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ABSTRACT 
Topology optimization is typically used for suitable design suggestions for objectives like mean 
compliance, mean temperature, or model analysis. Some modern modeling technics in topology 
optimization require a nodal based material interpolation. Therefore this article is referred to a 
continuous material interpolation in topology optimization. To cover a smooth and differentiable 
density field, we address trigonometric shape functions which are infinitely differentiable. 
Furthermore, we extend a so-known global criteria method with a sharpening function based on binary 
cross-entropy, so that sharper solutions results. The proposed material interpolation is applied to 
different applications such as heat transfer, elasto static, and potential flow. Furthermore, these 
different objectives are together optimized using a multi-objective criterion. 
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1 INTRODUCTION 

In the industry, problems routinely arise that require making the best possible design decision. 

Nevertheless, optimization is still underused in the industry. Most modern engineering systems are 

multidisciplinary, and their analysis is often very complex. Modern design projects with complex 

problems are often decomposed, and each part is tackled by a multidisciplinary design team (MDT) 

(Ensici and Badke-Schaub, 2011). Splitting the development into different parts is the simplest 

decision but comes with a high risk of a suboptimal solution (Song, 2004). The need for 

multidisciplinary optimization got even bigger when it comes to new manufacturing methods like 

additive manufacturing (Vantyghem et al., 2018; Yao et al., 2017). The possibility to develop highly 

customized products accelerates this trend. The result is that multiple disciplines problems occur, 

which usually interact with each other. A stepwise iteration comes not to reasonable solutions, 

especially for multiobjective product development. The strongly connected optimization objectives 

require a nonsequential, parallel approach. When it comes to highly cost-intensive projects like in the 

field of aerospace engineering, examples already show the usage of solving mechanical loads, 

vibrations, heat transfer problems, and fluid optimizations together (Bierdel et al., 2017).  

The transfer of mechanical loads as well as the dissipation of heat, the transmission of solar power 

(Gupta et al., 2015), or the reduction of pressure dissipation is required in many applications such as 

the support and cooling of a battery (Chu et al., 2020), a heat exchanger (Gholamibozanjani and Farid, 

2019) or solar power plants. Although these phenomena for various applications can be related and 

interdependent, most approaches to these problems treat each individual as separate tasks (Chu et al., 

2020; Gholamibozanjani and Farid, 2019; Gupta, 2019; Gupta et al., 2015). This lack of a holistic 

approach can lead to suboptimal solutions. In a battery, for example, the heat exchanging part is 

typically designed separately from the bearing part sustaining static loads so that only a small amount 

of heat is dissipated via the respective bearing (Chu et al., 2020). To find suitable design proposals, 

multiobjective optimization is necessary (Dede, 2009; Kim et al., 2006; Proos et al., 2001), so that for 

the battery cooperatively, heat dissipation and load sustaining is acquired.  

2 STATE OF THE ART 

The use of topology optimization is applied in many different areas, such as elasto static (Denk et al., 

2020; Proos et al., 2001; Zolfagharian et al., 2020b, 2020a), heat conduction (Dede, 2009; Denk et al., 

2020; Gersborg-Hansen et al., 2006; Kim et al., 2006; Rodríguez and Pavanello, 2015), fluid 

mechanics (Dede, 2009), electrostatic (Gupta et al., 2015) or structural dynamics (Kim et al., 2006; 

Proos et al., 2001). The authors of (Alberto and Sigmund, 2004) summarize several physic types such 

as electrostatic fields, potential flow, or heat conduction described by the Poisson equation for 

topology optimization. The optimization of multiple objective functions can be combined using 

various approaches such as the weighted sum method (Dede, 2009; Denk et al., 2020; Kim et al., 

