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Abstract. We have' investigated the Tully-Fisher relation for Polar
Ring Galaxies (PRGs), based on near infrared, optical and H I data
available for a sample of these peculiar objects. The total K-band
luminosity, which mainly comes from the central host galaxy, and the
measured HI linewidth at 20% of the peak line flux density, which traces
the potential in the polar plane, place most polar rings of the sample
far from the Tully-Fisher relation defined for spiral galaxies, with many
PRGs showing larger H I line-widths than expected for the observed K
band luminosity. This result is confirmed by a larger sample of objects,
based on B-band data. This observational evidence may be related to
the dark halo shape and orientation in these systems, which we study by
numerical modeling of PRG formation and dynamics: the larger rotation
velocities observed in PRGs can be explained by a flattened polar halo,
aligned with the polar ring.

1. Introduction

Polar Ring Galaxies (PRGs) are peculiar objects composed of a central
spheroidal component, the host galaxy, surrounded by an outer ring, made up
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of gas, stars and dust, which orbits nearly perpendicular to the plane of the gas-
poor central galaxy (PRGC; Whitmore et al. 1990). Previous papers (Arnaboldi
et al. 1995, 1997; Iodice et al. 2002a, 2002b, 2002c) found that even where the
morphology of the host galaxy resembles that of an early-type system, PRGs
show many similarities with late-type galaxies. The PRGs are characterized
by a large amount of neutral hydrogen (H I), always associated with the polar
structure (Schechter et al. 1984; van Gorkom et al. 1987; Arnaboldi et al. 1997),
and by a gas-to-totalluminosity ratio in the B-band typical of late-type galaxies.

By exploring the properties of the host galaxy and ring in the optical
and NIR, for a sample of PRGs, Iodice et al. (2002a, 2002b, 2002c) found
that the connection with spirals is tighter. The Tully-Fisher relation (TF)
is the most important scaling relation for disks (Tully & Fisher, 1977): this
is an empirical relationship between the disk rotational velocity (~ot) and its
absolute luminosity (L), where L ex v;.~t, approximately. In the past few years,
several studies have asserted the validity of the TF relation for some classes
of disk galaxies which show different photometric and kinematical properties
with respect to "classical", high-surface-brightness spiral galaxies (Matthews,
van Driel & Gallagher 1998a, 1998b; McGaugh et al. 2000; Chung et al. 2002).
These latest developments indicate that the TF relation is probing a very close
liaison between the dark halo parameters and the total quantity of baryons in
galaxies: the dark halo, which is responsible for the HI linewidth and the flat
rotation curve in the outer regions of a disk, is tuned to the total amount of
baryons in the luminous component.

In PRGs, the HI linewidth (~V) measures the dynamics along the meridian
plane, which is dominated by the dark matter, while the baryons are nearly
equally distributed between the host galaxy and the polar ring. We wish to
investigate the position of the PRGs in the log(~V) - L plane, and study via N-
body simulations of 3-D systems whether the dark halo shape may influence their
position in the log(~V) - L plane, with respect to the TF relation of bright disks.
The question of the dark halo shape is important i) to constrain dark matter
models, through cosmological simulations (Navarro, Frenk & White 1996, 1997;
Bullock et al. 2001) which predict the distribution of the halo shapes and the
universal radial dependence of the dark matter distribution; ii) to give hints
on the nature of dark matter (see Combes 2003 as a review); and furthermore
iii) the dark halo properties in PRGs can give important constraints on the
formation scenarios for these peculiar objects, which is still an open issue (see
Iodice et al. 2002a, 2002c, and references therein).

2. Observations

New near-infrared J, Hand Kn images are available for a sample of PRGs
(Iodice et al. 2002a, 2002b, 2002c), which are selected from the PRGC, and for
ESO 235-G58. The B band magnitude is known for many PRGs (Van Driel et
al. 2002, 2003; Gallagher et al. 2002), and the H I integrated line profile data
were obtained from several published hydrogen observations of PRGs, carried
out by e.g. Richter et al. (1994), van Gorkom et al. (1987), van Driel and
collaborators (2000, 2002, 2003), with several radio telescopes.
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To derive the TF relation for normal disk galaxies, we will use the very large
and detailed dataset available in the I-band from Giovanelli et al. (1997). We
estimate the B band magnitude for spiral disks in the sample from Giovanelli et
al. using the observational relation between morphological type index and the
B-1 colours (de Jong 1996).

