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ABSTRACT 
We can understand physics of self-gravitating system in terms of 

gaseous models in so far that their global natures and effects of self-
gravity are concerned. Here summarized what are known in idealized 
gaseous models. They include gravothermal collapse/expansion in linear 
and non-linear regimes, and post-collapse evolution with gravothermal 
oscillation. Also discussed are their relations with discrete system and 
with treatment in statistical mechanics. 

1. ROLE OF GASEOUS MODEL 

Self-gravitating system shows some peculiar behaviors when it is 
seen from common sense of normal thermodynamics and statistical 
mechanics. They come originally from the infinite range of the 
gravitational force. If the gravitational energy is included, the 
internal energy is not extensive, i.e., not proportional to the mass of 
the system any more, but proportional to the square of the mass. It 
could bring about some phenomena out of common sense, because the common 
sense in thermodynamics tacitly assumes extensiveness of the internal 
energy. (Comments and warnings are, of course, given in standard text 
books. However, in an example of surface tension, the surface energy is 
proportional to M2/3. It depends more weakly on mass than the extensive 
quantities, and in this sense it lies on the opposite side of the 
gravothermodynamics.) 

The most prominent phenomenon is gravothermal instability or 
catastrophe, i.e., the instability of an isothermal system contained in 
an adiabatic wall, which was first pointed out by Antonov (1962) and 
later analyzed somewhat more closely by Lyndel-Bell and Wood (1968). 
They showed that the system is unstable if the density contrast between 
the center and a point just inside the adiabatic wall exceeds the 
critical value of 709, and they discussed that the instability develops 
into the collapse of the core. 
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In their approach only a single value of temperature was considered 
throghout the system. However, the gravothermal instability or collapse 
of the core is, in itself, the developement of spatial structure of the 
system. Therefore, a theory was desirable which treats the specific 
entropy and the temperature as functions of spatial coordinate. 

Such work was done by Hachisu and Sugimoto (1978) by means of 
linearized stability theory. For the spatial structure and its evolution 
we have a wealth of knowledge from the theory of stellar structure and 
evolution. The gravothermal catastrophe is the same phenomenon as the 
gravitational contraction of the star except for the outer boundary 
conditions. Computer code for calculating steller evolution can easily 
be applied for calculating the gravothermal catastrophe of finite 
amplitude. Such computations were done by Hachisu et al. (1978) and also 
by Lynden-Bell and Eggleton (1980). 

The aim of Hachisu and Sugimoto (1978) and of Hachisu et al. (1978) 
was to construct physics of the self-gravitating system which will be 
described in the next section. The aim of Lynden-Bell and Eggleton 
(1980) was somewhat different. In addition to correct Hachisu et al's 
(1978) expression for the heat conductivity, they found the existence of 
similarity solution and showed that the central density reaches infinity 
in a finite time. They seemed to be more interested in finding 
functional form to compare with astronomical observation than in 
exploring physics of self-gravitating system. 

When we talk about gaseous models we should discuss how they 
simulate or represent real stellar systems which are almost collision-
free systems. In gaseous models we can utilize many concepts which 
matured in the theory of stellar evolution, and we can establish physical 
concepts in well defined forms as will be discussed in the next section. 
In particle systems, on the other hand, physics has not been posed as 
well defined but talked about rather vaguely. It is true in particular 
when the final state of the system is talked about. Though, physics of 
gaseous model is an approximation to the particle systems, it can play a 
role of a guide to explore physics of the particle systems. Then we can 
ask what are same or different and what are limitations of the gaseous 
model. Here we should be reminded that physics of ideal gas was 
constructed before physics of interacting gas and that the concepts from 
the ideal gas proved a powerful tool to investigate the interacting gas. 

2. CONCEPTS ESTABLISHED IN GASEOUS MODELS 

For the sake of definitness we shall confine ourselves to physics of 
a gas system which is enclosed within a spherical adiabatic wall and 
which is described by equation of states for ideal gas. Once physics is 
established for such case, it is relatively easy to extend it to 
introduce isothermal wall, other equations of states, multi-components of 
gas particles etc., though they will not be discussed in the present 
paper. Here we shall summarize the results only as lemmas (L), and 
corollaries (C) in weak sense. Most of them are discussed in HS (Hachisu 
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GASEOUS MODELS 209 
and Sugimoto 1978), HNNS (Hachisu, Nakada, Nomoto and Sugimoto 1978) and 
BS (Bettwieser and Sugimoto 1984; see also Sugimoto and Bettwieser 1983). 