2006; Proos et al., 2001; Rodríguez and Pavanello, 2015), neural networks (Shao et al., 2007), the 

global criteria method (Denk et al., 2020; Proos et al., 2001) or the normal constraint method (Munk et 

al., 2018). The different types of physical objectives can be combined, like a) the total pressure energy 

loss with the mean temperature (Dede, 2009), b) the mean compliance with the mean temperature 

(Rodríguez and Pavanello, 2015), or c) the mean compliance with the first natural eigenmode (Proos et 

al., 2001). In addition, to the different types of physical objectives, manufacturing costs and assembly 

costs can also be taken into account (Guirguis and Aly, 2016) by defining cost functions depending on 

the shape of the resulting geometry. Stress constraints can be considered (Conlan-Smith and James, 

2019; da Silva et al., 2019; Holmberg et al., 2013; Picelli et al., 2018; Yang et al., 2018), which is 

often covered by choosing a p-norm as a distance functional as well (Conlan-Smith and James, 2019; 

Holmberg et al., 2013). The ratio weighted sum method similar to (Denk et al., 2020), combines 

several different objectives by scaling the objective value    using a full material simulation   
  with  
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where    describes the weight,    the objective of the  th load case. The scaling with   
  is required so 

that the individual objectives share the same magnitude of, for example, heat dissipation or strain 
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energy. The following figure shows the results using two different objectives and different weight 

factors. 

 

Figure 1: Multiobjective optimization with the ratio weighted sum of (Denk et al., 2020) 

Most of the multiobjective optimizations (Dede, 2009; Denk et al., 2020; Kim et al., 2006; Proos et al., 

2001; Rodríguez and Pavanello, 2015) are applied on element based material interpolation. So node-

based material interpolation strategies required in (Gupta et al., 2015) cannot be used. We address a 

node-based interpolation using the global criterion covering multiobjective optimization. To reduce 

uncertain design variables, we use the classification metric "binary cross-entropy criterion," which 

should reduce the entropy.  

The most common element material interpolation function is the solid isotropic material with 

penalization (SIMP) based on design variables for elements (Bendsøe and Sigmund, 1999). That 

approach was extended in changing the interpolation function (Cui et al., 2018; Du et al., 2015) or 

using a node-based material interpolation field (Guest, 2009; Guest et al., 2004; Kang and Wang, 

2012; Rahmatalla and Swan, 2004). So, in contrast to SIMP, the authors of (Cui et al., 2018; Du et al., 

2015) chooses a logistic material interpolation function with different parameters applied to the 

elements. If these interpolation function should be related to composite structures the Hashin-

Shtrikman bounds should be stasified (Hashin and Shtrikman, 1963). In our approach we need to 

violate that criterion similar to (Cui et al., 2018; Du et al., 2015) to provide a interpolation strategy 

ensuring smooth material distribution in the element. We compare that logistic function and the SIMP 

method with a trigonometric interpolation strategy. The following figure shows a comparison of 

SIMP, the logistic functions, and the chosen trigonometric function for different parameters. 

 

Figure 2: Interpolation functions 

Element-based designs can often suffer from numerical instabilities such as one-node connected 

hinges, mesh dependency, checkboard pattern (Kang and Wang, 2012), which are partly attributed to 

the constant material density distribution of the local element (Sigmund and Petersson, 1998). The 

authors of (Matsui and Terada, 2004; Rahmatalla and Swan, 2004) present several options using 

nodal-based design variables for an element-wise interpolation of the displacement and the design 

variable field. On that element, the interpolation for the displacements and the design variables can 

differ (Rahmatalla and Swan, 2004). The authors of (Matsui and Terada, 2004) apply their approach 

on a three and six-node triangular and a four or eight-node quadrilateral element. The authors of 

(Rahmatalla and Swan, 2004) summarized several possible configurations for the location of the 

displacement and design variable nodes so that a Q8/Q4 element represents a quadrilateral element 

with four design variable nodes and with eight displacement nodes. On that material interpolation 

phenomena, "islanding" and "layering" structures can occur (Kang and Wang, 2012). In (Paulino and 

