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Abstract
This paper proposes a switched model to improve the estimation of Euler angles and decrease the inertial navigation
system (INS) error, when the centrifugal acceleration occurs. Depending on the situation, one of the subsystems
of the proposed switched model is activated for the estimation procedure. During global positioning system (GPS)
outages, an extended Kalman filter (EKF) operates in the prediction mode and corrects the INS information, based
on the system error model. Compared with previous works, the main advantages of the proposed switched-based
adaptive EKF (SAEKF) method are (i) elimination of INS error, during the centrifugal acceleration, and (ii) high
accuracy in estimating the attitude and positioning, particularly during GPS outages. To validate the efficiency of
the proposed method in various trajectories, an experimental flight test is performed and discussed, involving a
microelectromechanical (MEMS)-based INS. The comparative study shows that the proposed method considerably
improves the accuracy in various scenarios.

1. Introduction

In recent years, various investigations have been devoted to develop the navigation technologies for
autonomous vehicles. Huh adopted a laser navigation system (Huh et al., 2013), as an expensive method
for mass-production vehicles. However, an integrated navigation system (INS) with low cost and high
precision is required (Ward et al., 2006). To estimate the attitude and position, with acceptable accuracy
and affordable cost, data fusion and prediction algorithms may be used (Abdel-Hafez et al., 2015).
Compared with microelectromechanical (MEMS) gyroscopes, fibre optic gyros (FOGs) may be more
accurate and reliable. Although using a FOG is an expensive strategy, it may provide a higher level of
stability than the MEMS technology, with noise suppression capability. Of course, the global positioning
system (GPS), as one of the most widespread technologies of vehicle localisation, may also provide
the accurate position and velocity information (Xu et al., 2018). However, the GPS may suffer from
widespread varieties of interferences, such as multipath effects, electromagnetic interference, block of
signals, interruptions and outages (Chen and Fang, 2014). Such interferences may be taken as external
disturbances for the GPS. To overcome the disadvantages of the GPS, it is usually integrated with an
INS, which forms a self-contained system. Nevertheless, MEMS-based INS may be not appropriate for
inertial navigation over an extended period (Groves, 2015), as the accuracy deteriorates over time, due
to the sensors’ bias error drift, bias stability of gyroscope and misalignment (Quinchia et al., 2013).
Considering such drawbacks, the MEMS-based inertial sensors may be preferred in some vehicles, due
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to the low-cost localisation system (Liu et al., 2010). During GPS outages, the INS provides positioning
information, which assists GPS signal reacquisition after an outage. It also reduces the search domain,
required for detecting and correcting GPS cycle slips (El-Rabbany, 2002). Compared with FOG-based
INS and ring laser gyro-based INS, the MEMS-based performance may provide lower accuracy and
reliability (Xu et al., 2018). An autonomous geolocalisation system for near-Earth applications is
represented in Bessaad (Bessaad et al., 2021), based on the strap-down INS.

Kalman filtering, as one of the most common fusion algorithms, is used to fuse the information of
both the INS and GPS (Toledo-Moreo et al., 2007; Feng et al., 2014). This method requires a dynamic
model of the INS, a stochastic model of the inertial sensor errors and a priori information about the
data covariance (Jie et al., 2006). The Kalman filter (KF), considered as the benchmark for INS/GPS
integration (Obradovic et al., 2007), has been widely used for data fusion. Some investigations have
focused on combining GPS and INS navigation, using both a KF and EKF to compensate the errors,
generated by information fusion (Wang et al., 2006). The adaptive EKF (AEKF) is one of the strategies,
used to improve the estimation of the covariance matrices (Liu et al., 2018). A new adaptive KF has been
presented to provide the accurate and robust mini quadrotor position information in indoor environments
(Xu et al., 2020). An adaptive KF may be also used to adjust the noise covariance of GPS measurements,
under different positioning accuracies (Zhang and Hsu, 2018). An enhanced adaptive nonlinear filter
has recently been represented to integrate a star tracker sensor with a system inertial navigation system
(SINS). The proposed filter adapts the measurement noise covariance matrix, based on the available data
(Bessaad et al., 2022). The main objective of the INS/GPS procedure is to collect images in a period of
time to obtain exact velocity and position information (Chen et al., 2019). A vision measurement system
may be integrated with inertial sensor data and the GPS to calculate the attitude and position (Vetrella
et al., 2019). Integrated INS/GPS data also provides positioning information during GPS outages. If
GPS outage occurs, the KF corrects the INS information, based on the system error model. Many
researchers have also offered artificial intelligence, as an error predicting and compensating method, to
further compensate the INS errors. AI-based approaches commonly include an adaptive neuro-fuzzy
inference system (Abdel-Hamid et al., 2007; Jaradat and Abdel-Hafez, 2014) and a radial basis function
neural network (Lei and Li, 2013). Nevertheless, complex computation and long learning time may
generate a long delay, which is a drawback for the real-time system of autonomous vehicles (Zhao et al.,
2015). Some researchers also used different combination forms of GPS and INS, such as tightly-coupled
GPS/INS navigation (Wendel et al., 2006), which may be too complex for implementation.

