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Abstract

Let (P, Y ) be a bundle gerbe over a fibre bundle Y → M . We show that if M is simply connected and
the fibres of Y → M are connected and finite-dimensional, then the Dixmier–Douady class of (P, Y ) is
torsion. This corrects and extends an earlier result of the first author.
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1. Introduction

The idea of bundle gerbes [9] had its original motivation in attempts by the first author
and Alan Carey to geometrise degree-three cohomology classes. This, in turn, arose
from a shared interest in anomalies in quantum field theory resulting from nontrivial
cohomology classes in the space of connections modulo gauge transformations. Even
in the earliest of their joint papers on anomalies [6], which demonstrates that the Wess–
Zumino–Witten term can be understood as holonomy for a line bundle on the loop
group, there is a bundle gerbe, at that time unnoticed, lurking in the background. It
was not until some time later that they realised that a better interpretation of the Wess–
Zumino–Witten term for a map of a surface into a compact Lie group is as the surface
holonomy of the pullback of the basic bundle gerbe over that group [5].

In this work we are concerned with the relationship between bundle gerbes and
infinite-dimensionality. It is well-known [1, 3] that there is a distinct difference
in twisted K -theory over a manifold M between the case where the twist α ∈
H3(M, Z) is torsion and the case where it is of infinite order. The latter seems
to necessitate infinite-dimensional constructions in a way that the former does not.

The first author acknowledges the support of the Australian Research Council.
c© 2011 Australian Mathematical Publishing Association Inc. 1446-7887/2011 $16.00

81

https://doi.org/10.1017/S1446788711001078 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001078


82 M. Murray and D. Stevenson [2]

A similar situation holds in the case of geometric realisations of the twist α as gerbes
and bundle gerbes. In particular, in [9] it was claimed by the first author that the
following was true.

THEOREM 1.1. Let Y → M be a fibre bundle with finite-dimensional 1-connected
fibres. Let M also be 1-connected. Then any bundle gerbe (P, Y ) over M has exact
three-curvature and hence torsion Dixmier–Douady class.

Unfortunately the proof given in [9] is incorrect. We will explain why this is the
case and give a correct proof below. Moreover we will extend this result to the case that
the fibre is just connected. In addition, we will give examples of bundle gerbes with
nontorsion Dixmier–Douady classes for various cases where we relax the hypotheses
on the fibre and base.

2. Bundle gerbes

We quickly review here the basic results on bundle gerbes needed to understand
the proof and later examples. The reader is referred to [9–11] for further details and
additional references.

2.1. Basic definitions. Let π : Y → M be a surjective submersion and denote by
Y [p] the p-fold fibre product

Y [p] = {(y1, . . . , yp) | π(y1)= · · · = π(yp)} ⊂ Y p.

For each i = 1, . . . , p + 1, define the projection πi : Y [p+1]
→ Y [p] to be the map that

omits the i th element.
Here and elsewhere, if Q and R are two U(1) bundles, then we define their

product Q ⊗ R to be the quotient of the fibre product of Q and R by the U(1) action
(q, r)z = (qz, r z−1), with the induced right action of U(1) on equivalence classes
being given by

[q, r ]w = [q, rw] = [qw, r ].

In other words, observe that the fibre product is a U(1)× U(1) bundle and quotient by
the subgroup {(z, z−1) | z ∈ U(1)}.

In addition, if P is a U(1) bundle, we denote by P∗ the U(1) bundle with the same
total space as P but with the action of U(1) changed to its inverse, thus if u ∈ P∗ and
z ∈ U(1), then z acts on u by sending it to uz−1. We will refer to P∗ as the dual U(1)
bundle to P .

If L and J are the hermitian line bundles associated to P and Q respectively,
then there are canonical isomorphisms between L ⊗ J and the hermitian line bundle
associated to P ⊗ Q, as well as canonical isomorphisms between the dual line bundle
L∗ and the hermitian line bundle associated to P∗.