2-1. Linear regime (HS) 

It is assumed that the gas is isothermal and in hydrostatic 
equilibrium with the density contrast, 

P /p, , c b (1) 

where p and p^ are the densities at the center and just inside the wall. 
For a redistribution of heat or specific entropy hydrostatic equilibrium 
is recovered and we consider change in thermodynamical quantities after 
this hydrostatic readjustment. We shall not talk the hydrostatic 
readjustmet explicitly. Therefore, every quantity of response is an 
"apparent" quantity in the sense that the effect of gravitational 
interaction has been transferred into it. 

If we describe changes in temperature and pressure distributions as 

6ln T(q) = ^F(q,q' )6a(q')dq' , 

Sin P(q) = f*G(q,q')6a(q') dq' , 

(2) 

(3) 

where q is the mass fraction coordinate and <5a is non-dimensional 
specific entropy. The inverse of the tensor specific heat F(q,q') is 
related to the response function of the pressure G(q,q') by 

- s\-

Fig. 1. Gravothermal collapse 
(sequence A) and expansion (B). 
The initial state is indicated 
with Stage 0. The density 
distribution is plotted against 
the radial coordinate x. The 
outer adiabatic wall corresponds 
to log x = 0. Stage B2 which 
is the final state of the 
gravothermal expansion is now 
in a state of thermal system. 
Taken from HNNS. 
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F(q,q') = (2/5)[G(q,q') + Stq-q')]. (4) 

Here the delta function in the right hand side describes local specific 
heat and the function Ĝ  describes the gravothermal effect. 

L1: G(q,q') is negative in the central region and positive in the outer 
region. If its effect overrides the effect of the delta-function, the 
system is regarded to have "negative specific heat" as a whole. 

L2: The system is thermally unstable when D > D c r = 709. This is 
"gravothermal instability". 
C2-1: When D < Dcr, we call it a thermal system to which the usual 
concepts of thermodynamics can be applied. In fact the gravo-
thermodynamics tends to the usual thermodynamics in the limit of D -> 1. 
C2-2: When D > D r, we call it a gravothermal system and its behavior 
can be different from one imagined in the usual thermodynamics. 
C2-3: As is expected from the formalism of linearized theory, the 
gravothermal instability proceeds in both ways (Fig. 1), i.e., to 
contraction as well as expansion of the core according as the initial 
perturbation. 

The entropy of the system is defined as 

S = M/^s(q)dq, (5) 

where M is the total mass of the system and s is the specific entropy. 

L3: The equilibrium isothermal state lies at a local maximum of entropy 
for D < D c r and at a local minimum of entropy for D > Dcr. 
C3-1: Both in the cases of contraction and expansion the gravothermal 
instability proceeds in the direction to increase S as is described by 

Fig. 2. Total entropy of the system 
is plotted against the non-
dimensional time for the gravothermal 
contraction (A) and expansion (B) 
of Figure 1. In the gravothermal 
contraction the total entropy 
increases indefinitely within the 
non-general relativistic regime. 
In the gravothermal expansion it 
levels off to a value which 
corresponds to a local maximum for 
the system having the same energy, and 
the system tends to a stable thermal 
system. Taken from HNNS. 
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the second law of thermodynamics (Fig. 2). It is an irreversible 
process; entropy is produced as a result of heat transport. 

2-2. Non-linear regime (HNNS) 

When the amplitude becomes finite, the gravothermal instability is 
regarded to be in non-linear regime. 

L4: As the instablity proceeds, the entropy of the system increases by 
heat conduction as an irreversible process, which is described by 

I ■ 'l \ h <5"*. <6> 
where Lr is the heat flux through a spherical shell at the radial 
distance r_. 

L5: For gravothermal expansion Ŝ  increases but levels off to the value 
that corresponds to the state of stable equilibrium for the thermal 
system with the same energy (Fig. 2). 