In spite of the existing achievements, GPS noise composition may occur due to surrounding buildings
and electromagnetic interferences. The MEMS-INS is also affected by noise, which seriously deteriorates
the estimation accuracy. In addition, different situations, such as linear and centrifugal acceleration, may
occur in navigation manoeuvres, which cause additional errors. In such situations, the measurement of
inertial sensor is not accurate, and the errors may cause incorrect predictions. For different modes in
navigation, such as static, low dynamic, high vibration, linear acceleration, centrifugal acceleration and
additional magnetic field, the existing KF-based algorithms adopt the same navigation system model.
However, a precise estimation should be achieved in such modes as centrifugal acceleration, during
the vehicle’s rotation. Thus, a switched-based model is proposed here, which adopts the corresponding
subsystem, depending on the operation mode of the vehicle. Then, a switched AEKF is developed,
considering the centrifugal acceleration condition. The switching strategy, as a promising analysis and
synthesis strategy, has been also applied to other applications, such as robotics (Noghreian and Koofigar,
2021) and hybrid-energy systems (Noghreian and Koofigar, 2020).

The organisation of the paper is as follows. The mathematical model for the integrated INS/GPS
navigation system and the proposed switched model are presented in Section 2. In Section 3, the EKF
and AEKF methods are formulated to be used in navigation. The efficiency of the proposed SAEKF in
precise estimation is emphasised during the centrifugal acceleration. In Section 4, an experimental study
is discussed in a flight test, compared with the performance of the EKF and AEKF. Finally, Section 5
provides the concluding remarks.
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2. Proposed switched mathematical model

In an INS, a mathematical model for INS/GPS integration is used to estimate the system states. This
section represents the conventional model, followed by the proposed switched-based one.

2.1. Conventional navigation model

The navigation frame (n-frame) is commonly selected as the east-north-up (E-N-U) geography frame.
The body frame b presents a coordination with the x-axis towards the forward direction, the y-axis for the
transverse direction and the z-axis towards the vertical direction of the vehicle. Because the navigation
equations are nonlinear, the EKF may be used for estimation purposes. The nonlinear attitude, velocity
and position equations can be formulated as (Noureldin et al., 2013)

{
�𝑥(𝑡) = 𝑓 (𝑥(𝑡))
𝑧(𝑡) = ℎ(𝑥(𝑡))

(1)

with

𝑓 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�𝑟𝑛

�𝑣𝑛

�𝑞

�𝜔𝑏

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷−1𝑣𝑛

𝑅𝑛
𝑏 𝑓

𝑏 − (2Ω𝑛
𝑖𝑒 +Ω𝑛

𝑒𝑛)𝑣
𝑛 + 𝑔𝑛

1
2
Ω(𝜔, 𝜔𝑏)𝑞

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

𝑟𝑛 =
[
𝑙 𝜆 ℎ

]𝑇 (3)

𝑣𝑛 =
[
𝑣𝑒 𝑣𝑛 𝑣𝑢

]𝑇 (4)

𝑞 =
[
𝑞0 𝑞1 𝑞2 𝑞3

]𝑇 (5)

𝜔𝑏 =
[
𝜔𝑏𝑥 𝜔𝑏𝑦 𝜔𝑏𝑧

]𝑇 (6)

𝑓 𝑏 =
[
𝑎𝑥 𝑎𝑦 𝑎𝑧

]𝑇 (7)

𝐷−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

𝑅𝑀 + ℎ
0

1
(𝑅𝑁 + ℎ)𝑐𝑜𝑠𝑙

0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

𝑧 =
[
𝑙 𝜆 ℎ 𝑣𝑒 𝑣𝑛 𝑣𝑢 𝜙 𝜃 𝜓

]𝑇 (9)

and

𝑥 = [𝑙, 𝜆, ℎ, 𝑣𝑒, 𝑣𝑛, 𝑣𝑢 , 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝜔𝑏𝑥 , 𝜔𝑏𝑦 , 𝜔𝑏𝑧]
𝑇 (10)

denotes the state vector, and 𝑔𝑛 is the gravity vector in navigation frame. The latitude, longitude and
altitude are denoted by 𝑙, 𝜆, and h, respectively; 𝑣𝑒, 𝑣𝑛, 𝑣𝑢 present the velocity on three axes in the
navigation frame; and 𝑞0, 𝑞1, 𝑞2, 𝑞3 are quaternion parameters.