If Q→ Y [p] is a U(1) bundle, then we define a new U(1) bundle δ(Q)→ Y [p+1]

by
δ(Q)= π∗1 (Q)⊗ π

∗

2 (Q)
∗
⊗ π∗3 (Q)⊗ · · · .

It is straightforward to check that δ(δ(Q)) is canonically trivial as a U(1) bundle.
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We then have the following definition.

DEFINITION 2.1 (See [9]). A bundle gerbe over M is a pair (P, Y ), where Y → M
is a surjective submersion and P→ Y [2] is a U(1) bundle satisfying the following two
conditions.

(1) There is a bundle gerbe multiplication, which is a smooth isomorphism

m : π∗3 (P)⊗ π
∗

1 (P)→ π∗2 (P)

of U(1) bundles over Y [3].
(2) This multiplication is associative, that is, if P(y1,y2) denotes the fibre of P over

(y1, y2), then the following diagram commutes for all (y1, y2, y3, y4) ∈ Y [4].

P(y1,y2) ⊗ P(y2,y3) ⊗ P(y3,y4)
//

��

P(y1,y3) ⊗ P(y3,y4)

��
P(y1,y2) ⊗ P(y2,y4)

// P(y1,y4)

It is easy to check that for every y ∈ Y , there is a unique element e ∈ P(y,y) such
that ep = p ∈ Y(y,z) for all p ∈ Y(y,z) and qe = q ∈ Y(x,y) for all q ∈ Y(x,y). Also, for
any p ∈ P(x,y), there is a unique p−1

∈ P(y,x) such that pp−1
= e = p−1 p.

2.2. Triviality and the Dixmier–Douady class. Bundle gerbes are higher
dimensional analogues of line bundles. Accordingly they share many of the familiar
properties of line bundles: just as we can pull back line bundles by smooth maps, form
duals and take tensor products, we can do the same for bundle gerbes.

If (P, Y ) is a bundle gerbe over M , then we can form the dual bundle gerbe (P∗, Y )
by setting P∗→ Y [2] to be the dual of the U(1) bundle P in the sense described earlier.
The process of forming duals commutes with taking pullbacks and forming tensor
products and so we see that the bundle gerbe multiplication on P induces a bundle
gerbe multiplication on P∗ in a canonical way.

If (P, Y ) and (Q, X) are bundle gerbes over M , then we can form a new bundle
gerbe (P ⊗ Q, Y ×M X) over M called the tensor product of P and Q. Here the
surjective submersion is the fiber product Y ×M X→ M and P ⊗ Q is the U(1)
bundle on (Y ×M X)[2] whose fibre at ((y1, x1), (y2, x2)) is given by

P(y1,y2) ⊗ Q(x1,x2).

The bundle gerbe multiplication on P ⊗ Q is defined in the obvious way, using the
bundle gerbe multiplications on P and Q.

Note that if Y = X , then we can form the tensor product bundle gerbe in a slightly
different way. We use the original surjective submersion Y → M , and define P ⊗ Q to
be the U(1) bundle with fiber P(y1,y2) ⊗ Q(y1,y2) at (y1, y2) ∈ Y [2]. The bundle gerbe
multiplication is again induced from the multiplications on P and Q. We will call the
bundle gerbe (P ⊗ Q, Y ) the reduced tensor product of P and Q.
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A bundle gerbe (P, Y ) over M is said to be trivial if there is a U(1) bundle Q
on Y such that P = δ(Q) and the bundle gerbe multiplication on P is given by the
isomorphism

Q∗y1
⊗ Q y2 ⊗ Q∗y2

⊗ Q y3
∼= Q∗y1

⊗ Q y3

resulting from the canonical pairing between Q y2 and Q∗y2
.