L6: For gravothermal contraction S_ increases indefinitely (Fig. 2) 
within a finite time. 

L7: For the gravothermal contraction the central region contracts while 
the outer shells expand somewhat. The system results in a core-halo 
structure. 

L8: The mass of the contracting core decreases in time (HNNS; Lynden-
Bell and Eggleton 1980). 
C8-1: If the total mass of the system is not large enough as compared 
with the mass of a gas-particle, the mass of the core could become as 
small as the mass of the gas-particle. 
C8-2; If it is large enough, the radius of the core could become smaller 
than the gravitational radius of the core. The result is the collapse of 
the core into a black hole. 

Similar things can be discussed also in the context of cosmology 
where the thermodynamics of the black hole and the radiation field plays 
a role. Sugimoto et al. (1981) discussed that the development of spatial 
structure or, non-uniformity if we state more exactly, is formed in the 
universe consistently with the second law of thermodynamics. Concerning 
the initial state of the universe Sugimoto et al. (1981) and later but 
independently Frautschi (1982) showed that at the Planck time its state 
was at the global maximum of entropy if we consider only the causally 
connected region or, in other words, the region within a particle 
horizon. As the universe expands, such region expands relative to a co-
moving volume and the state falls out of the change in the state with the 
maximum entropy. In other words, the state of thermal equilibrium, i.e., 
the state with the maximum entropy, changes as the boundary condition of 
the system changes by the expansion of the universe, and the real system 
is left behind and now lies out of thermal equilibrium. Therefore, the 
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entropy of the comoving volume can increase thereafter, and it is 
associated with generation of non-uniformites through the gravothermal 
catastrophe. 

L9: The core collapse is described by similarity solution of almost 
isothermal core surrounded by an envelope of the density distribution 
p ~ r-ot with a = 2.2. Its central density becomes infinitely high in 
finite time (Lynden-Bell and Eggleton 1980). 

2-3. Post-collapse evolution (BS) 

The gravothermal collapse is a result of the change in the mean 
field. When the central density becomes high enough, binaries of gas-
particles (or stars) will be formed. This can be regarded as the 
development of two-body correlations. The binaries play a role to input 
energies into the mean field. To investigate the post-collapse evolution 
a gaseous model with energy source is considered. Since it will be 
discussed by Bettwieser in this Symposium, here we will summarize only 
their results. 

Energy input by binaries is considered in analogy with the nuclear 
energy input in a main-sequence star. If the outermost shells of our 
system are regarded as the place where the entropy generated in the inner 
core can be dumped away, both the inner core of our system and the main-
sequence star are similar dissipative open systems. The main-sequence 
star lies in a steady state. 

L10: The core of our system makes gravothermal oscillation repeating 
gravothermal contraction and expansion. 

L11: If the amount of the energy input into the mean field is neglected, 
it tends to a limit cycle encircling the collapsed singular isothermal 
solution. This is another state of the dissipative open system. 

The difference between the main-sequence star and our system comes 
from the difference in the functional form of heat conductivity. In the 
main-sequence star the time scale of heat transport is shorter in the 
outer shells, while in our system it is shorter in the inner core. 
Therefore, the outer shells respond quickly to a change of the inner core 
in the case of the main-sequence star but they do not in our system. 
This is also the reason why the size of the core is relatively large in 
the interior of the star but is small in our system. 

L12: Because of a net energy input to the mean field from the binaries, 
the energy of the mean field increases secularly. Finally, it becomes so 
high that the system can not be regarded to be the gravothermal system 
any more but a thermal system. 
C12-1: When the system becomes a thermal system, the gravothermal 
oscillation does not occur any more, and the system makes an expansion 
on input of energy until an equilibrium thermal state is reached. 
C12-2: If the rate of the energy input is too high (BS), the secular 
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GASEOUS MODELS 213 
change dominates over the limit cycle so that the core expands simply to 
a thermal state. 

L13; The expansion phase of the gravothermal oscillation is driven by 
the gravothermal instability. Therefore, it requires no energy input 
after an initial small amount of expansion has taken place. Further 
expansion takes place with almost the same time scale as the contraction. 