The gyro biases, denoted by 𝜔𝑏𝑥 , 𝜔𝑏𝑦 , 𝜔𝑏𝑧 , are unknown and 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧are angular velocities,
measured by the gyroscope sensors. 𝑓 𝑏 is the acceleration vector in the body frame and 𝑅𝑛

𝑏 is the
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rotation matrix:

�𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
𝑞1(𝜔𝑥 − 𝜔𝑏𝑥) +

−1
2
𝑞2(𝜔𝑦 − 𝜔𝑏𝑦) +

−1
2
𝑞3(𝜔𝑧 − 𝜔𝑏𝑧)

1
2
𝑞0(𝜔𝑥 − 𝜔𝑏𝑥) +

−1
2
𝑞3(𝜔𝑦 − 𝜔𝑏𝑦) +

1
2
𝑞2(𝜔𝑧 − 𝜔𝑏𝑧)

1
2
𝑞3(𝜔𝑥 − 𝜔𝑏𝑥) +

1
2
𝑞0(𝜔𝑦 − 𝜔𝑏𝑦) +

−1
2
𝑞1(𝜔𝑧 − 𝜔𝑏𝑧)

−1
2
𝑞2(𝜔𝑥 − 𝜔𝑏𝑥) +

1
2
𝑞1(𝜔𝑦 − 𝜔𝑏𝑦) +

1
2
𝑞0(𝜔𝑧 − 𝜔𝑏𝑧)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

where Ω𝑛
𝑒𝑛 is the skew-symmetric matrix of the rotation rate vector of the navigation frame, versus the

Earth frame, and Ω𝑛
𝑖𝑒 is the skew-symmetric matrix of the turn rate of the Earth around its spin axis.

Ω(𝜔, 𝜔𝑏) is the skew-symmetric matrix of the angular velocity with gyroscope biases and

Ω𝑛
𝑖𝑒 =

⎡⎢⎢⎢⎢⎣
0 −𝜔𝑒𝑠𝑖𝑛𝑙 𝜔𝑒𝑐𝑜𝑠𝑙

𝜔𝑒𝑠𝑖𝑛𝑙 0 0
−𝜔𝑒𝑐𝑜𝑠𝑙 0 0

⎤⎥⎥⎥⎥⎦ (12)

Ω𝑛
𝑒𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−𝑣𝑒𝑡𝑎𝑛𝑙

𝑅𝑁 + ℎ

𝑣𝑒
𝑅𝑁 + ℎ

𝑣𝑒𝑡𝑎𝑛𝑙

𝑅𝑁 + ℎ
0

𝑣𝑛
𝑅𝑀 + ℎ

−𝑣𝑒
𝑅𝑁 + ℎ

−𝑣𝑛
𝑅𝑀 + ℎ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

in which 𝑅𝑀 and 𝑅𝑁 are the meridian and normal radius of curvature respectively, calculated by

𝑅𝑀 =
𝑅(1 − 𝑒2)

(1 − 𝑒2𝑠𝑖𝑛2𝑙)1·5

𝑅𝑁 =
𝑅

(1 − 𝑒2𝑠𝑖𝑛2𝑙)0·5

(14)

where R is the length of the semi-major axis and e stands for the major eccentricity of the ellipsoid.
Figure 1 demonstrates the mechanism of an INS in the navigation frame. In the position calculation,

the discrete form of the latitude and longitude equations may be rewritten as

𝑙𝑘 = 𝑙𝑘−1 +
𝑣𝑛

𝑅𝑀 + ℎ
𝑑𝑡 (15)

𝜆𝑘 = 𝜆𝑘−1 +
𝑣𝑒

(𝑅𝑁 + ℎ)cos(𝑙𝑘−1)
𝑑𝑡 (16)

at time step k, where dt is the sampling time of the inertial sensors.
The navigation frame and the Earth frame are illustrated in Figure 2. The x-axis in the Earth frame

passes through the intersection of the equatorial plane and the prime meridian (ie, the Greenwich
meridian). The z-axis is through the conventional terrestrial pole and the y-axis completes the right-hand
coordinate system in the equatorial plane.

By the measurement model function ℎ(𝑥), the relationship between the measurements and systems’
states is generally given by,

𝑧 = ℎ(𝑥) + 𝑣 (17)

where v is the measurement noise vector. More precisely, the measurement function ℎ(𝑥) is formed by

ℎ(𝑥) =
[
𝐻𝑋𝑌 𝑍 𝐻𝑈𝑉𝑊 𝐻𝜙𝜃𝜓 (𝑥)

]𝑇 (18)
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Figure 1. Block diagram of an INS mechanism in navigation frame.