Just as every line bundle L on M has a characteristic class in H2(M, Z), the Chern
class c1(L) of L , every bundle gerbe (P, Y ) over M has a characteristic class in
H3(M, Z). This characteristic class is called the Dixmier–Douady class and is denoted
DD(P, Y ). We construct it in terms of Čech cohomology as follows. Choose a good
cover U = {Uα} of M [2] with sections sα :Uα→ Y of π : Y → M . Then

(sα, sβ) :Uα ∩Uβ→ Y [2]

is a section. Choose a section σαβ of Pαβ = (sα, sβ)∗(P). That is, σαβ is a map such
that

σαβ :Uα ∩Uβ→ P,

with σαβ(x) ∈ P(sα(x),sβ (x)). Over triple overlaps,

m(σαβ(x), σβγ (x))= gαβγ (x)σαγ (x) ∈ P(sα(x),sγ (x))

for gαβγ :Uα ∩Uβ ∩Uγ → U(1). This defines a cocycle that represents the Dixmier–
Douady class

DD(P, Y )= [gαβγ ] ∈ H2(M, U(1))= H3(M, Z).

The Dixmier–Douady class of P is the obstruction to (P, Y ) being trivial, in the sense
that DD(P, Y ) vanishes if and only if (P, Y ) is isomorphic to a trivial bundle gerbe.
Note also that the Dixmier–Douady class is compatible with forming tensor products
in the sense that

DD(P ⊗ Q, Y ×M X)= DD(P, Y )+ DD(Q, X).

Likewise, for the reduced tensor product,

DD(P ⊗ Q, Y )= DD(P, Y )+ DD(Q, Y ).

We also need to understand the image of the Dixmier–Douady class in real
cohomology. This can be defined in terms of de Rham cohomology as in the following
section.

2.3. Connections, curving and the real Dixmier–Douady class. Let �q(Y [p]) be
the space of differential q-forms on Y [p]. Define a homomorphism

δ :�q(Y [p])→�q(Y [p+1]) by δ =
p+1∑
i=1

(−1)i−1π∗i . (2.1)
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These maps form the fundamental complex

0→�q(M)
π∗

−−→�q(Y )
δ
−→�q(Y [2])

δ
−→�q(Y [3])

δ
−→ · · · ,

which is exact [9]. If (P, Y ) is a bundle gerbe on M , then a bundle gerbe connection
is a connection ∇ on P that commutes with the bundle gerbe multiplication. If F∇ is
the curvature of a bundle gerbe connection ∇, then δ(F∇)= 0 so, from the exactness
of the fundamental complex, F∇ = δ( f ) for some two-form f ∈�2(Y ). A choice of
such an f is called a curving for ∇. From the exactness of the fundamental complex
we see that the curving is only unique up to addition of two-forms pulled back to Y
from M . Given a choice of curving f , we have δ(d f )= dδ( f )= d F∇ = 0, so that
d f = π∗(ω) for a closed three-form ω on M called the three-curvature of ∇ and f .
The de Rham class [

1
2π i

ω

]
∈ H3(M, R)

is an integral class, which is the image in real cohomology of the Dixmier–Douady
class of (P, Y ). For convenience we call this the real Dixmier–Douady class of (P, Y ).

2.4. The lifting bundle gerbe. For the sake of completeness, and because we use it
in the examples in the last section, let us review the construction of the lifting bundle
gerbe [9]. Let P→ M be a principal G bundle and note that there is a natural function
τ : P [2]→ G defined by p1τ(p1, p2)= p2. Assume moreover that G has a central
extension

U(1)→ Ĝ→ G.

Regarding this as a U(1) bundle Ĝ→ G and pulling it back with τ defines a U(1)-
bundle Q→ P [2]. It is easy to check that the multiplication in Ĝ induces a bundle
gerbe product. The Dixmier–Douady class of this bundle gerbe has a well-known
geometric interpretation as the obstruction to lifting the G bundle P to a Ĝ bundle.

3. The theorem

THEOREM 3.1. Let Y → M be a fibre bundle with finite-dimensional 1-connected
fibres. Let M also be 1-connected. Then any bundle gerbe (P, Y ) over M has exact
three-curvature and hence torsion Dixmier–Douady class.

As stated earlier the proof in [9] is incorrect but it is possible to fix it as follows.
Consider first the exact statement of the results in [7] in the case of two-forms.