Le, 2009), the authors of (Rahmatalla and Swan, 2004) extended their approach to in-coincident 

locations of the node-based functions where the interpolation functions overlay several surrounding 

elements avoiding the "islanding" phenomenon in contrast to (Rahmatalla and Swan, 2004). The shape 

functions for material and displacement can be independently varied. While (Rahmatalla and Swan, 

2004) uses bilinear interpolation functions, the authors of (Kang and Wang, 2012, 2011) use 

interpolation function derived from Shepard functions of the continuous design variable field to 

eliminate the "layering" and "islanding" for local and non-local interpolation of the density field. They 

applied these Shepard interpolation functions in (He et al., 2014) on nonlinear geometric structures. 

The authors of (Luo et al., 2013) use these Shepard interpolation functions for a dual-level density 
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interpolation with meshless field nodes and computational nodes. In a more recent article, topology 

optimization is applied using isogeometric analysis (IGA) (Dedè et al., 2012; Gao et al., 2020, 2019; 

Hassani et al., 2013; Liu et al., 2018; Seo et al., 2010). The isogeometric analysis uses basis functions 

such as NURBS, which are equal for the geometry and the numerical analysis (Nguyen et al., 2015). 

The authors of (Hassani et al., 2013) use a continuous material distribution function based on NURBS, 

where the displacement field and density field are processed using NURBS. The authors of (Gao et al., 

2019) first use the Shepard function to improve the smoothness of the nodal density, then the NURBS 

basis functions are combined with that smoothed nodal densities. In contrast to bilinear, NURBS, and 

Shepard interpolation functions, we use trigonometric shape functions such as sine and cosine for the 

material interpolation. This shape function ensures continuity and a smooth shape of the material field 

in one element. Additionally, the material interpolation function has to consider that no negative 

material properties are resulting in the field (Gao et al., 2019; Kang and Wang, 2012), which is 

ensured using the proposed trigonometric shape functions. The following figure shows a comparison 

of the linear, trigonometric, and Shepard interpolation for four elements. The black dots represent full 

material on the nodes and the with dot zero material. 

 

Figure 3: Comparison of the interpolation functions in one element 

To summarize our contribution, our research addresses nodal-based material interpolation. We applied 

the nodal interpolation method on different tasks such as fluid flow, heat transfer, and elasto static by 

extending the global criteria method proposed in our recent work (Denk et al., 2020). Additionally, we 

use a new continuous material interpolation based on the cosine/sine function and compare that approach 

with several material interpolation methods in the literature. As an evaluation, we visually show the 

results and use a metric based on cross-entropy to address the uncertainty. This evaluation criterion is 

embedded in the objective function to reduce uncertain design variable decisions (grey areas). 

3 TOPOLOGY OPTIMIZATION WITH CONTINUOUS MATERIAL COSINE 

SINUE INTERPOLATION AND SHARPNESS METRIC 

To obtain suitable sensitivities, the gradient of the objective function with the design variable must be 

determined. In topology optimization, the minimization of an objective function   such as the mean 

compliance, mean temperature, or mean velocity potential (Alberto and Sigmund, 2004) can be 

selected with  
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where   describes the overall stiffness matrix,   the values of the node degrees of freedom such as 

displacement values, velocity potential or temperature values,    the element stiffness matrix and und 

  the associated displacements on the individual element.  

The differentiation of the objective (1) leads to  
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The design variables   [        ] are used to change the properties of the stiffness matrix. 