Figure 2. Navigation ENU frame and Earth frame.

where

𝐻𝑋𝑌 𝑍 =
[
𝐼3∗3 03∗10

]
.𝑥 (19)

𝐻𝑈𝑉𝑊 =
[
03∗3 𝐼3∗3 03∗7

]
.𝑥 (20)

𝐻𝜙𝜃𝜓 (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎𝑟𝑐𝑡𝑎𝑛

(
2𝑞0𝑞1 + 2𝑞2𝑞3

𝑞2
0 − 𝑞2

1 − 𝑞2
2 + 𝑞2

3

)
𝑎𝑟𝑐𝑠𝑖𝑛(2𝑞0𝑞2 − 2𝑞3𝑞1)

𝑎𝑟𝑐𝑡𝑎𝑛

(
2𝑞0𝑞3 + 2𝑞2𝑞1

𝑞2
0 + 𝑞2

1 − 𝑞2
2 − 𝑞2

3

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The rotation matrix 𝑅𝑛
𝑏 (b frame to n frame), is given by

𝑅𝑛
𝑏 =

⎡⎢⎢⎢⎢⎢⎣
𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜓) − 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓) −𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜓) 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓) + 𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜓)

𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜓) + 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜙)𝑠𝑖𝑛(𝜓) − 𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜓)

−𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜃)

⎤⎥⎥⎥⎥⎥⎦
(22)

The parameter descriptions in a navigation system are summarised in Table 1.

2.2. Proposed switched model

To improve the state estimation in an INS, a switched model with two subsystems is defined here,
including a main model and an auxiliary one. The second model is adopted in a centrifugal acceleration
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Table 1. Parameter description in a navigation system.

𝑙, 𝜆, ℎ Latitude, Longitude, Altitude
𝑣𝑒, 𝑣𝑛, 𝑣𝑢 Velocity at 3 axes (east, north, up)
𝑞0, 𝑞1, 𝑞2, 𝑞3 Quaternion parameters
𝜔𝑏𝑥 , 𝜔𝑏𝑦 , 𝜔𝑏𝑧 Gyroscope biases
𝑚𝑥 , 𝑚𝑦 , 𝑚𝑧 Magnetometer sensors in 3D
𝜙, 𝜃, 𝜓 Roll, Pitch, Yaw (Euler angles)
𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧 Gyroscope sensors in 3D
𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 Accelerometer sensors in 3D
𝑅𝑀 , 𝑅𝑁 Meridian and normal radius of the ellipsoid
𝜔𝑒 Rotation of the Earth about its spin axis
𝑔𝑛 Gravity vector in navigation frame
𝛺(𝜔) Symmetric matrix of the angular velocity

mode, in which the sensors may exhibit inaccurate measurements. In other words, when the vehicle is
turning, the centrifugal acceleration mode is on and the estimation with the conventional mathematical
model causes considerable errors, mainly due to gyro biases. Thus, in such manoeuvring, the second
(auxiliary) subsystem is activated to improve the estimation performance and reduce errors.

In general, the switched model with two subsystems may be represented as (Lunze and Lamnabhi-
Lagarrigue, 2009) {

�𝑥(𝑡) = 𝑓𝜎 (𝑥(𝑡))

𝑧(𝑡) = ℎ𝜎 (𝑥(𝑡))
, 𝜎 ∈ {1, 2} (23)

where 𝜎 is referred to switching signal, indicating which subsystem is activated at time t. In this context,
switching means changing from one currently active subsystem to another. Switching may depend on
time (time-dependent), or may be a function of states (mode-dependent) or a function of the external
input (Liberzon, 2003).

Subsystem 1, used for most of the operating modes of navigation except for the centrifugal acceleration
mode, is specified by

sybsystem 1 :

{
�𝑥(𝑡) = 𝑓1(𝑥(𝑡))

𝑧(𝑡) = ℎ1(𝑥(𝑡))
(24)

where the states vector x includes the position, velocity, quaternion and gyro biases as

𝑥 = [𝑙, 𝜆, ℎ, 𝑣𝑒, 𝑣𝑛, 𝑣𝑢 , 𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝜔𝑏𝑥 , 𝜔𝑏𝑦 , 𝜔𝑏𝑧]
𝑇 (25)

In dynamical Equation (24),

𝑓1(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎣
�𝑟𝑛

�𝑣𝑛

�𝑞
�𝜔𝑏

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐷−1𝑣𝑛

𝑅𝑛
𝑏 𝑓

𝑏 − (2Ω𝑛
𝑖𝑒 +Ω𝑛

𝑒𝑛)𝑣
𝑛 + 𝑔𝑛

1
2
Ω(𝜔, 𝜔𝑏)𝑞

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(26)

and

ℎ1 (𝑥) =
[
𝐻𝑋𝑌 𝑍 𝐻𝑈𝑉𝑊 𝐻1(𝜙𝜃𝜓) (𝑥)

]𝑇 (27)

https://doi.org/10.1017/S0373463324000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000079


The Journal of Navigation 715

in which

𝐻𝑋𝑌 𝑍 =
[
𝐼3∗3 03∗10

]
.𝑥 (28)

𝐻𝑈𝑉𝑊 =
[
03∗3 𝐼3∗3 03∗7

]
.𝑥 (29)

𝐻1(𝜙𝜃𝜓) (𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

arctan

(
2𝑞0𝑞1 + 2𝑞2𝑞3

𝑞2
0 − 𝑞2

1 − 𝑞2
2 + 𝑞2

3

)
arcsin(2𝑞0𝑞2 − 2𝑞3𝑞1)

arctan

(
2𝑞0𝑞3 + 2𝑞2𝑞1

𝑞2
0 + 𝑞2

1 − 𝑞2
2 − 𝑞2

3

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

The second subsystem, activated when the system enters the centrifugal acceleration mode, is given
by

sybsystem 2 :