During the main phase of the gravothermal expansion the so-called 
gravitational energy release £~ = -T ds/dt just balances the conduction 
loss £con(j - <JL /Mdq, i.e., £g = econcj> in the core region. If one used 
inappropriately long time step At in numerical computation, £g could not 
be computed correctly but the conduction loss could balance the energy 
generation e^in from binaries, i.e., £COnd = Gbin> within a small but 
finite allowance of the assumed accuracy. Then one would obtain a slow 
general expansion. Heggie (1984 and in this Symposium) obtained such 
general expansion in his numerical computation with long time steps. 
This seems to be an interpretation of his results, but some more studies 
will be necessary in order to conclude that the gravothermal oscillation 
should take place in our idealized system. 

Inagaki and Lynden-Bell (1983) showed that there exists a self-
similar solution also for the post-collapse expansion. However, their 
solution determines the required strength and time change of the energy 
generation which has nothing to do with physical mechanism. In actual, 
however, the energy generation is determined by binaries, i.e., by local 
process which is independent from global mechanism controlling expansion 
of the system. There is no guarantee at all that the energy generation 
is tuned so as to match such prescribed requirement. If the energy 
generation is slightly deficient, for instance, the expansion is slowed 
down and deviates from the similarity solution, because the configuration 
and temperature distribution of the similarity solution correspond to 
those of a gravothermally contracting system. 

3. RELATION WITH PARTICLE SYSTEM OR GRAVITATIONAL MANY-BODY PROBLEM 

There are several important time scales in evolution of the many 
body system. The shortest is the time scale of violent relaxation ty-j^ 
which is of the order of the crossing time. The second is the time scale 
of heat transport t^ e a t which is of the order of the two-body close 
encounter. The third is the time scale of the growth of two-body 
correlations or the formation of binaries t^in which is of the order of 
two-body tidal capture or three body collision. The fourth is the time 
scale of the growth of many-body correlations t c o r r. Because many-body 
correlation is formed successively through collision of particles with a 
lower order correlation, its time scale t c o r r is longer than but is of 
the order of t^in. Finally, many-body correlations will prevail the 
whole system. 

Let us consider a system consisting of_N_particles (stars) which are 
enclosed with a specularly reflecting wall. For such a system the orders 
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of magnitude of these time scales are related by t^eat ~ (N/lnN)^-^! 
n"~2 where _n_ is the particle density. In many numerical and t b i n 

computations these time scales are not always well separated so that 
different physical phenomena appear in mixture. If we choose appropriate 
set of initial parameters, i.e., relatively large value of_N_and low 
density ji, we can separate and visualize phenomena of different time 
scales. 

Because the particle system is not the main topics of the present 
talk, I will show only one example. It was calculated recently by 
Bettwieser in contact with myself for a system with N = 100 by means of a 
computer code NBODY3 which was kindly supplied by Professor S. Aarseth. 
The computation covers through 200tv^o2. F i 9 u r e 3 shows time evolution 
of logarithm of the density in the innermost region in which 10 particles 
are contained. Initially the particles were distributed uniformly within 
the radius RQ and with a constant velocity dispersion. The total energy 
in units of GM2/4RQis E = -581 upto t = 4 7 1 ^ ^ and E = -170 after t = 50 
t„,«^i. We see that the fluctuation is a factor of about 1 0l/2. that the 
gravothermal catastrophe takes place, and that the formation of hard 
binaries excites the gravothermal oscillation. 
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Fig. 3. Time evolution of the gravitational 100 body system. 
Phases of contraction (C) and expansion (E) are clearly seen. 
For each hard binary the time of its formation or escape is 
indicated by an arrow to which its energy is also attached. 
See the text for more details. 
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GASEOUS MODELS 215 
Consulting with such numerical computation and the lemmas given in 

the preceding section, we may conjecture a picture for the evolution of 
self-gravitating particle system as follows. 