Differentiating the objective function with the design variables leads to  
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By using the finite element method, a relationship between the different parts of the equation can be 

found by differentiating      with 
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Inserting equation (4) leads to 
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For our purpose, we don't consider density-dependent loads so that 
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3.1 Nodal based material interpolation  

For the material interpolation of the stiffness matrix, we choose the discontinuous density-dependent 

functional  (  ) and a continuous density field  (    ) applied on   with 

 
    (  )∫   (    ) 

         
 

  
 

 

    (7) 

where the derivation leads to 
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Due to the discontinuity of  (  ) only a local element-wise continuous material is resulting. In our 

work, the density field is selected with 
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where   describes the   dependent shape function for the material interpolation and    its 

correspondent design variables and             the design variables referenced to the local element 

and local shape functions            . As the interpolation function, the constant   , cosine sine 

     and linear    dependent shape function is selected with 
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The following figure shows the selected interpolation functions for an example in 1D and 2D. In 

contrast to the constant shape functions, the linear and the cosine shape function provides a continuous 

material distribution. Despite the linear function, the trigonometric function is infinitely differentiable, 

leading to smooth shape representations in the element represented in Figure 3. The chosen domain-

independent functions  (  ) are summarized in the following table. 
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Table 1: Material interpolation for element and Q4 node-based design variables 
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The following figure shows the interpolation functions for one design variable. 

Each node now affects the surrounding elements and its corresponding stiffness matrix so that the 

influence of the derivation of the sensitivity reduces to the surrounding elements in equation (6). The 

chosen interpolation functions and the domain-dependent shape functions are variated for comparison. 

The following table covers fourteen different combinations.  

Table 2: Variation of the interpolation function with 14 different combinations 

1 
  [           ]

    (  ) 
8 

  [   (  )    (  )    (  )    (  )]
 

 

2 
   [           ]

    (  ) 
9 

   [           ]
    (  ) 

3 
  [   (  )    (  )    (  )    (  )]

 
 

10 
  [           ]

    (  ) 

4 
   [   (  )    (  )    (  )    (  )]

 
 

11 
  [   (  )    (  )    (  )    (  )]

 
 

5 
  [           ]

    (  ) 
12 

  [           ]
    (  ) 

6 
  [   (  )    (  )    (  )    (  )]

 
 

13 
   [           ]

    (  ) 

7 
  [           ]

    (  ) 
14 

  [           ]
    (  ) 

3.2 Grey-Scale classification metric for sharpening the results 

In topology optimization, a clear black-white pattern is required (Kang and Wang, 2012) so that the 

results can be directly interpreted. For binary decisions, the binary cross-entropy loss    (Denk et al., 

2019; Mannor et al., 2005) and polynomial loss function    with 
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can be chosen with the basis   and the  .  Both loss functions are minimized if a clear black-white 

pattern for the design variable is the result. The following figure covers the loss functions with 

different parameters   and some examples with a high and a small loss value. The maximum value of 

both loss functions is located by 0.5 so that a high uncertainty results in a high loss value. 
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Figure 4: Comparison of the loss function and examples of small and high loss values 

With that metric, the global criteria method can be extended by sharpening the design variables with 

     where the differentiation of the binary cross-entropy    leads to 
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The weight factor     for the binary cross-entropy can be directly chosen due to the normalization of 

each objective    with   
  similar to the weight factors   . 

4 VARIATION OF THE MATERIAL INTERPOLATION STRATEGIES 

In the experimental part, five different cases are investigated. The first three cases are optimized under 

single optimization criteria. The last two cases consider a) elasto static and heat transfer, and b) elasto 

static, heat transfer, potential flow with the weight factors of 1.0 for each case. In the first section, the 

cases are visually compared according to their grey distribution. The second section covers the 

sharpening effect using the binary cross-entropy as part of the objective function. The following table 

shows the results of different cases for elasto static, heat transfer, potential flow, and multiobjective 

cases. Case 2, 4, and 6 results in noise and checkboard parts. Visually the results of 1, 3, 5, 7 are quite 

similar and converged. 