{
�𝑥(𝑡) = 𝑓2(𝑥(𝑡))

𝑧(𝑡) = ℎ2 (𝑥(𝑡))
(31)

with

𝑥 = [𝑙, 𝜆, ℎ, 𝑣𝑒, 𝑣𝑛, 𝑣𝑢 , 𝑞0, 𝑞1, 𝑞2, 𝑞3]
𝑇 (32)

which shows that the gyro biases are not updated during the centrifugal acceleration mode.
In subsystem 2, described by Equation (31), the process model and output measurement are

respectively represented by

𝑓2(𝑥) =

⎡⎢⎢⎢⎢⎣
�𝑟𝑛

�𝑣𝑛

�𝑞

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝐷−1𝑣𝑛

𝑅𝑛
𝑏 𝑓

𝑏 − (2Ω𝑛
𝑖𝑒 +Ω𝑛

𝑒𝑛)𝑣
𝑛 + 𝑔𝑛

1
2
Ω(𝜔)𝑞

⎤⎥⎥⎥⎥⎥⎦
(33)

and

ℎ2 (𝑥) =
[
𝐻𝑋𝑌 𝑍 𝐻𝑈𝑉𝑊 𝐻2(𝑥)

]𝑇 (34)

where

𝐻𝑋𝑌 𝑍 =
[
𝐼3∗3 03∗7

]
.𝑥

𝐻𝑈𝑉𝑊 =
[
03∗3 𝐼3∗3 03∗4

]
.𝑥

𝐻2(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(𝑞1𝑞3 − 𝑞0𝑞2) − 𝑔𝑡𝑎𝑛(𝜙) sin(𝜃)
−2(𝑞2𝑞3 + 𝑞0𝑞1) − 𝑔𝑠𝑖𝑛(𝜙) cos(𝜃)
−𝑞0

2 + 𝑞1
2 + 𝑞2

2 − 𝑞3
2 − 𝑔𝑡𝑎𝑛(𝜙) sin(𝜙) cos(𝜃)

𝑏𝑥 (𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) + 2𝑏𝑧 (𝑞1𝑞3 − 𝑞0𝑞2)

2𝑏𝑥 (𝑞1𝑞2 − 𝑞0𝑞3) + 2𝑏𝑧 (𝑞2𝑞3 + 𝑞0𝑞1)

2𝑏𝑥 (𝑞1𝑞3 + 𝑞0𝑞2) + 𝑏𝑧 (𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(35)

𝑧 =
[
𝑙 𝜆 ℎ 𝑣𝑒 𝑣𝑛 𝑣𝑢𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑚𝑥 𝑚𝑦 𝑚𝑧

]𝑇 (36)

in which 𝑚𝑥 , 𝑚𝑦 , 𝑚𝑧 are the magnetometer sensor measurements on the three axes.
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3. Proposed algorithm for integrated INS/GPS

3.1. EKF and adaptive EKF

The Kalman filter, as a set of mathematical equations, provides an efficient computational (recursive)
strategy to estimate the state of a process. The conventional EKF, as an extension of the classic KF for
nonlinear systems, is introduced by

𝑥−𝑘= 𝑓 (𝑥𝑘−1, 𝑢𝑘−1, 0) (37)
𝑃−
𝑘=𝐴𝑘𝑃𝑘−1𝐴

𝑇
𝑘 +𝑄𝑘−1 (38)

𝐾𝑘 = 𝑃−
𝑘𝐻

𝑇
𝑘 (𝐻𝑘𝑃

−
𝑘𝐻

𝑇
𝑘 + 𝑅𝑘 )

−1 (39)
𝑥𝑘 = 𝑥−𝑘+𝐾𝑘 (𝑧𝑘 − ℎ(𝑥−𝑘 , 0)) (40)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘 )𝑃
−
𝑘 (41)

where 𝑥−𝑘 and 𝑃−
𝑘 are, respectively, the predicted state vector and the covariance matrix; 𝑥𝑘 and 𝑃𝑘 are

the corrected ones; 𝐾𝑘 is the filter gain matrix; and subscript k denotes the discrete time step.
To enhance the estimation performance, the covariance matrices 𝑅𝑘 and 𝑄𝑘 may be updated by an

adaptive mechanism as (Liu et al., 2018)

𝐶̂𝑟 𝑘 =
1
𝑁

𝑘∑
𝑗= 𝑗0

𝑟 𝑗𝑟
𝑇
𝑗 (42)

𝑅̂𝑘 = 𝐶̂𝑟 𝑘 − 𝐻𝑘𝑃
−
𝑘𝐻

𝑇
𝑘 (43)