Phase 1: Violent relaxation. It takes place in the time scale tv-0i. 
It may be described by collisionless Boltzmann equation in y-space which 
includes only the mean fild. An equilibrium state will be reached for 
t ^ too-

Phase 2: Gravothermal catastrophe. The infinite time cited in Phase 1 
is not a real infinity but the time tvi0i « t^ << t^eat. Therefore, two-
body collisions proceed, and the equilibrium state in the sense of Phase 
1 will be shaffled. Then a new equilibrium state will be settled which 
has a higher entropy. If the condition for the gravothermal system is 
met, this is the real progress of the gravothermal instability. This 
phase can still be described in y-space. 

Phase 3: Gravothermal oscillation. When the time becomes of the order 
°f tbin^>> fcheat^ binaries will be formed. Now the distribution 
function can not be described only by multiplication of a single particle 
distribution functions, but at least the two-particle distribution 
function in binary space is necessary. It can be divided into the part 
of independent particles and the part of two-body correlations, i.e., 

f (1,2) = f(1)f(2) + g d , 2 ) . (7) 

Correspondingly, the energy can also be divided into the energy E ^ which 
is associated to the mean field and translations of single particles and 
multiplets, and the energy of correlations E c o r r which corresponds to the 
binding energy of the multiplets, i.e., 

E = E + E . (8) 
mf corr 

If the particle numbur N is large enough, there could be a situation 
where E

C Orr ^s st^^- l° w compared with Emf in their absolute values. 
Then the gravothermal oscillation can take place. 

Phase 4: Prevalence of Correlations. If the system is contained in a 
specularly reflecting wall, _E_ is kept constant. As the correlations 
devlop, E c o r r becomes negative and large in its absolute value. 
Correspondingly Emf becomes negative and small in its absolute value in 
the first place, and then can become even positive. This is a reaction 
to the mean field from the development of the correlations. Then the 
system becomes to be regarded as thermal system, if we see only the mean 
field, i.e., if the multiplets are considered to be constituents of the 
system and if E c o r r is regarded as sub-constituent energy (such as 
binding energy of molecule). Then the more probable state becomes one 
for the thermal system, which is an isothermal state with weak density 
contrast. The gradual change to such state is the secular change during 
the gravothermal oscillation. 
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Phase 5: Final state. If we consider only the two-body correlation, 
the final state will be a uniform distribution of binaries because E 
could becomes much greater than _E_. 

We have to notice that there is an important difference between the 
gaseous model and the usual statistical treatment of the problem. In 
the gaseous model we discuss the evolution of the system, while in the 
statistical mechanics we discuss only the final state in many cases. 
Therefore, the final state of Phase 5, which is obtaind from H-theorem in 
binary space for instance, does not necessarily imply that there is no 
evolution through Phases 2-3 of the gravothermal catastrophe and 
oscillation. In order to understand physics correctly for a system with 
possible strong correlation, we have to discuss their evolution by means 
of non-equilibrium statistical mechanics or, at least, by introducing 
different levels of infinite times t^ as done in the present section. 

Nevertheless, we may ask what is the real final state as inferred 
from the statistical mechanics. After the formation of binaries the 
formation of more body correlations will proceed. Finally N1 body 
correlation will develop where N' is of the order of N.. Then we shall 
ask what is the spatial distribution of such N'-multiplets. However, it 
can not be answered by the statistical mechanics, because the number of 
Nf-multiplets is too small to be treated in the statistical mechanics. 

This work is supported in parts by Scientific Research Fund of the 
Ministry of Education, Science and Culture (57540120, 59540136). 
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GASEOUS MODELS 217 
DISCUSSION 

SHAPIRO: One must always be wary of "hydrodynamical" models of 
intrinsically collisionless or Fokker-Planck (secularly collisional) 
systems. Of course, one can always take moments of the collisional 
Boltzmann equation and get equations which, under suitable approxima
tions, "look like" gas-dynamical equations. This is reliable in many 
instances and is exactly what R. Larson (1970) did in his pioneering 
work on the Fokker-Planck equation over a decade ago. How exactly do 
your equations compare with his? What is the analog of your conduc
tion equation in his equations? Should one not be skeptical of the 
gas-dynamic approach to the extent that it differs from Larson's 
formalism? 

