F}$ refines $r_x \mathcal{G}$ provided that \mathcal{F} refines \mathcal{G} . In this case, r_x is called a monotone Lindelöf operator at the point x of X.

In [1, Example 2.3], Bennett *et al.* proved that $[0, \omega_1]$ considered as a LOTS is not monotonically Lindelöf. With a slight modification of the proof of [1, Example 2.3], we have the following lemma.

LEMMA 2.3. Suppose that $\kappa > \omega_1$ is a regular ordinal and S is a stationary subset of $[0, \kappa)$. Then $S \cup \{\kappa\}$ considered as a LOTS is not monotonically Lindelöf.

THEOREM 2.4. Suppose that X is a GO-space. If X is monotonically Lindelöf, then both the left and right cofinalities at each point x of X are not greater than ω_1 .

PROOF. We only prove the 'left' case; the other case can be proved similarly.

Suppose instead that the left cofinality 0-cf(x) of X at x is greater than ω_1 . Take a cofinal increasing sequence $S_0(x) = \{x_0(\alpha) \in X \mid \alpha < 0\text{-cf}(x)\}$. Without loss of generality, we may assume that $S_0(x)$ is closed in (\leftarrow, x) . Then $S_0(x)$ must be homeomorphic to a subspace H of [0, 0-cf(x)). If H is a stationary subset, then $H \cup \{0\text{-cf}(x)\}$ is not monotonically Lindelöf by Lemma 2.3. Hence, $S_0(x) \cup \{x\}$ is not monotonically Lindelöf. However, this contradicts that $S_0(x) \cup \{x\}$ is a closed subspace of the monotonically Lindelöf space X. Therefore H is not stationary in [0, 0-cf(x)). It follows that there exists a closed cofinal subset C of [0, 0-cf(x)) such that $C \cap H = \emptyset$. Thus we conclude that H can be presented as a union of 0-cf(x) many pairwise disjoint open convex subsets of H and so can $S_0(x)$ in (\leftarrow, x) . Hence we may write

$$S_0(x) = \bigcup \{T_\alpha \mid \alpha < 0\text{-}\mathrm{cf}(x)\}$$

where T_{α} is convex and open, and if $x' \in T_{\alpha}$, $x'' \in T_{\gamma}$ for $\alpha < \gamma$, then x' < x''. Since $0\text{-cf}(x) > \omega_1$, the set $\mathcal{U} = \{T_{\alpha} \mid \alpha < \omega_1\} \cup \{y \in S_0(x) \cup \{x\} \mid y \ge a \text{ for every } a \in T_{\omega_1}\}$ is an open cover of $S_0(x) \cup \{x\}$ that has no countable subcover. Thus $S_0(x) \cup \{x\}$ is not Lindelöf. We obtain a contradiction.

THEOREM 2.5. The character of any monotonically Lindelöf GO-space (X, τ) is not greater than ω_1 .

PROOF. Suppose that (X, τ) is a monotonically Lindelöf GO-space. Then, for every $x \in X$, neither the left nor the right cofinalities of x is greater than ω_1 by Theorem 2.4. We only consider the case that both the left and the right cofinalities of x are ω_1 . The other cases are easy. Let $\{a_{\gamma} \mid \gamma < \omega_1\}$ be a cofinal increasing sequence of (\leftarrow, x) and $\{b_{\gamma} \mid \gamma < \omega_1\}$ a coinitial decreasing sequence of (x, \rightarrow) . Put

$$\mathcal{B}(x) = \{(a_{\gamma}, b_{\gamma}) \mid \gamma < \omega_1\}.$$

Then $\mathcal{B}(x)$ is a base for (X, τ) at the point *x* and $|\mathcal{B}(x)| \le \omega_1$. Hence $\chi(x, (X, \tau)) \le \omega_1$. In view of the arbitrariness of *x*, the character of GO-space (X, τ) is not greater than ω_1 . \Box

Acknowledgement

The authors would like to express their thanks to the referee for valuable suggestions and comments that improved this paper.

References

- H. Bennett, D. Lutzer and M. Matveev, 'The monotone Lindelöf property and separability in ordered spaces', *Topology Appl.* 151 (2005), 180–186.
- [2] R. Engleking, *General Topology*, revised and completed edition, Sigma Series in Pure Mathematics, 6 (Hedermann, Berlin, 1989).
- [3] N. Kemoto, 'Normality of products of GO-spaces and cardinals', *Topology Proc.* 18 (1993), 133–142.
- [4] R. Levy and M. Matveev, 'Some questions on monotone Lindelöfness', *Questions Answers Gen.* Topology 26 (2008), 13–27.
- [5] D. Lutzer, 'Ordered topological spaces', in: *Surveys in General Topology* (ed. G. M. Reed) (Academic Press, New York, 1980), pp. 247–296.
- [6] A.-J. Xu and W.-X. Shi, 'Notes on monotone Lindelöf property', *Czechoslovak Math. J.* 59(134) (2009), 943–955.
- [7] A.-J. Xu and W.-X. Shi, 'Monotone Lindelöf property and linearly ordered extensions', *Bull. Aust. Math. Soc.* 81 (2010), 418–424.

AI-JUN XU, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, PR China e-mail: ajxu@njfu.edu.cn

WEI-XUE SHI, Department of Mathematics, Nanjing University, Nanjing 210093, PR China e-mail: wxshi@nju.edu.cn