𝑄̂𝑘 =
1
𝑁

𝑘∑
𝑗= 𝑗0

Δ𝑥 𝑗𝑥
𝑇
𝑗 + 𝑃𝑘 + 𝐴𝑘𝑃𝑘𝐴

𝑇
𝑘 (44)

where 𝑟𝑘 = 𝑧𝑘−ℎ(𝑥
−
𝑘 ) andΔ𝑥𝑘 = 𝐾𝑘𝑟𝑘 . Incorporating (Equation (43)) into (Equation (39)), the modified

𝐾𝑘 can be written as

𝐾𝑘 = 𝑃−
𝑘𝐻

𝑇
𝑘

(
1
𝑁

𝑘∑
𝑗= 𝑗0

𝑟 𝑗𝑟
𝑇
𝑗

)−1

(45)

3.2. Proposed switched-based AEKF algorithm

Based on the proposed switched measurement model (Equation (23)) in Section 2.2, a switched-based
AEKF algorithm is represented here. The block diagram of INS/GPS integration, using the proposed
SAEKF, is illustrated in Figure 3.

The proposed algorithm for state estimation may be summarised as follows:

Step 1: Depending on the mode of operation, one of the subsystems (Equations (24) or (31)) is
adopted in the navigation equations.

Step 2: Predicting the process model, the new state 𝑥−𝑘 and error covariance 𝑃−
𝑘 are calculated, in the

𝑘’th discrete time step, using Equations (37) and (38). Depending on the mode of operation,
one of Equations (26) or (33) is adopted.

Step 3: Calculate the adaptive covariance matrices 𝑅̂𝑘 and 𝑄̂𝑘 by Equations (43) and (44).
Step 4: Update the Kalman gain 𝐾𝑘 , state 𝑥𝑘 and covariance error 𝑃𝑘 for the next discrete time step

by Equations (39)–(41). Depending on the mode of operation, either Equation (27) or (34) is
adopted in the navigation equations.

Step 5: Go to Step 1 for a new set of samples.
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Figure 3. Block diagram of INS/GPS integration using proposed SAEKF.

Remark 1. When the accelerometer sensor data presents an error, the KF experiences an error, which
causes a switch to the second model. Such error is the difference between the predicted variables and
the measured values, generated by the measurement residual 𝑧𝑘 − ℎ(𝑥−𝑘 ).

The main effect of the centrifugal acceleration in the normal rotation may be on the y-axis, used to
calculate the roll angle. In the proposed method, the measurement model is changed, according to the
new mode of centrifugal acceleration. The measured values of the accelerometer sensor on the y-axis
and the corrected measured acceleration by the new measurement model are shown in Figure 4.

As shown in Figure 5, by creating the centrifugal acceleration, an increment in the error of the Euler
angle estimation is included in the conventional KF. By the proposed method, the roll angle error is
reduced by adopting a new subsystem (Equation (33) and (34)), as demonstrated in Figure 6. By correctly
choosing the covariance matrices’ values, the KF’s estimation error is reduced during the centrifugal
acceleration mode.

Remark 2. In the proposed algorithm, if the centrifugal acceleration mode takes longer than 3 sec,
the new centrifugal mode is activated. In other words, very fast-turning movement in the airplane
manoeuvres, which causes a high switching frequency between the two subsystems, does not occur.

Remark 3. The switch time in the algorithm is determined based on the roll angle in turning. By the
designer choosing the time duration 𝑡𝑐 and roll angle threshold 𝜙𝑐 , the centrifugal acceleration mode
and the switching trigger are activated when |𝜙| > 𝜙𝑐 , for 𝑡 > 𝑡𝑐 .

4. Experimental results

To investigate the performance of the proposed switching method, compared with the existing EKF,
the flight data is stored on a storage memory. To this end, several aerial manoeuvres have been tested
to evaluate the performance of the method. The results of the experimental data have been shown in
the time interval, corresponding to the duration of the flight. When the airplane turns, the centrifugal
force causes an error in the measurement model. The proposed switched model is adopted to solve
the problem, especially to compensate for the effect of centrifugal acceleration on the roll angle. To
make a comparative analysis, the conventional EKF, AEKF, integral mechanisation and the proposed
algorithm have been implemented and discussed. After installing the INS box along with a GPS antenna
on the airplane, the filters operate in parallel, and the outputs are saved on the memory. The technical
specifications of the main instruments are reported in Table 2.
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(a)

(b)

Figure 4. Raw and compensated acceleration and acceleration fits with the roll angle measured by the
mechanical gyroscope (red), (a) raw acceleration measured by the sensor (blue) and (b) compensated
acceleration with the new model (blue).