Figure 1. Left Panel - Absolute magnitude in the K band vs. the
measured HI linewidth at 20% of the peak line flux density (~V20), for
PRGs of the selected sample, compared with a sample of spiral galaxies from
Verheijen (2001), and with the results from 3-D simulations and 2-D models
(for massless rings and rings that are as massive as the host galaxy), see also
Bournaud & Combes (2003). The long-dashed line is a linear interpolation
of the TF relation for spiral galaxies, and the short-dashed lines show the
width at 15% of the peak of the statistical distribution of spiral galaxies.
For both models, the flattening of the halo is indicated next to each circle
(massless ring) or triangle (very massive ring): a positive x number indicates
that it is an Ex halo with an equatorial flattening, while -x corresponds
to an Ex halo flattened toward the polar plane. The results from the 3-
D models shown in this plot are those computed for the accretion scenario
(Reshetnikov & Sotnikova 1997); our values for dV20 vs. M K are very
similar when one considers the merging scenario (Bekki 1998). Right Panel
- Absolute magnitude in the B band vs. the linewidth at 20% of the peak
line flux density (~V20), for 15 PRGs. Data for disk galaxies (dots) are from
Giovanelli et al. (1997). Absolute magnitudes have been normalized to the
same value of Hi, for PRGs and disk galaxies (75 km S-l Mpc- 1 ) . A linear
interpolation of the TF relation is shown for these disk galaxies (solid line),
81% of which lie inside the dashed lines that are computed at 25% of the peak
of the statistical distribution of spiral galaxies. The long-short dashed line is
obtained for unbarred disks, seen nearly edge-on (i ~ 80°). From Iodice et al.
(2003).

2.1. PRGs and the TF Relation for Spiral Galaxies

In Fig. 1 we show the K-band TF relation for a sample of spiral galaxies studied
by Verheijen (2001). The values of M K and log(~V2o) for PRGs are also shown
on this plot. Our and Verheijen's data sets have very similar photometric
properties and limiting magnitudes. We see that five PRGs lie near to the
high-velocity boundary of the TF relation, or show larger velocities (for a given
luminosity) than disk galaxies. Only the PRG AM2020-504 shows a lower
rotation velocity for its K-band absolute magnitude.

https://doi.org/10.1017/S007418090018372X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090018372X


408 Arnaboldi et al.

In the B-band, the tendency of PRGs to have larger velocities with respect
to the TF is confirmed for a larger sample of PRGs compared with data for 787
disk galaxies (Giovanelli et al. 1997). In Fig. 1, we see that two PRGs lie at
lower velocities than those predicted by the TF for spiral galaxies, two objects
lie on the TF relation, and twelve PRGs either lie on the high velocity boundary
of the TF relation or show much larger velocities. Van Driel et al. (2003) also
find that most kinematically confirmed PRGs show larger H I profile widths than
bright spiral galaxies, at a given luminosity.

3. The PRG positions in the log(LlV) - L plane and their implications
for the dark halo

Observing higher or lower velocities with respect to the linear TF of disk galaxies
is relevant for the discussion on the dark halo shape. Via analytical models and
simple assumptions about the mass distribution, either luminous or dark, we can
estimate where the PRGs ought to lie in the 10g(LlV) - M K / B plane (Fig. 1),
with respect to the TF relation for disk galaxies. If there were no dark matter,
and the gravitational potential were oblate in the same sense as the flattened
host galaxy, the polar ring would acquire an eccentric shape. When the polar
ring and the host galaxy are both seen edge-on, which is close to being the case
for most of our PRGs, the net effect will be that the line-of-sight (LOS) polar
ring velocities are reduced. In the logarithmic, scale-free, potential case, a simple
formula gives the expected velocity ratio between the major and the minor axis
components as:

Vminor
Ev == 1 - -- == Ep ~ 2EcIl

Vmajor
(1)

from Gerhard & Vietri (1986), where Ep is the flattening (I-axis ratio) of the
density distribution and E¢ is the potential flattening. Therefore we would
expect PRGs to have on average lower velocities with respect to what would
be measured in the equatorial plane.