Table 3: Comparison of equations in Table 2 with SIMP     and logistic a=8, m=2 of   

Use Case           6 7 

Static 

        

Heat 

        

Flow 

        

St/He 

        

St/He/Fl 

        

The following table shows the results of different cases for elasto static, heat transfer, potential flow, 

and multiobjective cases. Case 8 and 11 results in noise and checkboard parts. Especially for the 

multiobjective optimization, Case 9 and Case 10 shows uncertainty areas. 

Table 3: Comparison of interpolation functions with logistic a=8, m=2, and sine m=2 

Use Case 8 

 
  

 

   

 

   

 

12 13 14 

Static 

        

Heat 

        

Flow 
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St/He/Fl 

        

The following table covers the results using the sharpening with the cross-entropy. The embedding of 

the sharpening function in the global criteria method improves the sharpness represented by the binary 

cross-entropy. The first column shows the result using no sharpening. 
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Table 4: Sharpening with the exponent     and the basis     for the case 13 m=2 

Use 

Case 
       

    

       

    

       

    

       

    

        

    

Static 

      
      0.054  0.018 0.053 0.010 0.023 0.0045 0.015 0.0045 0.028 0.0093 

Heat 

      
      0.16   0.051 0.081 0.026 0.08 0.027 0.085 0.029 0.11 0.039 

Flow 

      
      0.028    0.0082 0.061 0.012 0.026 0.0043 0.0060 0.00095 0.013 0.0044 

St/He 

      
      0.16   0.051 0.097 0.033 0.11 0.035 0.12 0.039 0.14 0.046 

St/He/Fl 

      
      0.15    0.047 0.11 0.035 0.12 0.038 0.12 0.040 0.14 0.045 

5 CONCLUSION AND SUMMARY 

This work addresses the multiobjective topology optimization using a continuous material interpolation, 

which extends our previous approach presented in (Denk et al., 2020). Despite recent publications, we 

choose an interpolation shape function method based on trigonometric functions. These interpolation 

functions result in a smooth material distribution in the element and especially at the boundary of the 

element. Additionally, we introduce an uncertainty metric based on binary cross-entropy, which is 

embedded in the multiobjective criterion. With that addition, the binary cross-entropy of the topology 

optimization results could be reduced, which in consequence results in sharper topology optimization. 

The results in Table 3 and Table 4 visually show in examples 2, 4, 6, 8, 11, a lot of checkboard patterns, 

islands, and grey areas. Therefore, the strategy applying the material interpolation function for each 

individual node should not proceed. The cases 1, 3, 5, 12, 13, 14 show in contrast to 7, 9, 10 quite more 

details, so that for further proceeding, the material shape functions multiplied by the material 

interpolation strategy should be applied. The shape functions  (    ) for the material interpolation 

itself has only a small effect on the resulting geometry, whereas the domain-independent function  (  ) 
changes the resulting shape dramatically. Therefore, the decision of the shape functions applied in 

 (    ) depends more on the desirable properties in consequence, such as the type of continuity and 

smoothness. Therefore smooth shape functions such as trigonometric shape functions should be applied 

in further research due to the smooth and infinitely differentiable continuous material interpolation along 

the element boundaries, which is not possible choosing bilinear and constant shape function and only 

restricted to finite continuity for NURBS and Shepard functions.  

The results of choosing the sharpening metric as part of the objective function shown in Table 5 leads to 

a sharper black-white configuration. In most use cases, the binary cross-entropy can be reduced by 

embedding the metric in the objective function with the weight factor of 1.0, 0.5, or 0.25. Due to the 

normalization of each objective in the multiobjective ratio global criteria method with   
 , the weight 

factor for the sharpening contribution can be chosen in the same scope as the weight factors (between 0 

and 1) of the physical parts    of the objective. For further investigations, the weight factors for the 

sharpening metric can consider surrounding design variables so that the influence of the sharpening is 

affected in a chosen radius. Additionally, the trigonometric shape functions can be chosen as non-local 

similar to (Kang and Wang, 2011; Paulino and Le, 2009), whereas the shape function itself affects 

several surrounding elements. 
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