4.1. Euler angle estimation of an airplane test

In conventional models of INS, the gyro values are integrated to calculate the Euler angles, as shown in
Figure 1. Such a method may be efficient if the gyro bias is negligible, as in advanced technologies such
as mechanical gyro and fibre optics. Conversely, the adopted sensors in MEMS-based INS, given in
Table 2, may not present high accuracy. By using the integral mechanism, EKF, AEKF and the proposed
SAEKF in the INS, the roll angle estimation is illustrated and compared in Figure 7. In general, the
estimation error may increase during the centrifugal acceleration mode. As specified in Figure 7, the
centrifugal acceleration occurred six times in the test, denoted by numbers 1–6. In the proposed SAEKF,
the estimation error is considerably small compared to the other three methods. In the underlying flight
test, the mechanical gyro is used as a reference to check the accuracy of the estimation performance. The
accuracy of the mechanical gyro is 0 · 5°. Compared to the EKF, the AEKF provides a longer duration
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Figure 5. Roll angle error 𝑧𝑘 − ℎ(𝑥−𝑘 ) in conventional EKF, ie, subsystem mode (30).

Figure 6. Roll angle error 𝑧𝑘 − ℎ(𝑥−𝑘 ) in the proposed SAEKF method.

to deviate from the correct value, with lower estimation error. In particular, during the rotation of flight
test, the roll estimation error is reduced by using the SAEKF, as shown in Figure 8. From a comparison
viewpoint, Table 3 lists the maximum, average and root mean square (RMS) errors during the whole
flight, which confirms that the proposed SAEKF presents less error. The error specifications are also
represented in Table 4 for various algorithms. Maximum and RMS errors in the six rotations show that
the proposed method is more accurate during the centrifugal acceleration.

The pitch and yaw angles in different algorithms are demonstrated in Figure 9. Figure 10 shows the
error between the mechanical gyro and EKF methods in pitch angle and the error between the GPS
and EKF methods in yaw angle. The RMS error of the pitch angle, using various algorithms, is also
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Table 2. Technical specifications of the main instruments.

Instrument Specification Value

Gyroscope Bias stability 12 deg/h
Noise density 0 · 01 deg/s/Hz0 · 5

Nonlinearity 0 · 08%
Accelerometer Initial 0 g output 150 µg

Noise density 440 µg/Hz0 · 5

Magnetometer Range ±0 · 2 mT
GPS Accuracy <2 m

Figure 7. Comparing roll angle, EKF (blue), AEKF (red), proposed SAEKF (orange) and only integral
mechanisation (purple) with mechanical gyro reference (green).

given in Table 5. When the airplane turns and the roll angle changes, the measurement model, which is
calculated by the acceleration sensor, shows 0 for the roll angle. Figure 11 illustrates the performance of
the three applied algorithms. Applying the EKF and AEKF, the correct angle is calculated only for the
first few seconds. Meanwhile, when the airplane is in horizontal attitude, it takes time for roll angle to be
corrected. Such a drawback is removed by using the proposed SAEKF, as it activates the corresponding
subsystem for the centrifugal acceleration mode.

4.2. Position localisation of an airplane during GPS outages

Position localisation is based on the mathematical equations in the navigation systems with the inertial
sensors’ data. The gyro rate and magnetic sensor, the roll, pitch and yaw angles are calculated using
the accelerometer sensors. Consequently, by converting the values in different coordinates and twice
integrating the acceleration, the displacement and position of the aircraft can be determined. When
the GPS is disconnected and the information is not available, positioning may fail and the accuracy of
calculations is lost.
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Figure 8. Roll error with mechanical gyro as reference, EKF Error (blue), AEKF Error (red), proposed
SAEKF error (orange) and only integral mechanisation error (purple).

Table 3. Maximum, mean and RMS error of roll angle in the whole flight test.

Error (deg°) Integral mechanism EKF AEKF Proposed switched AEKF method

Maximum 7 · 86 5 · 42 4 · 11 2 · 06
RMS 2 · 78 1 · 74 1 · 21 0 · 47
Mean 2 · 23 1 · 19 0 · 89 0 · 36

Table 4. Maximum and RMS error of roll angle during centrifugal acceleration in flight rotation.

Rotation Error (deg°) Integral mechanism EKF AEKF Proposed switched AEKF method

1 Maximum 7 · 25 4 · 71 4 · 11 1 · 12
RMS 5 · 14 3 · 18 1 · 52 0 · 44

2 Maximum 4 · 21 3 · 71 2 · 59 1 · 23
RMS 1 · 81 1 · 98 1 · 51 0 · 54

3 Maximum 7 · 86 4 · 82 4 · 09 0 · 98
RMS 5 · 38 3 · 26 1 · 66 0 · 31

4 Maximum 5 · 49 4 · 43 3 · 26 1 · 99
RMS 2 · 03 2 · 41 1 · 22 0 · 56

5 Maximum 6 · 47 5 · 42 3 · 45 1 · 16
RMS 4 · 06 3 · 45 1 · 49 0 · 32

6 Maximum 2 · 23 3 · 83 3 · 71 1 · 71
RMS 1 · 13 2 · 39 0 · 54 0 · 42

The experimental test is performed to check the accuracy of the position and motion estimation,
when GPS information is unavailable. During the flight, the GPS is disconnected four times and
reconnected after one minute. When the GPS information is unavailable, the position is estimated from
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Figure 9. Pitch and yaw angle, EKF (blue), AEKF (red), proposed SAEKF (orange), only integral
mechanisation (purple) with mechanical gyro reference (green).