SUGIMOTO: Our equations can be obtained from the moment equations 
when the third moment is truncated by means of the heat conduction 
equation. Larson (1970) took account of the higher moments upto the 
fourth moment. Therefore in his equations non-local heat flow and 
deviation from Maxwellian distribution function were taken into account. 
Here, we can ask what are described by each moment. As far as the mean 
field is concerned our equation describes the essential point. In 
other words we see that the gravothermal contraction is described 
very well by our model. Higher moments will introduce only quantitative 
difference because the deviation from the Maxwellian distribution 
makes mainly a local effect which can be transferred to a correction to 
the equation of state. Concerning the heat conduction, Bettwieser and 
Sugimoto (M.N.R.A.S., submitted) have recently computed a 1000-body 
problem, and calculated moments from numerical results and compared it 
with gas-dynamical concepts. They have found that the gas-dynamical 
concepts can be applied fairly well. Development of correlations are 
described by higher moments or in many-body space. Thus, it was not 
taken into account even in Larson1s (1970) work. However, we can take 
account of its main effects phenomenologically by means of the energy 
generation rate by binaries, for instance. Anyhow, the gaseous model of 
an idealized system is appropriate to explore the fundamental behavior 
of self-gravitating systems. When this behaviour is understood exactly 
in idealized systems, there will be no difficulties to include 
astronomical details though they may be very complex. Thus, we can and 
have to follow two different approaches to the problem. 

LARSON: I have some reservations about whether "gravothermal 
expansion" can occur in real star clusters. I can imagine that it 
could occur in a conducting gas sphere with an adiabatic boundary, where 
the presence of the boundary allows heat to be trapped in the outer 
part of the system; this trapped heat might then in some circumstances 
be conducted back into the core and drive expansion. Real clusters, 
however, do not have an adiabatic boundary but are surrounded by an 
infinite heat sink, namely the rest of the universe, so that heat can 
not accumulate in the outer part of the cluster. All of the observations 
that I know of show velocity dispersions decreasing monotonically 
outward, and this is also true for all of the models I know of for 
systems not surrounded by an adiabatic boundary. Thus, in real 
systems the sense of heat flow should always be outward. 
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SUGIMOTO: In the system the timescale of heat transport is much 
longer (even 106 times though depending on the central density) in 
outer shells. In this sense the relatively outer shells can be regarded 
as the "adiabatic wall" to a good approximation. This is an essential 
difference of our system from the stellar structure (In the stellar 
interior heat is transported by radiation and its timescale is much 
shorter in outer shells.) See my answer to Grindlay's question as for 
the relation with observations. 

GRINDLAY: My question follows naturally from Dr. Larsonfs remark 
as well as from the viewgraph you now have on the screen. The question 
is: in a real globular cluster (of high mass), what is the maximum 
difference in "temperature" or velocity dispersion between the inner 
and outer core for a cluster in the expansion phase? As I mentioned 
in my talk yesterday, I suspect the X-ray globular NGC 6712 may be in 
such a post-collapse expansion phase and we are beginning a major pro
gram to measure V d i vs. R. What is the maximum increase in V d i v. 
radius R we might expect to measure if indeed the cluster is in an 
expansion phase? 

SUGIMOTO: As can be seen in one of my figures (Figure 2 of 
Sugimoto and Bettwieser 1983 M.N.R.A.S. 204, 19P) , the maximum possible 
temperature difference between its peak and the central value is 
log(T k/T c e r) - 0.05. The peak lies at the edge of the core. The 
value given above is one at the stage when the mass fraction of the 
core is equal to lxl0"3. Both in earlier and later stages of expansion, 
i.e., for smaller and larger core mass, respectively, the temperature 
difference is smaller. 

KING: In a real cluster, where the density drops to zero at the 
boundary, what quantity corresponds to the magic density contrast of 
your physical idealization? 

COHN (after Sugimoto referred the question to him): The best 
observational parameter to look at in order to determine whether the 
gravothermal instability is likely to have occurred is your WQ parameter 
or equivalently the concentration parameter c. Clusters are expected 
to become unstable for WQ >_ 8.5 that is c ^ 2.0. Indeed the clusters 
with possible cusps satisfy this criterion. 

KING: That is very interesting. In the linear-sequence sense to 
which Spitzer referred yesterday, WQ = 8.5 is very close to the turning 
point. 
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