THEOREM 3.2 (See [7, Theorem 1]). Let F→ E→ B be a differentiable fibre
bundle carrying a field ω of two-forms on the vertical bundle V , defining a closed
form on each fibre. Then there is a closed form on E extending ω if and only if there
is a de Rham cohomology class c on E whose restriction to each fibre is the class
determined by ω.
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Although it is not spelt out in the statement, the construction assumes that the class
of the extension of ω is c. The same authors also prove the following.

THEOREM 3.3 (See [7, Theorem 2]). Let F→ E→ B be a fibre space with F and B
1-connected. If the restriction map H2(E, R)→ H2(F, R) is not surjective, then
H2k(F, R) 6= 0 for all k ≥ 0.

We use these results to prove Theorem 3.1. Let (P, Y ) be the bundle gerbe. If
m ∈ M , then denote by Ym the fibre of Y → M over m. Notice that because M
is 1-connected, if m, m′ ∈ M there is a unique homotopy equivalence between Ym

and Ym′ and hence a unique identification of H2(Ym) and H2(Ym′) for any choice of
coefficients.

If m ∈ M , then there is a restriction map H2(Y,Q)→ H2(Ym,Q) that induces an
onto map H2(Y, R)→ H2(Ym, R) by Theorem 3.3. It is easy to see that this implies
that H2(Y,Q)→ H2(Ym,Q) is also onto. Indeed, choose a basis for H2(Y,Q) and
for H2(Ym,Q). Then the restriction map is given by a matrix with rational entries.
So its row reduced echelon form has rational entries and one can find a rational vector
mapping to any rational vector.

Let ∇ be a bundle gerbe connection with curvature F and curving f . Fix y0 ∈ Ym

and define ι : Ym→ Y [2] by ι(y)= (y0, y). Then π1 ◦ ι(y)= y and π2 ◦ ι(y)= y0, so
that

ι∗(F)= ι∗δ f = ι∗π∗1 ( f )− ι∗π∗2 ( f )= f.

Hence f restricted to Ym is integral and certainly rational. We deduce from
Theorem 3.3 that there is a rational class in H2(Y,Q) extending the class defined
by f on any fibre and, moreover, it can be represented by a closed two-form ρ from
Theorem 3.2.

Rationality implies that there is some integer n such that nρ is an integral two-form
on Y . We form the nth reduced tensor power Pn of P; it has curving and curvature that
are n times the curving and curvature of P , and DD(Pn, Y )= nDD(P, Y ). As we are
trying to show that DD(P, Y ) is a torsion class it suffices to show that DD(Pn, Y ) is
a torsion class and so we may as well assume that n = 1 or, in other words, that ρ is
integral.

As Ym and M are 1-connected so also is Y , and hence ρ defines a U(1) bundle
Q→ Y whose curvature is ρ. Consider the bundle gerbe P ⊗ δ(Q∗)→ Y [2]. This has
curvature F − δ(ρ) with curving f − ρ that is zero restricted to the fibres of Y → M .
It follows that F is zero restricted to the fibres of Y [2]→ M as F = δ( f − ρ). Since
the fibres of Y → M are 1-connected, the fibres of Y [2]→ M are 1-connected and
so we can descend P ⊗ δ(Q∗) to a bundle R→ M by taking covariantly constant
sections over the fibres of Y [2]→ M .

This descended bundle will have connection a and curvature Fa whose pullback
to Y [2] is the connection ∇ and curvature F − δ(ρ) of P ⊗ δ(Q∗). However, now
we have a two-form Fa on M whose pullback to Y [2] is zero under δ. If we denote
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the projection from Y [p] to M by π [p] and let πi : Y [p]→ Y [p−1] be one of the usual
projections, then π [p−1]

◦ πi = π
[p] and, in particular, π [2] ◦ πi = π

[3]. It follows that

0= δ(π [2]
∗
(Fa))

= (π [2] ◦ π1)
∗(Fa)− (π

[2]
◦ π2)

∗(Fa)+ (π
[2]
◦ π3)

∗(Fa)

= (π [3])∗(Fa)

and (π [3])∗ is injective so Fa = 0. Hence F − δ(ρ)= 0 and the bundle gerbe
P ⊗ δ(Q∗) has zero three-curving and thus torsion Dixmier–Douady class. However,
DD(P)= DD(P ⊗ δ(Q∗)) and thus is also torsion. This proves Theorem 3.1.