the relationships governing the inertial navigation. Once the GPS is reconnected and the information is
usable, the error generated during the GPS outages is quickly reduced. Applying three algorithms of the
EKF, AEKF and proposed SAEKF, Figures 12–14 demonstrate the performance during GPS outages.
Mechanical gyro and GPS information is used as the references to compare the estimation of the Euler
angle and position, respectively. The position accuracy of the reference is two meters.

When an EKF is used to determine the position, errors in the estimation of Euler angles affect
the relations governing the inertial navigation. The position error is also increased by the integrating
procedure.
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Figure 10. Pitch and yaw error with mechanical gyro as reference, EKF error (blue), AEKF error
(red), proposed SAEKF error (orange) and only integral mechanisation error (purple).

Table 5. Maximum, mean and RMS error of pitch angle in the whole flight test.

Error (deg°) Integral mechanism EKF AEKF Proposed switched AEKF method

Maximum 5 · 94 5 · 57 5 · 33 4 · 92
RMS 1 · 31 1 · 07 0 · 83 0 · 49

By using an AEKF, the estimation of Euler angles improves and the latitude and longitude calculation
errors are reduced. The error of determining the latitude and longitude is shown, respectively, in
Figures 12 and 13, when the GPS is disconnected.

During centrifugal acceleration mode, the proposed method adopts the appropriate model to esti-
mate the Euler angles. This reduces the measurement model’s error and facilitates calculation of the
latitude and longitude with less error. Figure 14 also demonstrates the 2D diagram and the path on the
geographical coordinates.
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(a)

(b)

(c)

Figure 11. Roll angle in centrifugal acceleration mode, the measured value (green), and the estimation
(red) by (a) EKF, (b) AEKF and (c) proposed SAEKF.
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(a)

(b)

(c)

Figure 12. GPS data (red) and latitude estimation (blue) with (a) EKF, (b) AEKF and (c) proposed
SAEKF.

https://doi.org/10.1017/S0373463324000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000079


726 Mohammad Saber Fadaki et al.

(a)

(b)

(c)

Figure 13. Longitude estimation: GPS data (red) and INS output (blue), by using (a) EKF, (b) AEKF
and (c) proposed SAEKF.

https://doi.org/10.1017/S0373463324000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000079


The Journal of Navigation 727

(a)

(b)

(c)

Figure 14. Position in 2D diagram, GPS data (red) and INS output (blue), with (a) EKF, (b) AEKF and
(c) proposed SAEKF.
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(a)

(b)

(c)

Figure 15. INS error with three methods EKF, AEKF and proposed SAEKF, (a) latitude, (b) longitude,
(c) total position error.

https://doi.org/10.1017/S0373463324000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463324000079


The Journal of Navigation 729

Table 6. Comparison of maximum and RMS error in three methods when GPS is disconnected.

GPS outages Error (m) EKF AEKF Proposed method

GPS outage 1 Maximum 412 251 97
RMS 237 168 62

GPS outage 2 Maximum 738 93 36
RMS 361 52 17

GPS outage 3 Maximum 672 185 29
RMS 358 91 13

GPS outage 4 Maximum 819 418 182
RMS 379 276 126

As illustrated in Figure 14, the GPS is disconnected four times, denoted by numbers 1 to 4. Figure 15,
which compares the INS error with three methods, EKF, AEKF and proposed SAEKF, confirms that
the error of positioning with the proposed method is less than with the other two methods during the
GPS outages.

By applying the three aforementioned methods when GPS is disconnected, the generated errors are
those listed in Table 6. From a comparison viewpoint, the errors are considerably reduced by using the
proposed method, particularly when centrifugal acceleration occurs. The reported maximum and RMS
errors show that the proposed method is more accurate in position localisation.

5. Conclusions

In this paper, a new filtering algorithm is proposed for an inaccurate integrated MEMS-based INS/GPS
system. The presented SAEKF prevents increased errors of Kalman filtering estimation during the
centrifugal acceleration and improves the utilisation rate of the observation data in the filter. The
bias stability of MEMS gyroscopes is considerably greater than with other technologies, affecting
the accuracy of Euler angles calculation. In addition, the proposed method, which adopts a corrected
measurement switched model, can increase the estimation accuracy without any additional sensors. To
investigate the performance of the proposed method with other common methods, flight test data is
applied. A comparison study with the conventional EKF and AEKF shows the validity and superiority
of the proposed SAEKF algorithm by experimental test, particularly in the roll estimation during the
centrifugal acceleration. The precise angle estimation also affects the position estimation and presents
less error in the position estimation during GPS outages.
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