This implies that when the polar structure is eccentric, the observed LOS
velocities in LlV20 are the smallest, i.e, those from the particles in the polar
regions, see Fig. 2. Thus the observed LlV20 depends on both the mean velocity
along the ring, and the ring eccentricity. On the contrary, Fig. 1 shows that the
majority of PRGs have larger velocities than expected in the log(LlV) - M K / B

plane. Therefore we need to investigate how these velocities can be produced,
and how they may depend on the intrinsic properties of the dark galaxy halo.
We computed a series of N-body models of the formation of PRGs (Bournaud &
Combes 2003). Our 3-D and 2-D simulations of PRGs show different positions
in the TF plane depending on the shape of their dark halos. When the halo
is oblate and flattened towards the host galaxy, the observed velocity in the
polar ring are then smaller, and PRGs lie on the left-hand of the TF relation
for bright disks. When the dark halo is flattened towards the polar ring plane,
the observed velocities as larger, shifting the PRGs to the right-hand side of the
diagram as in Fig. 1 (see also Iodice et al. 2003).
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Figure 2. Left panel - Simulated H I profiles for circular and eccentric
polar rings seen edge-on. Solid line: H I profile computed for a circular
ring, extending from 10 to 15 kpc. Dashed line: H I profile computed for
an eccentric ring, with the same radial extension and radius, and ellipticity
0.35. The values of log(~V20 ) are 2.51 for the circular ring and 2.38 for the
eccentric ring. This difference is in agreement with the set of values for ~V20 ,

at a given total K or I band luminosity, obtained from PRG numerical models.
Right panel - TF relation for SO galaxies (data from Mathieu et al. 2002) and
PRGs. The TF for spiral galaxies is plotted as a dashed line. Large crosses
show the position of the central component in five PRGs. From Iodice et al.
(2003).

4. Discussion

409

In the log(~V) - MK / B planes shown in Fig. 1, most PRGs have larger
H I rotation velocities than standard spiral galaxies, at a given K or B-band
luminosity of the stellar component. Our N-body simulations have suggested
that a likely explanation for this effect is a flat dark halo, whose main plane
is aligned with the host galaxy meridian plane, preventing the polar ring from
becoming eccentric. The question arises if other effects, i.e, non-homogeneities
in the TF relations for spirals, caused by bar and/or non edge-on disks, or larger
MIL ratios, can produce similar results and therefore be alternative explanations
for the high velocities observed in PRGs.

Can the offset between the TF relation for bright spirals and PRGs be
caused by the PRGs being less luminous than spirals at a given velocity? No, it
cannot: as shown in Fig. 2 the host galaxies in 5 PRGs fall on the TF relation
for bright spirals, which indicates 1) that the M/L ratio of this component is
different from those of standard SOs, and 2) a luminous-to-dark matter content
ratio similar to those of standard bright disks. Gerhard et al. (2001) showed that
elliptical galaxies follow a TF relation in the log(~V) - M*, where M* is the total
mass in the luminous component, which is shallower than the relation for spiral
galaxies, even when the maximal M IL B is adopted to compute the total stellar
masses. This led Gerhard and collaborators to infer that elliptical galaxies have
slightly lower baryonic mass than spiral galaxies of the same circular velocity,
and that their dark halos are denser than halos of spiral galaxies with the same
LB. How much more massive must the dark halo be, to account for the velocities
observed in polar rings? The observed value of ~V20 depends largely on the dark
halo shape and the ring eccentricity, while it varies only as the square root of
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the total mass (and depends even less on the dark mass). Thus, a large amount
of dark matter is needed when the halo is not polar: it ranges from factor 2 for
a spherical halo, to a factor 3.5/4 for an oblate/prolate halo. Such a massive
halo would cause a large offset of the host galaxy from the TF relation of bright
disks, which is not observed.
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