REMARK 3.4. For the interested reader, we note that the mistake in the original proof
in [9] was to claim that because the forms f − ρ and d( f − ρ) were vertical, in the
sense of restricting to zero on fibres the form f − ρ descended to M . This is, of course,
not true. What is true is that if a form µ on the total space of a fibre bundle and its
exterior derivative dµ are vertical in the stronger sense of vanishing when contracted
with any vertical vector, then µ descends to the base.

We call a bundle gerbe (P, Y ) over M a finite bundle gerbe if Y is a fibre bundle
over M with finite-dimensional fibres. We can restate Theorem 3.1 as follows.

THEOREM 3.5. Let (P, Y ) be a finite bundle gerbe over M. If M and the fibres of
Y → M are 1-connected then (P, Y ) has torsion Dixmier–Douady class.

We now show how to extend this result to the case of fibres that are only connected.
First we have a proposition.

PROPOSITION 3.6. Let (P, Y ) be a finite bundle gerbe over S3 with connected
fibre F. Then (P, Y ) has torsion and hence zero Dixmier–Douady class.

PROOF. We form the universal cover Ỹ → Y . Then we have the diagram.

Ỹ Y

S3

p
//

π̃ ��:::::

π��������

Since Y → S3 is locally trivial and Ỹ → Y is a covering space, Ỹ → S3 is locally
trivial with fiber F̃ , where F̃ denotes the pullback of Ỹ → Y under the inclusion of the
fiber F ⊂ Y . Consider the long exact homotopy sequences of the fibrations Ỹ → S3

and Y → S3. By naturality, we have the commutative diagram

· · · // π2(S3)

��

// π1(F̃)

��

// π1(Ỹ )

��

// π1(S3)

��
· · · // π2(S3) // π1(F) // π1(Y ) // π1(S3)
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from which we conclude that π1(F̃)= 1. Note that since Ỹ → Y is a covering space
and covering spaces pull back to covering spaces, F̃→ F is also a covering space. In
fact, F̃ is the universal covering of F .

In such a case as this the map p : Ỹ → Y induces a map p[2] : Ỹ [2]→ Y [2] and we
can pull back P→ Y [2] to form a bundle gerbe ((p[2])∗(P), Ỹ ). It is straightforward
from the explicit construction of the Dixmier–Douady class in Section 2.2 to show that
DD((p[2])∗(P), Ỹ )= DD(P, Y ). Since F̃ is 1-connected Theorem 3.1 gives us that
DD(P, Y ) is torsion. But H3(S3, Z)= Z and so DD(P, Y )= 0. 2

We can now prove the required result.

THEOREM 3.7. Let (P, Y ) be a finite bundle gerbe over a simply connected manifold
M with connected fibre F. Then (P, Y ) has torsion Dixmier–Douady class.

PROOF. As M is a simply connected manifold, Hurewicz’s theorem implies that the
Hurewicz homomorphism

h : π3(M)→ H3(M, Z)

is onto. Recall that h is defined by choosing a generator e ∈ H3(S3, Z) and setting
h([α])= α∗(e). Recall also that there is a homomorphism

ρ : H3(M, Z)→ Hom(H3(M, Z), Z),

defined by pairing the cohomology and homology classes, whose kernel is the torsion
subgroup of H3(M, Z).

Let (P, Y ) be a finite bundle gerbe with Dixmier–Douady class DD(P, Y ). Then
ρ(DD(P, Y )) can be determined by evaluating it on classes of the form h([α]) to get

ρ(DD(P, Y ))= ρ(DD(P, Y ))(h([α])) = α∗(DD(P, Y ))

= DD(α∗(P), α∗(Y ))= 0.

