NS Proceedings of the Nutrition Society

Nutrition Society Live 2020, 14-15th July 2020

Optimising the carbon 13 sucrose breath test for the assessment of environmental enteric dysfunction

R. J. Schillinger¹, D. J. Morrison² and C. A. Edwards¹

¹College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, G12 800 and ²Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, Scotland, G75 0QF

Environmental enteric dysfunction (EED) is a complex disorder characterised by structural and functional aberrations within the small intestine⁽¹⁾. It is hypothesised that EED is the result of repeated enteric infections combined with under-nutrition and is prevalent throughout low and middle income countries. EED is thought to compromise linear growth potentially leading to stunting in infants⁽²⁾. Stunting currently affects 144 million children globally under the age of $5^{(3)}$. ¹³C-sucrose from naturally enriched maize sources has previously been used in a breath test to assess intestinal sucrase activity as a marker of mucosal integrity and function in enteric enteropathy⁽⁴⁾. However, this test requires up to 20 g of naturally 13 C enriched sucrose to achieve acceptable signal-to-noise in breath ${}^{13}CO_2$, making the test unsuitable for routine use in infants. The current study aimed to develop a new ${}^{13}C$ sucrose breath test (SBT) protocol using commercially available, highly enriched ${}^{13}C$ Sucrose to facilitate a much smaller test dose.

This was a randomised crossover trial of 19 healthy adults recruited in Glasgow, UK. All participants completed a baseline SBT with 20 g naturally enriched sucrose before being randomly assigned to two groups; receiving 20 g unlabelled (beet) sucrose + 50 mg tracer (n = 8) or 50 mg tracer dose alone (n = 11). Participants remained allocated to their group and were given in a random repeated order ${}^{13}C_{12}$ -Sucrose, ${}^{13}C_6$ Sucrose (${}^{13}C_6$ -Fructose) and ${}^{13}C_6$ Sucrose (${}^{13}C_6$ -Glucose) to assess the effect of labelling position on breath recovery parameters with at least 3 days washout between tests.

Results were expressed as Area Under the Curve (AUC), time of maximum breath ¹³CO₂ enrichment (T_{max}, hrs), cumulative per-

Results were expressed as Area Order the Curve (AOC), time of maximum breath ¹²CO₂ enrichment (1_{max}, hrs), cumulative per-centage dose recovered at 90 mins (cPDR90, %) and time at which 50% AUC had been expired in breath 13CO2 (T_{1/2}, hrs). Highly enriched ¹³C₁₂ sucrose yielded significantly improved ¹³C breath signal to noise compared to the naturally enriched sucrose dose (x20). There were no significant differences in AUC, cPDR90, T_{max} or T_{1/2} between ¹³C₁₂ sucrose and naturally enriched sucrose (all P > 0.05). Altering the position of the ¹³C label changed kinetics of breath ¹³C excretion. ¹³CO₂ appeared more rapidly with ¹³C₆ sucrose (¹³C₆-fructose) compared with ¹³C₆ sucrose (¹³C₆-glucose) (T_{max},(SD) = 1.29 (0.44) vs. 1.87 (0.22), P < 0.05 and cPDR90 (SD) = 15.95 (3.88) vs. 12.38 (2.31), P < 0.05 respectively). Addition of 20 g unlabelled sucrose appeared to slow down ¹³C sucrose digestion with distributive lower oBDR90 for all highly enriched variants. with significantly lower cPDR90 for all highly enriched variants (all P < 0.05).

A dose of 50 mg ${}^{13}C_{12}$ -sucrose gave excellent signal-to-noise in breath ${}^{13}CO_2$ and there was no statistically significant difference in breath parameters compared with the naturally enriched SBT. The ${}^{13}C$ labelling pattern impacted the kinetics of ${}^{13}C$ recovery in breath probably reflecting intermediary metabolism. A minimal dose of ${}^{13}C_{12}$ -sucrose is likely to be suitable for studies in infants and children.

- Crane RJ, Jones KD & Berkley JA (2015) Food Nutr Bull 36, S76-S87.
 Butler RN, Kosek M, Krebs NF et al. (2017). J Pediatr Gastroenterol Nutr 64, 1, 8–14
 World Health Organisation (2020). Joint child malnutrition estimates.
 Ritchie BK, Brewster DR, Davidson GP et al. (2009). Pediatrics 124, 2, 620–626