Hence DD(P, Y ) is torsion. 2

4. Examples

We consider some examples to see what can be said about the necessity of the
conditions in Theorem 3.7. Note first that a bundle gerbe over a manifold M restricts
to a bundle gerbe over any connected component of M . Thus there is nothing of
interest to be lost by assuming, as we shall henceforth, that M is connected.

Before considering the constructions, we need to make two general remarks. First,
we introduce some notation: given a map a : Y [p]→ A for some abelian group A, we
define δ(a) : Y [p+1]

→ A by

δ(a)= π∗1 a − π∗2 a + π∗3 a −+ · · · .

Second, if Y → M is a surjective submersion, then one way to define a bundle gerbe
is to consider a function c : Y [3]→ U(1), take P→ Y [2] to be the trivial U(1) bundle,
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and define a bundle gerbe product by

((y1, y2), α)((y2, y3), β)= ((y1, y3), c(y1, y2, y3)αβ).

This product is associative if and only if δ(c)= 1. A bundle gerbe connection for Q
is a one-form A on Y [2] satisfying δ(A)= h−1 dh, where δ(A) is defined in equation
(2.1). The curvature of A is d A. We can define curving and three-curvature in the
usual way.

4.1. Bundle gerbes from open covers. It is perhaps worth remarking that, if [gαβγ ]
is a representative cocycle for a class in H3(M, Z) with respect to an open cover
U = {Uα}α∈I of M , we can define YU to be the disjoint union of the open sets in
the cover U with the obvious projection YU → M . Then gαβγ defines a function
c : Y [3]U → U(1) as above and it is easy to check that this defines a finite bundle
gerbe with Dixmier–Douady class [gαβγ ]. In this example YU → M is a surjective
submersion but is, of course, unlikely to be a fibre bundle.

4.2. Cup-product bundle gerbes. A nice way to construct examples of bundle
gerbes is via the cup-product construction (see, for example, [4, 8]). Suppose that
we are given geometric representatives of classes α in H2(M, Z) and β in H1(M, Z)
corresponding to a principal U(1) bundle Q on M and a smooth map f : M→ S1

respectively. Then there is a bundle gerbe over M with Dixmier–Douady class equal
to the cup product α ∪ β.

There are two ways in which this can be described that are of interest to us. In the
first case, the bundle gerbe is of the form (P, Y ), where Y is the Z-bundle f ∗R and
R→ S1 is the universal Z bundle. In the second case, it is of the form (P, Y ), where
Y is the Z× U(1) fibre bundle that is the fibre product f ∗R×M Q of f ∗(R) and Q.
Notice that, in both cases, Y is disconnected.

Let us consider the first case in more detail. Take Y = f ∗R. Then there is a
map τ : Y [2]→ Z, defined by y2 = y1τ(y1, y2) for (y1, y2) ∈ Y [2], and we may define
P→ Y [2] to be the U(1) bundle whose fibre at (y1, y2) is given by Q⊗τ(y1,y2)

m , where
π(y1)= π(y2)= m.

Likewise, in the second case Y is the fibre product Q ×M f ∗R, so that Y is a
principal U(1)× Z bundle over M . The group U(1)× Z fits into a central extension
of Lie groups

U(1)→ U(1)× Z× U(1)→ U(1)× Z

where the product on U(1)× Z× U(1) is defined by

(z1, n1, w1) · (z2, n2, w2)= (z1z2, n1 + n2, w1w2zn1
1 ).

We refer the reader to [4] for more details. The bundle gerbe (P, Y ) is then given by
the lifting bundle gerbe construction. One can check (see [4, Corollary 4.1.15]) that
the Dixmier–Douady class DD(P, Y ) is given by the cup product α ∪ β.

As an example, let us take M = S2
× S1. We let α denote the class in H2(M, Z)

defined by pulling back the Hopf bundle S3
→ S2 via the projection to S2 and we let β
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denote the class in H1(M, Z) defined by the projection to S1. In the first construction
we take Y = S2

× R→ S2
× S1 and in the second Y = S3

× R→ S2
× S1.

This example can be greatly generalised. Suppose that G is a compact, simple,
1-connected Lie group with maximal torus T . Let t denote the Lie algebra of T .
Then there is a natural principal bundle G × t→ G/T × T with structure group
T × π1(T ). Given a bilinear form on the Lie algebra t of T , one can define a central
extension of groups

U(1)→ T × π1(T )× U(1)→ T × π1(T )

(see, for example, [13]) and so we can form the corresponding lifting bundle gerbe.

4.3. Bundle gerbes on unitary groups. Theorem 3.7 implies that a finite bundle
gerbe with connected fibres over a simply connected, simple compact Lie group G
must be torsion. In particular, the basic bundle gerbe corresponding to the standard
generator of H3(G, Z) cannot be a finite bundle gerbe with connected fibres. We
have shown in [12] that when G = SU(n) it is possible to realise the bundle gerbe
with Dixmier–Douady class the standard generator of H3(SU(n), Z) as a finite bundle
gerbe with disconnected fibres as follows. We define

Y = {(X, λ) | det(X − λI ) 6= 0} ⊂ SU(n)× Z ,

where Z denotes the set U(1) with the identity element removed. A point in Y [2] can
be thought of as a triple (X, α, β), where neither of α or β is an eigenvalue of X .
We define a hermitian line bundle over Y [2] by taking the fibre at (X, α, β) to be the
determinant of the sum of the eigenspaces of X lying between α and β on Z , with
respect to a certain ordering on Z . The corresponding U(1) bundle is the required
bundle gerbe. Of course in this case the fibres of Y → SU(n) are disconnected and it
is not, in fact, a fibre bundle.

Other constructions of the basic bundle gerbe on a compact Lie group with the
fibres of Y either disconnected or infinite-dimensional have been considered by other
authors and are reviewed in the introduction to [12].

4.4. A bundle gerbe on the three-torus. Consider T 3
= S1

× S1
× S1 and the

projection Y = R3 π
−→ T 3 that is induced by the standard projection R→ S1 given

by t 7→ exp(2π i t). Notice that the fibres of π : Y → T 3 are disconnected and the base
is, of course, not simply connected. Using constructions from [8], we show how to
construct the bundle gerbe whose Dixmier–Douady class is the natural generator of
H3(T 3, Z).

We will write x = (x1, x2, x3) for a vector x in Y . Note that (x, y) ∈ Y [2] if and
only if x − y ∈ Z3. If (x, y, z) ∈ Y [3] ⊂ R3

× R3
× R3, then define

γ (x, y, z)= (y1
− z1)(x2

− y2)x3

and
c(x, y, z)= exp(2π iγ (x, y, z)).
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If (x, y, z, w) ∈ Y [4], then

δ(γ )(x, y, z, w)= γ (y − x, z − y, w − z) ∈ Z,

so that δ(c)= 1 and this defines a bundle gerbe. Writing points of Y [3] as (x, y, z), we
can denote the projections as x, y, z, and we have R3 valued differential forms dx , dy
and dz. As x , y and z differ by integers these forms are all equal, and we will denote
the resulting form by θ = (θ1, θ2, θ3).

We can similarly define an R3-valued one-form on Y . Pulling it back by either of
the projections Y [2]→ Y gives the form θ , so we will denote the form on Y by θ as
well. Finally notice that θ i , on Y , is the pullback from the i th copy of U(1) of the
one-form dθ/2π that has total integral one on U(1). It is now easy to check that

A =−2π i(x1
− y1)(x2)θ3 and f = 2π i x1θ2

∧ θ3

give a connection and curving for this bundle gerbe. Notice that the curvature is
2π iθ1

∧ θ2
∧ θ3, so the real Dixmier–Douady class is (1/8π3) dθ1

∧ dθ2
∧ dθ3 on

T 3 as we require.
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